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Abstract 

Esophageal Squamous Cell Carcinoma (ESCC) is the predominant type of Esophageal Cancer (EC), 
accounting for nearly 88% of EC incidents worldwide. Importantly, it is also a life-threatening cancer for 
patients diagnosed in advanced stages, with only a 20% 5-year survival rate due to a limited number of 
actionable targets and therapeutic options. Increasing evidence has shown that inter-tumor and 
intra-tumor heterogeneity are widely distributed across ESCC tumor tissues. In our work, multi-omics 
data from ESCC cell lines, tumor tissue, normal tissue and Patient-Derived Xenograft (PDX) tissues were 
analyzed to investigate the heterogeneity among ESCC samples at the DNA, RNA, and protein level. We 
identified enrichment of ECM-receptor interaction and Focal adhesion pathways from the subset of 
protein-coding genes with non-silent mutations in ESCC patients. We also found that TP53, TTN, KMT2D, 
CSMD3, DNAH5, MUC16 and DST are the most frequently mutated genes in ESCC patient samples. Out 
of the identified genes, TP53 is the most frequently mutated, with 84 distinct non-silent mutation variants. 
We observed that p.R248Q, p.R175G/H, and p.R273C/H are the most common TP53 mutation variants. 
The diversity of TP53 mutations reveal its importance in ESCC progression and may also provide 
promising targets for precision therapeutics. Additionally, we identified the Olfactory transduction as the 
top signaling pathway, enriched from genes uniquely expressed in The Cancer Genome Atlas 
(TCGA)-ESCC patient tumor tissues, which may provide implications for the exact roles of the 
corresponding genes in ESCC. Cyclic nucleotide-gated channel subunit beta 1(CNGB1), a gene belonging 
to the Olfactory transduction pathway, was found exclusively overexpressed in ESCC. Expression of 
CNGB1 could serve as a marker, indicating potential diagnostic or therapeutic value. Finally, we 
investigated heterogeneity in the context of the ESCC PDX model, which is an emerging tool used to 
predict drug response and recapitulate tumor behavior in vivo. We observed trans-species heterogeneity 
in as high as 75% of the identified proteins, indicating that the ambiguity of proteins should be addressed 
by specific strategies to avoid drawing false conclusions. The identification and characterization of gene 
mutation and expression heterogeneity across different ESCC datasets, including various novel TP53 
mutations, ECM-receptor interaction, Focal adhesion, and Olfactory transduction pathways (CNGB1), 
provide researchers with evidence and implications for accurate research and precision therapeutic 
development. 

Key words: Esophageal Squamous Cell Carcinoma; Genetic Heterogeneity; Proteomics; Transcriptome; 
Heterograft; Bioinformatics. 
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1. Introduction 
Esophageal cancer (EC) is a malignant cancer 

with a 15-25% 5-year survival rate worldwide, which 
is also the sixth leading cause of death from cancer 
and the eighth most common cancer [1, 2]. EC has two 
main subtypes: Esophageal Squamous Cell 
Carcinoma (ESCC) and Esophageal Adenocarcinoma 
(EAC) [3]. EAC has a glandular structure and arises 
primarily from Barrett’s mucosa in the lower 
esophageal tube [4]. In contrast, ESCC arises from 
stratified squamous epithelium and is more frequent 
in the proximal to middle esophagus [5]. Annually, 
ESCC accounts for around 88% of the 450,000 EC 
incidents worldwide [6]. Common treatment 
strategies for ESCC include esophagectomy, radiation 
therapy, chemotherapy, targeted therapy, and 
immunotherapy [4, 7]. For ESCC patients in stage I 
(T1N0M0), esophagectomy is recommended as the 
standard treatment, and the 5-year survival rates 
could exceed 70% [8]. Patients generally experience 
difficulties in swallowing, weight loss, and hoarseness 
prior to being diagnosed with advanced-stage ESCC. 
The outcomes of the current established therapeutics 
such as chemoradiotherapy for advanced stages or 
adjuvant chemoradiotherapy with surgery are very 
disappointing.  

In recent years, targeted therapies have emerged 
as optional treatments for ESCC patients in advanced 
stages. Humanized monoclonal antibodies, such as 
trastuzumab which targets HER2, may be 
recommended for cases unsuitable for surgery with 
high HER2 levels. Ramucirumab, a monoclonal 
antibody which targets VEGF, is also used in the 
combination with chemotherapeutic compounds such 
as paclitaxel. These modern immunotherapies could 
improve survival but the outcomes remain 
unsatisfactory [4]. 

Heterogeneity, from which tumor cells exhibit 
distinct phenotypes, is a complex molecular feature of 
ESCC that contributes to metastasis, tumor evolution 
and therapeutic outcomes [9]. Recent Whole Genome 
Sequencing (WGS) and ChIP-seq datasets derived 
from ESCC samples have indicated inter- and 
intra-tumor heterogeneity in terms of histone 
acetylation, methylation, and various types of genetic 
alterations, which facilitate widespread 
transcriptional misregulation [9]. The most frequently 
mutated genes reported in ESCC are TP53, MLL2, 
NFE2L2, ZNF750, TGFBR2 and NOTCH1; while 
frequently upregulated signaling pathways include 
syndecan, Wnt and p63 related [10]. Genomic 
sequencing of cancers, such as Non-Small-Cell Lung 
Cancer and melanoma, have yielded actionable 
targets such as EGFR-L858R and BRAF-V600E, 

respectively [11, 12]. However, despite the extensive 
body of data derived from sequencing ESCC tumor 
tissues, results have not provided clinicians with 
putative actionable targets. Thus, innovative drug 
development strategies or breakthroughs in genome 
editing technology are urgently needed to translate 
basic research findings to clinically relevant results.  

