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Abstract 

Background: Glioblastoma (GBM) is the most common primary malignant intracranial tumor and closely 
related to metabolic alteration. However, few accepted prognostic models are currently available, especially 
models based on metabolic genes. 
Methods: The transcriptome data were obtained for all of the patients diagnosed with GBM from the Gene 
Expression Omnibus (GEO) (training cohort, n=369) and The Cancer Genome Atlas (TCGA) (validation 
cohort, n=152) with the following variables: age at diagnosis, sex, follow-up and overall survival (OS). Metabolic 
genes according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were contracted, and a 
Lasso regression model was constructed. Survival was assessed by univariate or multivariate Cox proportional 
hazards regression and Kaplan-Meier analysis, and an independent external validation was also conducted to 
examine the model. 
Results: There were 341 metabolic genes showed significant differences between normal brain and GBM 
tissues in both the training and validation cohorts, among which 56 genes were dramatically correlated to the 
OS of patients. Lasso regression revealed that the metabolic prognostic model was composed of 18 genes, 
including COX10, COMT, and GPX2 with protective effects, as well as OCRL and RRM2 with unfavorable 
effects. Patients classified as high-risk by the risk score from this model had markedly shorter OS than low-risk 
patients (P<0.0001), and this significant result was also observed in independent external validation (P<0.001). 
Conclusions: The prognosis of GBM was dramatically related to metabolic pathways, and our metabolic 
prognostic model had high accuracy and application value in predicting the OS of GBM patients. 
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Introduction 
Glioblastoma (GBM, WHO grade IV) is a 

heterogeneous group of primary malignant central 
nervous system (CNS) tumors with an incidence of 
5.25 per 100,000 people per year [1]. Among all of the 
CNS tumors, GBM is the most invasive and 
demonstrates the highest malignancy. Although the 
clinical treatment of GBM includes surgery, 

radiotherapy, chemotherapy, targeted therapy and 
tumor-treating fields [2, 3], the prognosis remains 
unfavorable. According to the statistical results of the 
Chinese Glioma Collaboration Group in 2016, the 
median overall survival (OS) of GBM patients is only 
14.4 months [4], while the five-year survival rate is 
less than 5% [5]. Therefore, establishing of a 
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prognostic prediction model is vital for making 
effective clinical decisions and has become one of the 
current research hotspots. 

Metabolic pathways are closely related to life 
processes; the alterations in metabolic pathways have 
also become driving factors for tumor occurrence and 
progression, and they can serve as novel hallmarks 
[6]. Warburg first observed that the glycolysis process 
was preferred to the tricarboxylic acid pathway in 
tumor cells, even under conditions with sufficient 
oxygen [7]. Further studies proved that glutamate and 
fatty acids’ metabolic processes differed significantly 
in hepatocellular carcinoma cells [8] while blocking 
glutamate-induced divergent metabolic programs to 
overcome tumor immune evasion [9]. In GBM, 
previous studies revealed metabolic reprogramming, 
including the transformation in glycolysis and 
oxidative phosphorylation [10]. Therefore, targeting 
abnormal metabolic pathways has become a possible 
therapy for GBM. 

Considering the poor prognosis of GBM patients 
and the absence of generally accepted predictive 
models, it is of great significance to establish a 
survival prediction model. Metabolic pathway 
alterations may serve as prognostic factors, and 
studies have suggested that hypoxic glucose 
metabolism is a potential factor [11]. Due to the 
dramatic changes in the metabolic pathways in GBM, 
the expression levels of metabolic genes are expected 
to predict prognosis from a new perspective. 

In the present study, the differentially expressed 
genes between normal brain tissues and GBM tissues 
were detected through database retrieval, and all of 
the metabolic genes were extracted to construct a 
predictive prognostic model. Moreover, an 
independent external validation was performed to 
evaluate the efficiency. This study provides new 
insights into GBM patients’ prognosis and may 
provide novel tumor markers or therapeutic targets, 
further promoting the progress of GBM diagnosis and 
treatment. 

