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Abstract 

Background: Compared to non-recurrent type, recurrent prostate adenocarcinoma (PCa) is highly 
fatal, and significantly shortens the survival time of affected patients. Early and accurate laboratory 
diagnosis is particularly important in identifying patients at high risk of recurrence, necessary for 
additional systemic intervention. We aimed to develop efficient and accurate diagnostic and prognostic 
biomarkers for new PCa following radical therapy. 
Methods: We identified differentially expressed genes (DEGs) and clinicopathological data of PCa 
patients from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) 
repositories. We then uncovered the most relevant clinical traits and genes modules associated with PCa 
prognosis using the Weighted gene correlation network analysis (WGCNA). Univariate Cox regression 
analysis and multivariate Cox proportional hazards (Cox-PH) models were performed to identify 
candidate gene signatures related to Disease-Free Interval (DFI). Data for internal and external cohorts 
were utilized to test and validate the accuracy and clinical utility of the prognostic models. 
Results: We constructed and validated an accurate and reliable model for predicting the prognosis of 
PCa using 5 Gleason score-associated gene signatures (ZNF695, CENPA, TROAP, BIRC5 and KIF20A). 
The ROC and Kaplan-Meier analysis revealed the model was highly accurate in diagnosing and predicting 
the recurrence and metastases of PCa. The accuracy of the model was validated using the calibration 
curves based on internal TCGA cohort and external GEO cohort. Using the model, patients could be 
prognostically stratified in to various groups including TNM classification and Gleason score. Multivariate 
analysis revealed the model could independently predict the prognosis of PCa patients and its utility was 
superior to that of clinicopathological characteristics. In addition, we fund the expression of the 5 gene 
signatures strongly and positively correlated with tumor purity but negatively correlated with infiltration 
CD8+ T cells to the tumor microenvironment. 
Conclusions: A 5 gene signatures can accurately be used in the diagnosis and prediction of PCa 
prognosis. Thus this can guide the treatment and management prostate adenocarcinoma. 

Key words: prostate cancer; gene signatures; robust rank aggregation; Weighted Gene Co-expression Network 
Analysis, disease-free interval; inflammation landscape 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

3627 

Introduction 
Prostate adenocarcinoma (PCa) is the second 

most prevalent malignant tumor in men worldwide, 
accounting for about 15% of all tumors in males. In 
Europe and the United States, for the first time, the 
incidence of prostate cancer stands at 1.051% and 
continues to rise [1]. Although the incidence of 
prostate cancer in China is lower than that in the 
United States, it is gradually increasing and 
remarkably varies among races in the country. In 
2018, there were 120,000 cases of PCa in China. 
Besides these bleak statistics, PCa cases are projected 
to rise to 172,000 in 2022 [2]. Over the past few 
decades, prostate-specific antigens (PSA) have been 
used as effective biomarkers for diagnosing and 
monitoring prognosis of PCa patients. Combined with 
imaging, the diagnosis efficiency of PCa has 
substantially improved. The diagnosis and treatment 
module of prostate cancer has dramatically changed 
following the identification and widespread use of 
PSA for screening. However, there are still limitations 
that reduce its effectiveness, especially at a lower 
concentration (4-10 ng/mL) [3-5]. 

Advances in chip technology and next- 
generation high-throughput sequencing (NGS) have 
facilitated the identification of several novel 
biomarkers in tumor tissues, serum, and even urine. 
Substantial reports have implicated nucleic acid 
molecules such as mRNAs, ncRNAs (miRNAs, 
lncRNAs or circRNAs) and membrane proteins 
present in extracellular vesicles (EVs) including 
exosomes, microvesicles and microparticles in the 
pathogenesis and progression in PCa [6-10]. However, 
only a few biomarkers have been approved for use by 
the US Food and Drug Administration (FDA) (PSA in 
1994, PHI in 2012, and PCA3 in 2012). Ideal diagnostic 
biomarkers should be highly specific (correctly 
identify populations without specific diseases; true 
negative rates) and sensitive (correctly identify 
groups with specific diseases; true positive rates), 
easy to use, reproducible, easy to acquire and quantify 
and easy to interpret across different centers. Thus 
accurate biomarkers that can stratify patients in to 
different PCa prognosis risk groups can guide the 
development and application of targeted 
interventions depending on treatment response. This 
underlines the urgent need for accurate biomarkers 
for diagnosis and monitoring of PCa response to 
chemotherapy. 

Identification of aberrant gene expression is an 
effective method of identifying biomarkers because it 
assesses tumor activity and expression profiles of 
several genes in separate tissue types. Thus multiple 
cancer subtypes can be distinguished based on gene 
expression. Molecular features of tumors can 

potentially inform on prognosis of the cancers. Even 
though both proteins and RNA inform on molecular 
activities, detection and quantification of RNA is often 
easier, even in trace amounts and complex matrix 
environment. Furthermore, the multiplicity of 
RNA-based assays is fairly simple, which implies that 
thousands of potential targets can be evaluated 
simultaneously using high-throughput assays. RNA 
biomarkers have been discovered through analysis of 
ncRNAs, multi-gene expression panels, alterations in 
the presence of splice variants, and gene fusion 
transcripts, premised on various tumor cell functions. 
Most primary stage of PCa are almost asymptomatic, 
and only few of them are detected through 
randomized physical examinations. Thus most 
cancers advance to worse stages before related signs 
begin to emerge, limiting treatment efficacy and 
survival time of respective patients. Intriguingly, 
most patients with PCa do not die from tumors at the 
primary tumor, but rather metastases related 
complications in other distant organs, despite an 
initially high complete optimal response rate. 
Increasing evidence suggests that only a quarter of 
patients with metastatic and invasive PCa can survive 
longer than 5 years after an initial diagnosis of the 
tumors [11-13]. Notably, the majority of invasive 
prostate cancer advances into metastatic disease after 
local treatment, leaving PCa as an incurable and fatal 
malignancies after local treatment. Thus metastatic 
PCa, particularly the castration-resistant prostate 
cancer (CRPC), accounts for about two-thirds of 
prostate cancer mortalities [12, 14, 15]. 