ESCC cell lines are one of the most common and 
accessible research materials. The ESCC PDX model 
also has specific advantages in therapeutic evaluation 
and mechanism studies. In the present work, gene 
mutation and expression data from ESCC cell lines 
and patient tumor tissues, proteome data from PDX 
tissues, and transcriptome data of normal esophageal 
tissue were integratively analyzed. The results 
illustrated that heterogeneity is widely dispersed 
among and between ESCC patient tumor tissues and 
established ESCC cell lines. In the context of gene 
mutations, we observed various TP53 mutations in 
ESCC patient tumor tissues. Additionally, we 
identified Olfactory transduction (CNGB1) as a novel 
enriched signaling pathway from the subset of genes 
exclusively expressed in TCGA-ESCC patient tumor 
tissues. These findings provide novel evidence for 
further ESCC study, and highlight promising targets 
for the development of precision therapeutics. 

2. Materials and Methods  
2.1. Dataset collection, data processing and 

homogenization  
12 Esophageal Squamous Cell Carcinoma 

(ESCC) cell lines were analyzed in this study: kyse30, 
kyse50, kyse70, kyse140, kyse150, kyse180, kyse220, 
kyse270, kyse410, kyse450, kyse510 and kyse520. The 
datasets detailing genetic mutation profiles for the 12 
cell line were downloaded from the Cancer Cell Line 
Encyclopedia (CCLE, https://portals.broadinstitute. 
org/ccle) (Supplemental Data). The Ensembl 
Transcript IDs (ENSTs) of genes containing silent and 
non-silent mutations for each cell line were converted 
into Ensembl Gene IDs (ENSGs) and GeneNames 
(GN) using Ensembl BioMart (http://asia. 
ensembl.org/biomart; Database: Ensembl Genes 101, 
Dataset: Human Genes GRCh38.p13). Replicate IDs 
were removed automatically (Supplemental Data).  

Prior to downloading the dataset detailing the 
genetic mutations in ESCC patients, Case ID’s 
differentiating squamous cell carcinoma from 
adenocarcinoma were downloaded from the TCGA 
database (https://portal.gdc.cancer.gov/repository; 
Primary Site Filter: esophagus, Diagnoses 
Morphology Filter: 8070/3, 8071/3, and 8083/3 are 
classified as Squamous Cell Carcinoma); patient cases 
(N=80) fitting this criteria were chosen for inclusion. 
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Initial diagnoses of all patients participating in the 
study were made between 2001-2013; patient samples 
were processed for sequencing between 2011-2014. 
We obtained mutation annotated files for the 
TCGA-ESCA cohort from Firebrowse (http:// 
firebrowse.org; Cohort: Esophageal Carcinoma, Files: 
Mutation_Packager_Calls) and filtered the file names 
using the aforementioned patient Case IDs to obtain 
the subset of files detailing somatic mutations in 
ESCC patients. Relevant information including the 
name of the mutated gene, its genomic location, 
variant classification, and variant type are listed in the 
header of each file.  

The transcriptome dataset of 10 ESCC cell lines 
(Supplemental Data) were downloaded from CCLE 
(https://portals.broadinstitute.org/ccle/data; 
expression unit: Transcripts Per Million). The 
transcriptome expression data of the TCGA ESCA 
cohort was downloaded from Firebrowse 
(http://firebrowse.org; Cohort: Esophageal 
Carcinoma, Files: illuminahiseq_rnaseqv2-RSEM_ 
genes). ESCC-specific patient transcriptome data were 
obtained by cross-referencing header information 
with the aforementioned Case IDs obtained from the 
TCGA database. Transcripts Per Million (TPM) units 
were calculated for the ESCC-specific patient 
transcriptome data by multiplying the entries within 
the scaled_estimate column by 106. Finally, we 
downloaded the transcriptome of normal human 
esophagus from the Human Protein Atlas 
(https://www.proteinatlas.org/). Transcripts in all 
datasets with TPM values ≥ 0.1 were flagged as 
detectable; transcripts not meeting these criteria were 
considered undetectable.  

As the present analyses focused primarily on 
protein-coding genes, we downloaded a list of all 
protein coding genes from the Human Protein Atlas 
(19588 genes in Ensembl Gene [ENSG] ID) 
(Supplemental Data) to filter the datasets. Finally, the 
Ensembl Gene IDs of the ESCC cell line and ESCC 
patient transcriptome datasets were queried against 
the Ensembl Gene IDs of all protein coding genes 
obtained from the Human Protein Atlas. Ensembl 
Gene IDs not included in the list of all protein coding 
genes were excluded from subsequent analyses. 
Header-labeled original and processed data can be 
found in the supplementary material. Differential 
gene expression analysis was performed using ESCA 
transcriptome RNA-seq read count data downloaded 
from from the TCGA database. The TCGA-ESCA 
cohort was filtered using downloaded Case IDs to 
obtain ESCC transcriptome and normal tissue 
RNA-seq read count data. Transcript counts with less 
than 10 reads were identified and flagged; transcripts 
were excluded if more than 75% of their respective 

samples were flagged. Read counts detailing the 
transcriptome of normal and ESCC patient tissues 
were processed with the DESeq2 program in R using a 
standard pipeline [13]. Entries with adjusted p-values 
less than 0.005, and exhibiting a log2(fold-change) > 1 
or log2(fold-change) < -1 between normal and ESCC 
samples were identified for subsequent analyses.  

CNGB1 expression data in 11 normal esophageal 
patient tissues was filtered from the Firebrowse ESCC 
transcriptome data. The diagrams comparing CNGB1 
expression in different tumor tissues with 
corresponding normal tissues were downloaded from 
GEPIA [14], an interactive web server for analyzing 
RNA sequencing data derived from normal and 
tumor tissues, using a standard analysis pipeline. 

2.2. Matching dissimilarity and correlation 
analysis 

The bivariate correlation analysis for the number 
of silent mutations and the number of non-silent 
mutations was performed using the Pearson 
correlation coefficient. The number of silent mutations 
and non-silent mutations in each sample was graphed 
using a scatter plot against the horizontal and vertical 
axis in a Scatter Plot diagram. The linear regression 
equation (y = ax + b), R and R2 value were also 
calculated.  