Methods and Materials 
The data that support the findings of this study 

are available from the corresponding author upon 
reasonable request. The study protocol was approved 
by the Institutional Review Board of Peking Union 
Medical College Hospital (S-424). 

Study design and data collection 
 This retrospective cohort study included all of 

the transcriptome and clinical data of patients from 
the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases. The training cohort 
was comprised of patients from the GEO database, 

and a total of 904 series were found. To be included, 
the series must originate from the GBM tissue of 
humans and have complete transcriptome profiling 
by array and clinical information, including the 
survival state and time. Series that were obtained 
from other sequencing methods or cell strains or 
contained fewer than 30 patients or those that were 
from patients in any therapeutic clinical trials were 
excluded. Eventually, three series (GSE83300 [12], 
GSE74187 [13], and GSE13041 [14]) with 
transcriptome and clinical data were included (Figure 
1). The only endpoint of our study was the OS, and to 
ensure the reliability of the follow-up outcomes, we 
also excluded patients whose follow-up times were 
less than 30 days. After the above screening, a total of 
369 patients met the criteria and formed the training 
cohort. The validation cohort consisted of patients 
from the TCGA database. There were 606 clinical 
records in total, of which 169 patients had 
transcriptome data. Similarly, patients followed for 
less than 30 days were excluded, and 152 patients 
constituted the validation cohort. The GBM tissues 
were obtained from patients that underwent surgery 
in Peking Union Medical College Hospital (PUMCH), 
and the comparison was performed between the 
tumor and the normal brain tissue around the tumor. 
The study protocol was approved by the Institutional 
Review Board of PUMCH. 

Differential gene acquisition 
All of the sequencing data in the GEO database 

were derived from GBM tissue; therefore, it is 
essential to obtain the transcriptome data of normal 
human brain tissue for comparison. We consulted the 
Genotype-Tissue Expression (GTEx) database, which 
is a tissue biobank of more than 7,000 autopsy 
samples from healthy human donors during their 
lifetime. A total of 1,152 transcriptome sequencing 
data points of brain tissue were used as normal 
controls. Before comparing the differences in gene 
expression between normal brain and GBM tissues, 
we conducted batch normalization by surrogate 
variable analysis (SVA) to eliminate errors caused by 
batch effects between different chips, which was 
achieved through an R package called “sva” [15]. 
Normalization and log2 transformation of the 
transcripts were then employed for the expression 
profiles. There were 7,967 annotated protein-coding 
genes used for differential expression analyses by the 
“Limma” version 3.42.0 R package [16]. A false 
discovery rate (FDR)<0.05, which was calculated by 
the P value obtained from the Wilcoxon test, and a 
log2 fold-change (log2FC)>2 were considered 
statistically significant. 
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Figure 1. Flow chart presenting the entire design of the study. 

 

Identification of intersecting metabolic 
mRNAs in the training cohort 

We identified metabolic genes from the genes 
based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways. The metabolic genes 
were selected if they showed consistent expression 
patterns in the GEO cohort and transcriptome data 

from GTEx. Another differential expression analysis 
of intersecting metabolic genes was performed 
through the “Limma” version 3.42.0 R package [16]. 
Genes with FDR<0.05 and log2FC>0.5 or <-0.5 were 
considered statistically significant. The metabolic 
genes with significantly different expression levels 
were used in subsequent analyses and models. 
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Construction of the predictive prognostic 
model of metabolic genes 

Univariate Cox regression of metabolic genes 
with significantly different expression levels was 
performed to identify candidate genes. Then, we 
conducted Lasso‐penalized Cox regression analysis of 
those candidate genes to identify the prognosis- 
related metabolic genes and construct the prognostic 
gene signature as previously mentioned [17]. The 
prognostic gene signature is shown as: 
Risk score = ∑ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚𝑅𝑁𝐴𝑖 ∙ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑚𝑅𝑁𝐴𝑖𝑛

𝑖=1 , 

through which the risk score of each patient can be 
calculated. The patients were divided into high- and 
low-risk groups according to the median of the 
summarized risk scores. The “survival” and 
“survminer” R packages were used to compare the 
differences in OS between the two groups of patients 
and draw the Kaplan-Meier survival curves. 