Mutation heterogeneity was calculated using a 
matching dissimilarity function. The union of all 
protein-coding genes containing non-silent mutations 
were expressed as Boolean vectors for each sample; 
each gene was assigned a fixed position along the 
vector and was denoted 0 (False) or 1 (True) based 
upon its mutation status in its respective sample. The 

matching dissimilarity is defined as ∑ 𝑢𝑖!=𝑣𝑖
𝑡
𝑖=1

𝑡
, where u 

and v correspond to the Boolean vectors detailing the 
non-silent mapped mutations of each vector at 
position i. The matching dissimilarity output ranges 
bounded [0,1], with an output of 0 indicating no 
difference between input vectors while an output of 1 
indicates maximum dissimilarity between input 
vectors. Calculation of expression heterogeneity was 
calculated using correlation distance. The correlation 
distance between ui and vi is defined as 1 - 
(𝑢𝑖-𝑢)*(𝑣𝑖-𝑣)/(⟦𝑢𝑖 − 𝑢⟧*⟦𝑣𝑖 − 𝑣⟧), where u and v are 
vectors detailing the exome (in TPM) of samples. 
Matching dissimilarity and correlation distance 
analyses were computed using Mathematica Version 
12. 

2.3. The proteomic data derived from tissues 
of PDX-ESCC patients 

The Patient-derived xenograft (PDX) model is 
established by subcutaneously implanting patient- 
derived tumor tissue into severe combined 
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immunodeficiency (SCID) mice. PDX mouse models 
have been established and maintained for research 
in-house [15]. NOD.CB17-Prkdcscid/J (NOD, 
Non-obese diabetic) mice were maintained in 
accordance with the guidelines of Laboratory Animal 
Welfare and Ethics Committee in Zhengzhou 
University. To guarantee the inter-tumor 
heterogeneity between different ESCC patients, two 
individual ESCC PDX models were processed for 
proteomic analysis. The iTraq Reagent 8-plex kit 
(#4381663, AB) (iTraq, Isobaric Tags for Relative and 
Absolute Quantitation) was used for quantitative 
proteomics processing based upon the manufacturer’s 
instructions. In order to ensure the biological 
reproducibility and intra-tumor heterogeneity of the 
original patient tissue, four individual mice (tumor 
volume about 200 mm3) from each of the two ESCC 
PDX models were sacrificed and one piece of tumor 
tissue per mouse was resected. The resected tissues 
were cut and homogenized separately in 1.5 mL EP 
tubes using a tissue homogenizer. 100 mg of 
homogenized tissue from each tube was lysed in 0.8 
mL RIPA (#R0010, Solarbio, containing 1mM PMSF, 
#P8340, Solarbio) (PMSF, Phenylmethylsulfonyl 
Fluoride; RIPA, Radioimmunoprecipitation) for 5 
min, then centrifuged at 13,000g to extract the total 
proteins. The protein supernatants were transferred to 
new tubes and quantified using the BCA kit 
(#PC0200, Solarbio) (BCA, Bicinchoninic Acid). 200µg 
of total protein from each tube was transferred into 
new tubes and trypsinized, 100µg of fragmented 
peptides per tissue were processed to bond separately 
with eight isobaric tags (113-119, 121). The labeled 
peptides from the eight tissues were pooled, 
fractionated, and aliquoted into forty-eight tubes 
using high pH reversed-phase liquid chromatography 
(#1260 Infinity, Agilent Technologies). The fractions 
were symmetrically combined into 12 tubes of 
sample. Subsequently, 8 µL from each of these 12 
samples was loaded and analyzed by tandem mass 
spectrometry (MS/MS) (ekspertTM Nano LC 415-AB 
SCIEX Triple TOF 5600). Fragmentation data from the 
resulting MS/MS spectrum was queried (under the 
cutoff of False Discovery Rate [FDR] < 0.01) against 
the UniProt database using the ProteinPilot software. 
A total of 5, 290 individual proteins were identified 
and used as the proteomic data for analysis. In 
calculating scores of the identified proteins, the matter 
of redundancy was considered and addressed. The 
assigned scores of identified proteins were treated as 
the total scores of all distinct peptides, and the distinct 
peptide sequences were identified as the single 
highest scoring fragments in the MS/MS spectrum. 
Peptide modifications and varying precursor charges 
along the identified peptide were considered 

irrelevant for subsequent analyses. Peptides more 
than eight residues in length were recorded in 
multiple different entries of proteins, with potential 
isoforms being grouped together. PDX data of 
human_origin (5290 proteins) and mouse_origin (4285 
proteins) was obtained separately by querying the 
Uniprot database. The human Uniprot IDs were 
converted into ENSGs using the Ensembl database, 
which were used in the subsequent integrative 
analysis (Supplemental Data). The IDs used for 
trans-species heterogeneity analysis between 
human_origin and mouse_origin proteins were 
converted from ENSGs to GN format for use in 
analyses (Supplemental Data). 

2.4. Open source tools used for bioinformatic 
analysis 

Venn diagrams for overlapping regions of 
interest were created using the program listed at the 
vib-UGent Center for Plant Systems Biology webpage 
(http://bioinformatics.psb.ugent.be/webtools/Venn
/). DAVID (The Database for Annotation, 
Visualization and Integrated Discovery) 
bioinformatics resources 6.8 (NIAID/NIH) was used 
for joint functional annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signal 
pathways enrichment [16, 17]. To avoid counting 
duplicated genes, the EASE Score, a modified Fisher 
Exact statistic, was calculated based on corresponding 
DAVID gene IDs. The EASE Score cutoff value was set 
to 0.1; scores exceeding this value were all considered 
redundant and excluded from subsequent analyses. 
The enriched KEGG pathways displayed were 
bounded by the thresholds, Max. Prob. ≤ 0.1 and Min. 
Count ≥ 2. The minimum gene count threshold for 
KEGG pathway analysis was 2, as pathways with one 
listed gene involved are unreliable.  