External validation of the metabolic gene 
prognostic model 

The mRNA expression data in the TCGA 
database were previously normalized with the GEO 
database. Using the same cut-off value from the above 
steps, 152 patients in the TCGA cohort were also 
separated into two groups, and similar survival 
analysis was also performed on this cohort to validate 
the model’s accuracy. 

Construction and validation of a predictive 
nomogram and gene set enrichment analysis 
(GSEA) 

A nomogram was built by including all 
independent prognostic factors, including sex, age, 
and risk score, in our study [18]. With the bootstrap 
method with 1,000 resamples, we used calibration 
curves and the concordance index (C-index) to 
describe the calibration and distinction of the 
nomogram, respectively. The metabolic gene 
signature, sex, and age were compared with receiver 
operating characteristic (ROC) curves, and a 
multivariate Cox regression model including the sex, 
age, and risk score was built to reflect the combination 
of risk factors. To further investigate the potential 
underlying KEGG pathways of the gene signature, 
GSEA was utilized to find enriched terms in the 
training and validation cohorts [19]. 

Validation of key genes by the quantitative 
real-time polymerase chain reaction 

See supplemental method. 

Immunohistochemical staining 
See supplemental method. 

Statistical analysis 
The independent t-test, the Wilcoxon test or the 

Mann-Whitney U test was performed as appropriate 
to evaluate differences in scale or ordinal variables. 
Survival was assessed using Cox proportional 
hazards regression and Kaplan-Meier analysis. 
Two-sided P values less than 0.05 were considered 
statistically significant. All statistical analyses were 
conducted with SPSS software (version 24.0, IBM 
SPSS statistics) and R software v3.6.1 (R Foundation 
for Statistical Computing, Vienna, Austria). 

Results 
Differential gene expression between normal 
brain and GBM tissues 

We first compared the transcriptome profiling of 
human GBM and normal brain tissues. A total of 769 
genes with significant differences in expression 
between the two groups were included (see 
Supplemental Table S1). To construct the predictive 
prognostic model of metabolic genes in the training 
cohort, we conducted KEGG pathway analysis, and 
341 metabolism-related genes were extracted (see 
Supplemental Table S2). These 341 metabolism- 
related genes consisted of the candidate gene set of 
the prognostic model and underwent further analysis. 

Screening for prognosis-related metabolic 
genes 

To explore the relationship between prognosis 
and metabolic genes, we conducted univariate Cox 
regression and revealed the hazard ratios (HRs) of 56 
genes that were significantly related to OS in the 
training cohort (Figure 2). Favorable genes such as 
COX10, COMT, and GPX2 had negative HRs, 
suggesting that their high expression indicated a 
better prognosis. In contrast, the higher expression of 
unfavorable genes, such as OCRL and RRM2, was 
prone to worse outcomes. However, the HR of each 
gene’s expression level was extremely close to 1, 
indicating that the predictive power of a single gene 
for prognosis was limited, and a more efficient 
predictive model was needed. 

Lasso regression model and Kaplan-Meier 
analysis of the training and validation cohorts 

To further investigate the influence of metabolic 
genes on prognosis, we conducted Lasso regression. 
Among the 56 genes significantly associated with the 
OS in univariate Cox regression, 18 genes were 
eventually retained in the model (Table 1). There were 
11 genes with negative coefficients, including COX10, 
COMT, and GPX2, indicating a protective effect on 
prognosis. Seven genes with positive coefficients, 
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including OCRL and RRM2, suggested a worse 
prognosis. According to the coefficients and 
expression levels of the 18 genes, the risk score of each 
patient was calculated. The training cohort was 
divided into two groups according to the median risk 
score, and survival analysis presented significant 
differences between the two groups (p<0.0001) 
(Figure 3A). Furthermore, we used the same median 
risk score of the training cohort as a threshold to 
stratify the validation cohort. The same conclusion 
was reached: patients with lower risk scores had 
significantly better OS than those with higher risk 

scores (p<0.001) (Figure 3B). 