The Cytoscape open source software platform 
and the String database were used for integrating and 
visualizing complex networks with attribute data [18], 
as well as for generating protein-protein interaction 
and association networks with increased coverage 
which support functional discovery in genome-wide 
experimental datasets, respectively [19]. Homo 
Sapiens [9606] was selected as the organism for 
analysis. The list of 321 pathway terms corresponding 
with 7512 unique genes in KEGG_27.02.2019 was 
chosen as selected ontologies and the reference set for 
hypergeometric analysis. ClueGO was chosen as the 
functional analysis mode. PPI networks showed 
medium specificity between the extent of extreme 
global and detailed degrees, only pathways with 
p-Value ≤ .05 were shown; all unconnected nodes 
were hidden to increase figure legibility.  
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Figure 1. Investigation of mutation and expression heterogeneity in CCLE-ESCC cell lines and TCGA-ESCC patient tissue. (A and B) Heatmaps illustrating 
gene mutation heterogeneity as a function of matching dissimilarity in CCLE-ESCC cell lines (N=10) and TCGA-ESCC patient tissues (N=80), respectively (CCLE-ESCC : 4725 
genes, TCGA-ESCC: 8510 genes). Darker hues indicate increased dissimilarity among ESCC samples. (C and D) Heatmaps illustrating expression heterogeneity as a function of 
transcriptome correlation distance in CCLE-ESCC cell lines (N=10) and TCGA-ESCC patient tissues (N=80), respectively (CCLE-ESCC: 15258 genes, TCGA-ESCC: 18335 
genes). 

 

3. Results 
3.1. Heterogeneity with respect to gene 

mutations and expression is prevalent 
across ESCC samples 

To determine the prevalence of inter-sample 
heterogeneity at the genomic level across ESCC cell 
lines and patient tissues, we first determined the 
non-silent protein-coding gene mutations presented 
within each sample. Next, we constructed Boolean 
vectors representative of each sample’s gene mutation 
profile and utilized a matching dissimilarity function 
highlight differences among the ESCC cell lines and 
ESCC patient tissues (see Materials and Methods 2.2). 
Our results showed that the matching dissimilarity of 
the mutation profiles within ESCC cell lines ranged 
between 0.19 to 0.29, with a mean of 0.24, while the 
dissimilarity between ESCC patients ranged between 
0.02 and 0.16, with a mean of 0.05 (Fig. 1A, Fig. 1B). In 
the ESCC cell lines and patient tissues, the stark 
differences between the corresponding dissimilarities 
is largely correlated with two main factors, namely 
the length of the vector representing the mutation 
profile for each sample and the number of unique 

mutations in each patient sample. The given set of 
mutated genes identified in the patient tissues varies 
substantially, while there is a large overlap between 
the mutated gene profiles of the ESCC cell lines. This 
key difference leads to the creation of sparse vectors 
as inputs to the matching dissimilarity function that 
are assumed to be similar by virtue of the algorithm.  

A more adequate metric to discern the degree of 
heterogeneity among ESCC cell lines and patient 
samples can be achieved by comparison of their 
respective transcriptomes. Utilizing this approach, the 
previously encountered caveat associated with 
Boolean vector encoding is circumvented, as each 
detectable gene expression is assigned a non-binary 
unit detailing its expression level. Thus, we compared 
transcriptome expression (in TPM units) 
heterogeneity across ESCC cell lines and patient tissue 
using the correlation distance function (see Materials 
and Methods 2.2). The results showed that correlation 
distance between the ESCC cell lines ranges between 
0.02 and 0.30, with a mean of 0.10; within the TCGA 
patient tissues, the correlation distance ranges 
between 0.02 and 0.95, with a mean of 0.39 (Fig. 1C, 
Fig. 1D). The results suggest a tighter relationship 
between the expression profiles of the ESCC cell lines 
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than between these of the TCGA patient tissues. One 
possible explanation for this is, within the cell lines, 
the larger subset of shared mutated genes that target 
the common transcription regulatory networks than 
in the tissue samples. Taken together, these 
observations illustrate variable degrees of 
heterogeneity among samples of ESCC cell lines and 
TCGA patient tissues. Importantly, these results 
highlight that the extensive variability of 
heterogeneity within TCGA tissues at the mutation 
and expression levels may not be adequately 
represented through use of cell lines. 

3.2. The heterogeneity of non-silent 
mutations is widespread across ESCC 
samples 

Genetic mutations could potentially result in the 
expression of dysfunctional proteins, and functionally 
impact their respective biological activities within the 
tumor cells. In order to reveal the landscape of genetic 
heterogeneity across different ESCC samples, we 
analyzed the non-silent mutations identified in ESCC 
cell lines and patient tissues. A total of 5190 non-silent 
mutations were observed in the 12 ESCC cell lines, 
with the ratio of non-silent mutations compared to 
total mutations ranging between 68-75% (Fig. 2A). 
The observed ratio range in the TCGA-ESCC patient 
tissues was between 73-87% (Fig. 2B). To determine 
which cellular pathways could be potentially 
influenced by genomic aberrations, we conducted 
KEGG enrichment analysis using the observed 
protein-coding genes harboring non-silent mutations. 
The top five most significantly enriched signaling 
pathways in ESCC cell lines were identified as Axon 
guidance, ECM-receptor interaction, Protein digestion 
and absorption, ABC transporters, and Focal adhesion 
pathways (Fig. 2C). By using the same pipeline of 
analysis in ESCC cell lines, the top five pathways 
identified in ESCC patient tissues were ECM-receptor 
interaction, Focal adhesion, Axon guidance, cAMP 
signaling pathway, and Phosphatidylinositol 
signaling system pathways (Fig. 2D). These signaling 
pathways are frequently dysregulated in a variety of 
cancers, which enhances confidence in the 
investigation of their respective mechanisms. In sum, 
this evidence indicates that the normal functions of 
the above signaling pathways could be extensively 
affected by the involved mutated genes and aid the 
precision therapeutic development. 

We also found the number of genes with silent 
mutations and genes with non-silent mutations were 
positively correlated both in ESCC cell lines (R = 0.91, 
R2 = 0.83) and ESCC patients (R = 0.94, R2 = 0.88) (Fig. 