Increasing risk scores suggested a worse 
prognosis in both the training and validation 
cohorts 

To further examine the relationship between the 
expression levels of the 18 genes and prognosis, we 
drew heatmaps (Figure 4A & D) that suggested that 
the gene expression profiles of patients in the low- 
and high-risk groups showed no significant difference 
at the single-gene level. All of the patients in both the 
training and validation cohorts were ranked in 

 

 
Figure 2. Univariate Cox regression of all of the differentially expressed genes. 
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ascending order of risk scores (Figure 4B & E). 
Compared to the training cohort, more patients in the 
validation cohort fell into the low-risk group. 
Furthermore, we plotted each patient according to 
their risk scores and survival time (Figure 4C & F). On 
the x-coordinate, patients were uniformly ranked in 
ascending order of risk scores as mentioned above, 
and the y-axis reflected each patient’s survival time. 
The distributions of the survival state (deceased or 
alive) and survival time were presented as negatively 

related to the risk score. 

Multivariate Cox regression model and ROC 
analysis of the training and validation cohorts 

We incorporated sex and age into the model to 
further explore other clinical factors related to 
prognosis (Figure 5). In the training cohort, both 
univariate (Table 2) and multivariate Cox regression 
(Figure 5A) indicated that the age and risk score were 
significantly related to the OS, with HRs of 1.043 and 

6.383, respectively, in the multivariate 
model. However, the patient sex was 
not an independent risk factor. The 
same model applied to the validation 
cohort reached similar conclusions 
(Figure 5B), suggesting that the risk 
score calculated by our Lasso model 
was an independent risk factor for 
GBM patients (HR: 1.251 with 95% CI: 
1.019-1.534). ROC analysis of the 
training cohort indicated that the risk 
score had better predictive power than 
age (Figure 5C), while this effect was 
not observed in the validation cohort 
(Figure 5D). The different conclusions 
might be due to the difference in 
baseline data, such as age, between the 
two groups. It was possible that the 
predictive power of age improved 
gradually as age increased. To further 
optimize the model, nomograms of the 
two groups were plotted to illustrate 
the relationships between the sex, age, 
and risk score and prognosis (Figure 
5E & F). 

Multiple GSEA of the training 
and validation cohorts 

Multiple GSEA was performed, 
and 155 and 178 enriched KEGG 
pathways were found in the training 
and validation cohorts, respectively. 
There were many overlapping 
enrichment pathways between the two 
groups, including the majority of 
metabolism-related gene sets, as 
expected (Figure 6). The metabolism of 
arginine, proline, butanoate, and 
xenobiotic compounds by the 
cytochrome p450 pathway was 
markedly enriched in low-risk patients 
of both the training and validation 
cohorts. Some important energy 
metabolism pathways, such as 
glycolysis gluconeogenesis and 

 

 
Figure 3. Kaplan-Meier survival curve for the training cohort (A) and validation cohort (B). P value from the 
log-rank test. 
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amino-sugar and glutamate metabolism, were 
significantly enriched in the high-risk patients of the 
training cohort (Figure 6A), and fatty acid and 
pyruvate metabolism pathways were dramatically 
enriched in the low-risk patients of the validation 
cohort (Figure 6B). To further compare the key genes 
among different tumors, we conducted external 
validation using the Tumor IMmune Estimation 
Resource (TIMER) database (see Supplemental Figure 
S1). The expression profiles of these key genes were 
different in other tumors, suggesting heterogeneity 
between different tumors. 

Validation of the crucial genes and related 
proteins in human tissues 

To further validate the reliability of the 
bioinformatics analysis of the dataset, we performed 
qPCR, IHC and western blot to determine the crucial 
genes in the prognostic model. At the transcriptional 
level, two of the top three favorable genes positively 
related to the OS, that is, COX10 and GPX2, along 
with OCRL and RRM2, which were the most 
unfavorable genes, exhibited significantly higher 
expression levels in GBM compared to their 
peritumor counterparts. Meanwhile, only one gene 
with a positive relationship to the OS, COMT, was 
down-regulated in GBM (Figure 7A). IHC and 
western blot analysis further explained the trend at 
the translation level (Figure 7B-E). These laboratory 

findings were entirely consistent with the public 
dataset’s bioinformatics analysis (see Supplemental 
Table S1). 