2E, Fig. 2F), which indicated conservative correlations 
of silent mutations and non-silent mutations in ESCC 
samples. The unique non-silent mutations of each cell 
line showed a high level of genetic heterogeneity, 
which should be taken into consideration before being 
selected for precision oncology research. The numbers 
of unique non-silent mutated genes for each of the 12 
ESCC cell lines were also analyzed. The ratio of 
unique non-silent mutated genes compared to total 
non-silent mutated genes in each ESCC cell line 
ranges between 51-57% (Fig. 2G). In total, 60% of the 
non-silent gene mutations were identified as unique 
to specific ESCC patients, which is slightly higher 
than 55% across the individual cell lines (Fig. 2G, Fig. 
2H), and illustrates high-level heterogeneity with 
regards to mutational genotype across different ESCC 
samples. 

3.3. A variety of novel non-silent mutations in 
TP53 in ESCC samples  

P53 is a well-known tumor suppressor that 
mediates cellular senescence and apoptosis, a variety 
of deleterious mutations have been identified in many 
types of cancers [20]. Of all the identified mutated 
genes, genetic aberrations of TP53 are prevalent in 
100% of the 12 ESCC cell lines (Fig. 3A, Fig. 3B) and 
90% in ESCC patient tissue (Fig. 3C). Thus, 
experimental design involving DNA damage 
response and apoptosis pathways in ESCC cell lines 
should be prudent, as canonical signaling pathways 
may be affected by dysfunctions of mutant p53 
protein. In total, 84 distinct TP53 non-silent mutations 
are categorized into five classes: Missense_Mutations, 
Nonsense_Mutations, Frame_Shift_Del, Splice_Site 
and In_Frame_Del. with p.R248Q, p.R175G/H, and 
p.R273C/H being identified as the most frequent 
mutation variants (Supplemental Data). Four TP53 
mutations (E343*, R248Q, H179R and H193R) are 
commonly shared by ESCC cell lines and patient 
tissues (Fig. 3D), which may make them feasible 
candidates for in vivo and in vitro precision research. 
Of the TP53 mutations shared between ESCC cell lines 
and patient tissues, R248Q, H193R, and H179R have 
been previously reported to be associated with 
carcinogenesis in different types of cancer [21-23]. 
However, the majority of other TP53 mutations have 
not been reported as contributing to ESCC 
carcinogenesis. Thus, future research detailing the 
functional impact of deleterious TP53 mutations, 
alongside with breakthroughs in drug development 
and genome editing technologies, would likely 
facilitate clinical translation of basic research.  
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Figure 2. The landscape of non-silent mutation heterogeneity in ESCC. (A and B) The grey color indicates the number of genes with silent mutations, and the red color 
indicates genes with non-silent mutations across the ESCC cell lines (A) and patient tissues (B). (C and D) The top ten significantly enriched KEGG signaling pathways from genes 
harboring non-silent mutations in ESCC cell lines and patient tissues, respectively. (E and F) A positive correlation was observed between the number of genes with silent 
mutations and genes with non-silent mutations in ESCC cell lines and patient tissues, respectively. (G) The number of total mutated genes and unique mutated genes across the 
12 ESCC cancer cell lines. (H) The frequencies of non-silent mutated genes across ESCC patient tumor tissues. 
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Figure 3. The distribution of TP53 non-silent mutations across ESCC samples. (A) TP53 is the only mutated gene shared by all 12 ESCC cell lines. (B) A total of 16 
TP53 non-silent mutations were identified across the 12 ESCC cell lines. On average, more than one TP53 mutation per cell line was observed. (C) A total of 90 TP53 non-silent 
mutations are distributed across 90% of ESCC patient tumor tissues (a complete list in the supplemental data). (D) Overlap diagram illustrating commonly shared TP53 non-silent 
mutations between ESCC patients and ESCC cell lines. 

 

 
Figure 4. Heterogeneity illustrated by integrative analysis of gene mutation and protein-coding transcriptome. (A) 501 mutant proteins specific to kyse30 were 
revealed after overlapping total proteins with the total non-silent mutated genes in kyse30. (B) All mutated protein-coding genes were overlapped with all proteins expressed in 
the 10 ESCC cell lines. A subset of 3786 mutant proteins, a subset of 11472 proteins without mutations, and a subset of mutated but untranscribed genes were identified. (C) A 
subset of mutated genes commonly expressed in all the ten ESCC cell lines were observed. (D) Only one mutant protein was identified in the intersection of kyse30-specific 
proteins and kyse30-specific mutated genes. (E) All the unique proteins for each individual ESCC cell line were overlapped with all mutated genes, producing a subset of 135 
mutant proteins unique across the 10 ESCC cell lines. 
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3.4. Genomic aberrations are 
heterogeneously distributed across the 
un-transcribed and actively transcribed 
protein-coding genes in ESCC samples 

Although gene mutation may influence the 
normal functions of protein, the corresponding gene 
must be expressed. With this in mind, we analyzed 
the fraction of gene mutations that may not 
necessarily contribute to cancer phenotype due to 
transcriptional inactivity by querying the identified 
gene mutations of each ESCC cell lines against its 
actively transcribed protein-coding gene set. In the 
case of ESCC cell line kyse30, we observed that 3.7% 
(501/13428) of the protein-coding genes possessed 
non-silent mutations, while 235 protein-coding genes 
harboring non-silent mutations are un-transcribed 
(Fig. 4A). Within the ten ESCC cell lines we observed 
that 24.8% (3786/15258) of all transcribed 
protein-coding genes harbor non-silent mutations. 
Importantly, this indicates that the normal function of 
the corresponding translated proteins would be 
potentially affected (Fig. 4B). A subset of 939 mutated 
genes are un-transcribed within the analyzed ESCC 
cell lines, suggesting that they are likely passenger 
mutations that do not contribute to the cancer 
phenotype (Fig. 4B). Roughly 23% of commonly 
transcribed genes in cell lines are mutated, which 
provided a subset of promising targets (Fig. 4C). 
Interestingly, only one gene (TULP2) out of the 455 
mutated genes specific to kyse30 is transcribed at a 
detectable level (Fig. 4D); this gene has not yet been 
associated with carcinogenesis. This finding is not 
specific in kyse30; unique un-transcribed mutations 
were observed in all other ESCC samples (data not 
shown). Altogether, 26.5% (135/509) of the total 
unique proteins harboring non-silent mutations are 
specific to certain individual ESCC cell lines (Fig. 4E). 
The above evidence illustrates that non-silent 
protein-coding mutations are extensively distributed 
across ESCC cell lines. Focus on the subset of 
commonly transcribed genes harboring non-silent 
mutations should facilitate therapeutics development 
generalized for ESCC patients. 

3.5. A subset of proteins with bi-species 
homology illustrated trans-species 
heterogeneity in PDX model  

The PDX model is an emerging tool that 
provides prospects for personalized therapeutics. As 
the implanted tissues are directly resected from 
patient tumors, this model mimics the heterogeneity 
of cell types in human tumor tissue. However, 
implantation of human tissue into a murine host 
contributes to the chimeric nature of PDX, which 

produces a heterogeneous proteome with 
trans-species homology. Due to the commonly shared 
peptides between human and murine protein 
orthologues, the species of some proteins may not be 
accurately identified. To determine the extent of this 
phenomena, original data from two PDX-ESCC 
models were analyzed to determine proteins with 
human, murine, and ambiguous origins. Two 
proteomic datasets were identified independently by 
querying the same pool of peptide sequences against 
the human and mouse UniProt database, respectively. 
The list of human_origin proteins (N=5290) and the 
list of murine_origin proteins (N=4285) were 
overlapped, producing a subset of 3963 proteins 
shared by both species. The subset of proteins shared 
between species was termed as Possibly of Murine 
Origin (PMO) due to the indeterminate nature (Fig. 
5A). Since cellular processes function via a variety of 
interconnected signaling pathways, misidentified 
signatures may provide spurious insights due to the 
indeterminate origin of proteins. Thus, it is necessary 
to clarify which signaling pathways these PMO 
proteins (3963 proteins) are enriched in. The results 
showed that the top five signaling pathways are 
Spliceosome, Biosynthesis of antibiotics, Carbon 
metabolism, RNA transport, and Endocytosis (Fig. 
5B). The Spliceosome, RNA transport, and 
Endocytosis pathways have been reported being 
related with ESCC carcinogenesis [24-26]. As in vivo 
models are the gold standard in cancer research, it is 
important to minimize the ambiguity of proteomic 
data derived from PDX, and the exact species of the 
PMO proteins should be thoroughly clarified.  

3.6. The heterogeneity of gene expression 
across different ESCC datasets 

Four datasets were integratively analyzed for 
better understanding the expression heterogeneity of 
protein-coding transcriptome in ESCC cell lines and 
patient tissues. The four datasets, detailing expression 
of 15258, 18335, 16274, and 5290 genes, were derived 
from CCLE-ESCC Cell Lines, TCGA-ESCC Tissues, 
Protein Atlas-Normal Esophagus Tissue, and 
PDX-ESCC Tissues, respectively. Subsets of genes 
unique to each dataset as well as gene subsets shared 
between datasets were produced via overlapping. The 
results illustrate that three out of the four datasets 
possess unique subsets of detectable genes, with as 
many as 2574 (14.04% of 18335) genes solely expressed 
in TCGA-ESCC Tissues (TCGA-ESCC Unique), 158 
(9.71% of 16274) genes in Protein Atlas-Normal 
Esophagus Tissue (ProAtlas-Esophagus Unique), and 
8 (0.15% of 5290) proteins in the PDX-ESCC Tissues 
(PDX-ESCC Unique) (Fig. 6A). We conducted KEGG 
pathway enrichment analysis and visualized 
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protein-protein interaction (PPI) networks using 
TCGA-ESCC Unique, the largest of the identified 
subsets (Fig. 6B-C). Interestingly, the top three 
significantly enriched pathways correspond to 
Olfactory transduction, Neuroactive ligand-receptor 
interaction, and Taste transduction; all of which are 
related with sensory and neurological signal 
transmission. Nearly 99% (290/293) of the genes 
identified within the Olfactory transduction pathway 
belong to the olfactory receptor family. The remaining 
3 identified genes were PRKACG, GUCY2D, and 
CNGB1 (Fig. 6D). Interestingly, after analyzing the 
CNGB1 expression landscape across different types of 
normal-tumor tissue pairs, we found that it was only 
significantly over-expressed in Head and Neck 
Squamous Carcinoma (HNSC) (Fig. 6E) . We observed 
that CNGB1 is not significantly over-expressed in 
ESCA (Fig. 6F); however, upon filtering the ESCA 
cohort for ESCC cases, we found that CNGB1 is 
significantly over-expressed in ESCC patient tissues 
(Fig. 6G). The Olfactory transduction and Neuroactive 
ligand-receptor interaction pathways were also 
observed to be significantly enriched in lung cancer 
and glioblastoma [27, 28], indicating potential 
diagnosis and therapeutic value.  

4. Discussion  
Background of ESCC 

ESCC is the most common type of EC, with a 15 
to 20% 5-year survival rate worldwide, though in 
some countries the 5-year survival rate has improved 

by 15%. A key contributor to the high mortality rate of 
ESCC is late-stage diagnosis, as nearly 40% of 
incidences have metastasized by the time of diagnosis 
[29, 30]. Histologically, EC is classified into two main 
subtypes, EAC and ESCC. Each subtype possesses 
distinct molecular characteristics. ESCC more closely 
resembles Head and Neck Squamous Carcinoma 
(HNSC) than EAC, and focal amplification of TP63, 
SOX2, and CCND1 are more pronounced [10]. In 
contrast, focal amplifications of VEGFA, ERBB2, and 
GATA4/6 are more prevalent in EAC [10]. EAC 
shares a similar molecular feature with gastric 
adenocarcinoma, and is prevalent in western 
countries and U.S. General risk factors for ESCC 
include cigarette smoking, alcohol consumption and 
radiation exposure; however, there may be complex 
interactions from the impact of different risk factors. 
Accumulated evidence has showed a great variance in 
geographical distribution of ESCC [31]. For instance, 
several nations report high incidence rates of ESCC 
despite prohibition of alcohol consumption [32]. An 
integrative analysis of 15 cohort studies concluded 
that supplementing the diet with folate could 
potentially reduce the risk of ESCC mortality, while 
alcohol consumption may increase the risk [33]. 
Although studies have attempted to determine 
genetic, environmental, and dietary contributions to 
ESCC carcinogenesis in areas with high-rate ESCC 
incidences [34, 35], the exact risk factors and etiology 
have not been thoroughly elucidated. 