 

Table 1. Genes with log2FC, FDR and their coefficients in the 
prognostic model after LASSO regression 

Gene symbol Training cohort Coefficients† Validation cohort 
Log2FC‡ FDR¶ Log2FC‡ FDR¶ 

COX10 -0.28 <0.001* -0.006377627 0.18 0.030* 
COMT -0.26 <0.001* -0.002879681 -0.43 <0.001* 
GPX2 -0.29 <0.001* -0.002808587 0.17 0.017* 
AKR1B10 -0.67 <0.001* -0.002396644 -0.72 0.3 
GLUD1 -0.48 <0.001* -0.001860585 -0.51 <0.001* 
LPCAT3 -0.44 <0.001* -0.001453787 0.26 0.016* 
GSTM3 -0.51 0.046* -0.001408588 -0.55 <0.001* 
GLUD2 -0.76 0.002* -0.001196549 -0.13 0.3 
MTHFD2 -0.65 0.011* -0.001020503 -0.65 <0.001* 
EPHX1 -0.34 0.1 -0.000394242 -0.29 0.1 
PDE8B 0.97 <0.001* -0.000262491 0.03 0.4 
GLUL 0.15 0.1 0.000358099 0.08 0.4 
MDH1 0.48 0.002* 0.000502893 -0.19 <0.001* 
GBE1 0.60 <0.001* 0.001414345 0.66 <0.001* 
PFKL 0.50 <0.001* 0.002176092 0.44 <0.001* 
PAFAH1B1 0.28 0.003* 0.002265462 0.47 <0.001* 
RRM2 0.75 <0.001* 0.003109864 0.85 <0.001* 
OCRL 0.60 0.002* 0.004181019 0.36 <0.001* 
‡ log2FC=log2(mean expression of high-risk group/mean expression of low-risk 
group) 
¶ FDR was calculated by the P value from the Wilcoxon test. 
† Coefficients were calculated by Lasso regression. 
* marked significant differences. 
log2FC: log2 fold change; FDR: false discovery rate. 

 

 
Figure 4. Risk plot of the training and validation cohorts. A heatmap of 18 metabolic genes showed the different expression patterns between high-risk and low-risk patients in 
the training (A) and validation (D) cohorts. (B and E) plotted the risk score of each patient and presented the cut-off value that defined high- and low-risk patients in the 2 cohorts, 
respectively. The OS of patients in the training (C) and validation (F) cohorts was plotted according to the value of the risk score. OS: overall survival. 
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Figure 5. Cox regression, ROC analysis, and nomograms for patients in the training and validation cohorts. (A) Multivariate Cox regression of the training cohort. (B) 
Multivariate Cox regression of the validation cohort. The hazard ratios of age and risk score were 1.031 (95% CI 1.013-1.049) and 1.251 (95% CI 1.019-1.534), respectively, with 
P values less than 0.05. (C and D) ROC analysis of age, sex, and risk score of patients in the training (C) and validation (D) cohorts. (E and F) Nomograms predicted the 1-, 2-, 
and 3-year survival of patients in the training (E) and validation (F) cohorts. # Female=0; Male=1. ROC: receiver operating characteristic. 

 

Discussion 
Our work built a metabolic prognostic model for 

GBM patients based on the GEO database, which 
included 18 metabolic genes affecting the prognosis of 
GBM patients. Independent external validation with 
the TCGA database proved that our model could 
effectively stratify and predict the OS through the 
expression levels of metabolic genes. In addition, our 
data suggest that the higher expression levels of 
COX10, COMT, and GPX2 were related to a better OS, 
whereas the higher expression levels of OCRL and 
RRM2 were prone to a worse outcome. These findings 
indicate that the OS of GBM patients was significantly 

correlated with the expression levels of several 
metabolic genes, and the prognostic risk scores 
derived from our model are of considerable value in 
predicting patient survival. 

 

Table 2. Univariate Cox regression of training and validation 
cohorts 

 Training cohort Validation cohort 
HR 95% CI P value HR 95% CI P value 

Age 1.049 (1.017, 1.081) 0.002* 1.035 (1.017, 1.053) <0.001* 
Gender† 1.415 (0.746, 2.683) 0.3 0.824 (0.555, 1.224) 0.3 
Risk score 7.782 (2.268, 26.704) 0.001* 1.336 (1.102, 1.620) 0.003* 
† Female=0, Male=1; HR: hazard ratio; CI: confidence interval. *Marked significant 
differences. 
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Figure 6. Multiple GSEA of the enriched KEGG pathways in the training (A) and validation (B) cohorts. GSEA: gene set enrichment analysis. 

 
The mortality rate of GBM remains high, and 

studies have proven that alterations in metabolic 
pathways and genes are significant in tumor 
development and patient prognosis [5, 7, 20, 21]. In 
recent years, predictive models based on metabolic 
gene and mRNA characteristics have also become the 
research focus [22]. However, it is hard to accurately 
conclude GBM prognosis prediction merely from a 
single gene analysis. To improve the capability of the 
predictive model, we analyzed all differentially 
expressed metabolic genes and established a multiple 
gene expression model. In addition, due to the 
complexity of metabolic networks, a large number of 
metabolic genes are possibly involved in multiple 
pathways. For example, GBE1 in our model is 
involved in galactose metabolism and glycogen 
metabolism, whereas EPHX1 plays a role in drug 

metabolism and naphthalene metabolism. Therefore, 
the multiple gene expression model is able to simulate 
the process of tumor metabolism more effectively and 
achieve better predictive potential. 

Several studies have focused on prognostic 
models for glioma patients. Gittleman et al. 
constructed a nomogram using Cox proportional 
hazards regression of lower-grade glioma patients 
based on the TCGA database, in which the tumor 
grade, age at diagnosis, and IDH mutation were listed 
as independent risk factors [23]. Our metabolic 
prognostic model came to a similar conclusion that 
the age at diagnosis and risk score were significantly 
related to OS. Several model-establishing research 
studies have been performed to reveal the 
relationship between the whole transcriptome or 
metabolic alterations and the prognosis of GBM 
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patients [24-26]. Compared to prior methods, our 
model focused on all of the metabolic genes enriched 
by KEGG pathways and applied Lasso‐penalized Cox 
regression analysis, which is believed to be more 

accurate than stepwise selection [17]. Nevertheless, 
the molecular subtype was not included as a risk 
factor in our model due to data limitations, which 
may have a certain impact. 

 

 
Figure 7. Validation of the crucial genes in the prognostic model. A. Quantitative real-time polymerase chain reaction (qRT-PCR) of the 5 crucial genes. B&C. Representative 
figures and statistical analysis of immunohistochemical staining. D&E. Representative figures and statistical analysis of western blot. *P<0.05, **P<0.01, ***P<0.001 vs. respective 
normal tissues. 
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The top 3 favorable genes positively related to 
OS were COX10, COMT and GPX2. COX10 encodes 
cytochrome c oxidase, which is the terminal 
component of the mitochondrial respiratory chain and 
is involved in multiple tumors [27, 28]. Elevated 
COX10 levels are negatively correlated with the 
prognosis of glioma and meningioma patients and 
may result in abnormal phosphorylation processes 
[29, 30]. We observed a slightly increased expression 
of COX10 (log2FC=1.07, see Supplemental Table S2), 
while our prognostic model suggested that it is 
favorable in GBM, which is opposite to the existing 
findings and deserves further investigation. COMT 
encodes catechol-O-methyltransferase, and studies 
indicated that COMT upregulates tumor suppressor 
genes by the PI3K/Akt pathway, thus inhibiting the 
growth and invasion of cancer cells [31, 32]. COMT 
mutations are significantly correlated with cognitive 
impairment in pan-brain tumor patients and glioma 
patients in particular [33, 34]. Therefore, COMT may 
have a potential protective effect, and mutations may 
influence prognosis by affecting cognitive ability. 
Glutathione peroxidase 2 is encoded by GPX2 and 
catalyzes the reduction in organic hydroperoxides 
and hydrogen peroxide, thereby protects cells against 
oxidative damage [35]. However, the role of GPX2 in 
GBM has not been reported. Our model suggested 
that GPX2 was positively related to the patient OS, 
indicating that protection against oxidative damage 
might exist in CNS tumors. 