 
 

 
Figure 5. A subset of proteins, termed Possibly of Murine Origin (PMO) proteins, was identified in the PDX model. (A) The overlapping diagram demonstrated 
a subset of 3963 proteins was commonly shared by both origins, and the subsets of identified proteins with clear human_origin or mouse_origin in PDX tissue. (B) The top ten 
signaling pathways with the most significance were enriched from the subset of PMO proteins. 
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Figure 6. A subset of 2574 uniquely expressed genes specific to TCGA-ESCC patient tumor tissues was identified. (A) Diagram illustrating the unique and shared 
subsets of gene expression after overlapping the four datasets from TCGA-ESCC Tissues, CCLE-ESCC Cell Lines, Protein Atlas-Normal Esophagus Tissue and PDX-ESCC 
Tissues. (B) The top ten significant signaling pathways enriched from the 2574 TCGA-ESCC Unique genes. (C) The corresponding PPI and networks of signaling pathways derived 
from TCGA-ESCC Unique genes. (D) 293 genes residing within the Olfactory transduction pathway, out of which 290 genes belong to the Olfactory receptor family. (E) The 
expression landscape of CNGB1 across different Tumor-Normal tissue pairs. (F) The expression of CNGB1 in ESCA and HNSC. (G) The comparison of CNGB1 expression 
between 80 ESCC samples and 11 normal esophageal tissues. Significance was assessed using the Mann-Whitney test. * indicates p<.05, *** indicates p<.001. 

 

TP53 mutation heterogeneity in ESCC 
Cancer is a heterogenous disease caused by 

genetic aberrations that contribute to uncontrolled 

cellular division, invasion, and metastasis. 
Additionally, copy number variations, structural 
aberrations, and altered DNA methylation also 
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extensively contribute to tumor heterogeneity. Studies 
have also revealed ESCC heterogeneity at both the 
genomic and epigenetic level [36, 37]. Around 40% 
oncogenic aberrations occurring in genes such as KIT, 
PIK3CA, MTOR, and NFE2L2 were heterogeneously 
distributed in sub-clones of ESCC patient tumor 
tissues, while genetic alterations in TP53, ZNF750, and 
MLL2 occur during earlier stages and are more 
predominant [38]. Our analysis illustrated that 
non-silent protein-coding mutation profiles 
distributed across ESCC cell lines and patient tissues 
are heterogeneous and diverse, with TP53, TTN, 
KMT2D, CSMD3, DNAH5, MUC16, and DST being 
the most frequently mutated genes. These 
observations are supported by recent research [39, 40]; 
however, with the exception of TP53, the exact role of 
these mutated genes in ESCC has not been clearly 
elucidated. Further research is needed to confirm 
whether these mutated genes contribute to ESCC 
carcinogenesis.  

TP53 is reported to be the most frequently 
mutated gene in ESCC [41]; however, no shared 
mutated gene across samples has been identified. 
Indeed, 10% of TCGA-ESCC patients in our analysis 
are wild type for TP53. Mouse model studies have 
demonstrated that not all p53 mutations are 
functionally equivalent, and increasing evidence has 
shown that certain mutated TP53 products gain 
additional properties that may result in equally 
deleterious consequences as functionally null mutants 
[20]. In our analysis, the most frequent mutation 
variants of TP53 are p.R248Q, p.R175G/H, 
p.R273C/H, and p.Y220C, which are functionally 
relevant missense mutations within the DNA-binding 
domain of p53. Evidence suggests that the p.R175H 
mutation could abrogate the tumor suppressive 
function of p53, simultaneously contributing to an 
oncogenic role for p53 [42]. Additionally, activation of 
the c-Met and STAT1 signaling axes, which facilitate 
ECM invasion, were correlated with expression of 
p53-R175H in ESCC cell lines [43-45]. p53-R175H may 
be involved in the resistance of induced apoptosis 
[46], and has also been implicated in desensitizing 
ESCC tumors to Fas-mediated anchorage- 
independent death via a FAK-dependent mechanism 
[47]. Aside from the reported p53-R175H in ESCC, 
p.R282W and p.R248W were reported in early stages 
of Barrett’s adenocarcinoma [48]. Our analysis 
revealed as many as 84 distinct TP53 mutations. Aside 
from the p53-R175H mutation, the exact roles of the 
remaining 81 TP53 mutations in ESCC carcinogenesis 
have not been reported. A recent study has suggested 
that adoptive T-cell therapy could potentially be 
developed targeting mutated p53 p.R175H in multiple 
types of cancer [49]. Precision therapeutics against the 

various subtypes of TP53 mutations are proposed to 
be further investigated. 