The unfavorable genes that indicate poor OS 
include OCRL and RRM2. OCRL encodes inositol 
polyphosphate 5-phosphatase, which regulates 
PI3K/Akt signaling, endocytosis, vesicle trafficking, 
cell migration, proliferation and apoptosis [36, 37]. 
Currently, few studies have focused on the role and 
mechanism of OCRL in GBM, and more research on 
the relationship between them is needed. RRM2 
belongs to ribonucleotide reductase, which catalyzes 
deoxyribonucleotides from ribonucleotides. The high 
level of RRM2 expression has received extensive 
attention in several cancers [38]. It has been proven 
that the overexpression of RRM2 can promote the 
proliferation, migration and invasion of GBM cells 
and inhibit apoptosis in cell experiments [39]. The 
same results were observed in animal experiments, 
which may explain its influence on the OS. The roles 
of these genes, especially OCRL and GPX2, in GBM 
remain far from distinct. 

To further investigate the metabolic alterations 
in GBM patients, GSEA was conducted and revealed 
that differentially expressed metabolic genes were 
significantly enriched in specific signaling pathways. 
Hence, the molecules involved in these metabolic 
pathways may serve as diagnostic biomarkers and 

treatment targets. Our model is promising for 
reflecting the dysregulation of the metabolic 
microenvironment after further research and 
supporting metabolic therapy. According to 
published studies, most of these genes have been 
proven to be related to tumor occurrence and 
development. The genes are mainly involved in 
glucose metabolism, amino acid metabolism and 
DNA damage repair. 

In order to initially verify the model, we used 
tumor and adjacent normal brain samples of GBM 
patients for IHC qPCR and western blotting. The 
laboratory verifications all confirmed that some 
metabolic genes involved in the model showed 
differences in transcription and translation levels 
between GBM and normal tissues. This result verified 
the validity of the differential gene analysis and 
indirectly indicated the reliability of bioinformatics 
methods to analyze the results of public databases 
and the validity of the prognostic signature based on 
them. 

There are several limitations to this study. First, 
our model was merely based on public databases and 
showed a lack of patient cohort clinical information or 
original laboratory results. The patient follow-up 
cohort has been prospectively collected, which 
entirely records patients’ clinical baseline information 
for further validation. Second, we reported only the 
relationship between these metabolic genes and the 
prognosis of GBM patients, while no cellular or 
animal experiment proving the conclusion and 
exploring the mechanism has been performed. For 
preliminary validation, laboratory verifications have 
been conducted, which can primarily confirm the 
conclusions of our analysis. Additionally, some genes 
included in our model are located in the same 
segment of one chromosome, and it is difficult to rule 
out the effect of chromosomal physical factors. 
Meanwhile, we included differentially expressed 
genes, resulting in that some genes with promising 
influences on the prognosis of GBM were not 
included due to their nonsignificant expression 
differences. Additionally, our included data did not 
rule out the bias among the databases or differentiate 
the molecular characteristic, and subgroup analysis is 
needed. Our model would be strengthened by 
expanding the sample size, adjusting it and proving 
its effectiveness in a multicenter independent cohort. 
Moreover, further basic studies to reveal the 
mechanisms of relevant genes in the development and 
occurrence of GBM are vital. 

Conclusions 
In summary, our study developed a novel 

metabolic prognostic model for GBM based on the 
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GEO dataset, which was validated by data from 
TCGA. Our model is capable of analyzing the risk 
level according to the expression levels of specific 
metabolic genes and predicting the patients’ survival. 
In addition, the results reflected alterations in the 
metabolic microenvironment and indicated potential 
biomarkers for diagnosis and treatment. 
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