Inter-sample and intra-sample heterogeneity 
in ESCC 

Genomic sequencing has greatly improved the 
understanding of cancer heterogeneity [37]. With 
respect to inter-tumor heterogeneity, three distinctive 
ESCC types were classified via the multi-omics 
analysis of 90 ESCC patients [10]. However, the 
results and conclusions derived from basic research 
studies have not yet been translated to clinical 
practice and benefit ESCC patients. Signaling 
pathways enriched from mutant proteins in ESCC 
may provide insights into potentially actionable 
targets, which are urgently needed for the 
development of working therapeutics. Our analysis 
illustrated that the subset of mutated protein-coding 
genes are enriched in ECM-receptor interaction and 
Focal adhesion pathways in TCGA-ESCC patients. A 
subset of 614 genes was also enriched in the same 
pathways in previous a ESCC study [50]. The 
expression level of these genes was negatively 
correlated with the expression level of miR-30b-5p; 
better prognosis was observed in ESCC patients with 
higher miR-30b-5p level [50]. Evidence also showed 
that ECM-receptor interaction and Focal adhesion 
pathways were enriched from deregulated microRNA 
and mRNA in ESCC with respect to paired adjacent 
tissues [51]. In sum, the above evidence suggests that 
a network of ECM-receptor interaction and Focal 
adhesion pathways enriched from mutant genes may 
play an important role in ESCC and provide potential 
actionable targets for precise therapeutics.  

The integrative analysis of the four different 
datasets showed heterogeneous expression patterns 
with respect to commonly shared and unique gene 
subsets. The genes shared between ESCC patient 
tumor tissues and cell lines could be studied feasibly 
both in vitro and in vivo. However, there is some 
concern that these genes may harbor distinct 
mutations across different ESCC samples. As a result, 
protein function and oncogenic phenotypes could be 
potentially affected across samples [52]. This is 
particularly relevant, for as high as 46.4% of all the 
expressed genes in ESCC patient tissues harbor 
non-silent mutations in our observation.  

Tumor tissues are always analyzed as a single 
object by canonical sequencing techniques, the 
shortcoming of which is the possibility of overlooking 
worthwhile information. Our integrative analysis 
revealed a subset of 30 genes shared between the 
CCLE and PDX tumor tissues, but excluded in patient 
tissue (Fig. 6A). One study used a similar analysis 
pipeline and observed that CD44, which is a 
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consensus marker of breast cancer, is only 
overexpressed in breast cancer PDX tissue and cell 
lines, but not in clinical samples [53]. The explanation 
for this is that the subsets of genes is detectable in 
samples with high tumor cell content, but are likely 
occluded by substantial amounts of stroma in clinical 
tumor tissue.  

Carcinogenesis and progression are modulated 
by a myriad of recruited cells including inflammatory 
cells, stromal cells, and vasculature that constitute the 
tumor micro-environment in vivo [54, 55]. The 
observation of unique subsets of expressed genes in 
patient tumor tissue and PDX tumor tissue (Fig. 6A) 
are likely the result of interactions between the 
microenvironment and tumor cells. The Olfactory 
transduction (11%), Neuroactive ligand-receptor 
interaction signaling pathways (4%), and Taste 
transduction (1%) are the top three signaling 
pathways enriched from the unique subset of genes 
identified in patient tumor tissue. Interestingly, the 
Olfactory transduction and Neuroactive 
ligand-receptor interactions pathways were also 
found to be significantly enriched in lung cancer and 
glioblastoma [27, 28]. CNGB1, a member in the 
Olfactory transduction pathway, was identified being 
significantly upregulated both in ESCC and HNSC, 
which is consistent with previous evidence 
supporting their similarities [10]. CNGB1 is a subunit 
of the cyclic nucleotide-gated ion channels which 
specifically mediates sensory signal transduction in 
olfactory sensory neurons and retinal photoreceptors 
cells [56]. The tumorigenic role of CNGB1 has not 
been reported in ESCC. Nonetheless, its 
overexpression in ESCC may correspond to the role of 
oncogene. Further research is needed to clarify its 
validity as a potential target or diagnostic marker. 
GRM3, a gene belonging to the Neuroactive 
ligand-receptor interaction pathway, was found to be 
up-regulated in esophageal tumor tissue using a 
cDNA microarray, while pathway member CCKAR 
was recommended as a biomarker for the early 
detection of ESCC [57, 58]. Only one study has 
suggested an association between the Taste 
transduction pathway and ESCC risk [59]. Few 
studies have reported the exact role of the 
aforementioned signaling pathways which may 
constitute potential targets for ESCC. 

Intra-tumor heterogeneity has provided insight 
into ESCC tumorigenesis and progression [38]. 
Multiple cell types assemble the tumor stroma and 
contribute to tumor development [54]. The degree of 
intra-tumor heterogeneity in cancers such as HNSC, 
chronic lymphocytic leukemia, and hepatocellular 
carcinoma, is closely related with therapeutic 
responses and overall survival time. In the PDX 

model, stroma of murine origin is recruited and 
embedded within the patient tumor tissue, producing 
a complex mosaic comprised of both human_origin 
and mouse_origin cells. In our PDX proteomic 
analysis, as high as 75% of identified human proteins 
possessed indistinguishable homology with identified 
mouse proteins, which is termed as “trans-species” 
heterogeneity. This phenomenon illustrates that the 
ambiguous proteins should be thoroughly validated 
before coming conclusions. Strategies, attempting to 
solve the ambiguity of proteomes in PDX, have 
already been previously reported. gpGrouper is a 
peptide grouping algorithm for gene-centric inference 
and quantitation of bottom-up proteomics data in 
PDX, which precisely distinguishes tumor content 
without elimination of species-shared peptides [60]. 
Incorporation of tools such as gpGrouper into 
proteomic analysis pipelines will confer additional 
confidence to research results; however, target 
confirmation using a panel of human patient tissues 
would provide the most conclusive result.  

Conclusion 
In the present study, integrative analysis was 

performed using datasets derived from ESCC patient 
tissue, ESCC cell lines, and ESCC PDX models. Our 
results illustrated extensive heterogeneity at the 
genome and transcriptome level in ESCC cell lines 
and patient tissues. Additionally, we observed 
trans-species proteomic heterogeneity within PDX 
tumor tissues. The identification and characterization 
of gene mutation and expression heterogeneity, across 
different ESCC datasets, including various novel TP53 
mutations, ECM-receptor interaction, Focal adhesion, 
and Olfactory transduction pathways (CNGB1), 
provide researchers with evidence and implications 
for accurate research and precision therapeutic 
development. 
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