Despite the high prevalence of PCa, accurate 
diagnostic and prognostic biomarkers for the tumor 
are still lacking. PSA concentrations have been used in 
routine screening of PCa. However, the technique is 
confusing for PSA concentrations between 4 ng/mL 
and 10 ng/mL. Unfortunately, up to 11% of men 
present with PSA concentrations lower than 2.0 
ng/mL, thus can easily be missed using the PSA 
technique only [11]. The ratio free PSA (fPSA) to total 
PSA (tPSA) effectively enhances the diagnostic 
sensitivity and specificity of PCA technique. 
However, the serum based PSA technique cannot 
stratify PCa patients in to prognosis risk groups 
[16-18]. The second generation of genome analytical 
technologies such as microarray analysis and NGS 
have deepened our understanding on the cellular and 
molecular mechanisms underlying PCa. This has 
presented unique opportunities to explore large 
genomic data, with a view of discovering novel 
biomarkers for various disease parameters. Thus the 
low cost and accuracy presented by the new 
technologies have opened a new frontier in to 
personalized genomic diagnosis and clinical 
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management. As one of the most prominent themes in 
cancer genetics, the characteristic changes in the 
somatic genome of tumor tissue are valuable 
parameters in diagnosing and predicting treatment 
response of tumors. The currently available methods 
include analysis of genetic signatures in peripheral 
blood and characterization of DNA/RNA in tumor 
cells (CTCs) [19-23]. Despite the advances in tumor 
genetics, the molecular basis for occurrence and 
prognosis of PCa remains to be validated. The genetic 
pathways and/or gene expression profiles associated 
with chemotherapy response and prognosis of PCa 
represent a promising opportunity for unraveling the 
above relationships. 

Early diagnosis and prognosis prediction have 
invaluable benefits to the patients, underlining the 
need for accurate and reliable PCa associated 
biomarkers. In this study, we analyzed integrated PCa 
cases with disease-free interval (DFI) data from two 
independent cohort studies (TCGA-PRAD and 
GSE116918) to develop and validate novel 
personalized genetic signatures associated with 
development and prognosis of PCa. We also 
investigated clinical and pathological features and 
immune infiltration landscape in PCa tissues. 
Identification of diagnostic and prognostic-related 
genes for PCa patients at an early stage will unravel 
the complex molecular mechanism between gene 
expression and PCa tumorigenesis and progression. 

Materials and methods 
Selection of PCa gene expression datasets 

The GEO microarray datasets utilized in this 
study were downloaded from the Gene Expression 
Omnibus (GEO) repository (http://www.ncbi.nlm. 
nih.gov/) [24]. To be included in this study, the 
dataset must have fulfilled the following: (1) 
contained expression profile of both prostate cancer 
tissue and corresponding adjacent normal prostate 
tissue, excluding benign proliferative prostate tissue, 
(2) was of satisfactory sample size (Normal sample ≥6, 
Tumor sample ≥6), (3) contained complete probe 
names (or probe sequences) and corresponding gene 
symbols (raw probes numbers ≥20000). Accordingly, 
GSE3325 [25], GSE6956 [26], GSE32448 [27], GSE3251 
[28], GSE46602 [29], GSE55945 [30], GSE34312 [31], 
GSE69223 [32], GSE71016 [33], GSE88808 [34] fulfilled 
the inclusion criteria, and were therefore included in 
the subsequent analyses. PCa RNA-sequencing 
profiles and clinical data were extracted from the 
TCGA database (https://cancergenome.nih.gov/). 

Identification of DEGs 
We identified DEGs using the Robust Rank 

Aggregation (RRA) method. The DGEs were cleaned 

and analyzed using potential probability models, 
based on Bonferroni corrected P values were used in 
identifying significant differential gene expression to 
minimize false positive results [35]. The data was 
further cleaned and normalized using the “limma” 
package in R-software before importation in to RRA 
for further meta-analyses [36]. 

Gene function enrichment analyses 
The functional pathways regulated by key DGEs 

were identified using “Clusterprofiler” package in R 
software [37], following Gene Ontology (GO) 
enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses. 
Statistical significance for the pathways in PCa was 
set at P-value < 0.05 and false discovery rate (FDR) < 
0.05. The expressing of DEGs between normal and 
PCa tissues was plotted using the “Clusterprofiler” 
packages. Notably, this study only highlighted the 
molecular function (MF), biological processes (BP), 
and cell composition (CC) most influenced by the 
DEGs. 

WGCNA analysis 
Gene expression patterns in multiple samples 

were assessed using WGCNA. Gene modules that 
regulate physiological process or different tissues 
processes were further investigated to unravel their 
clinical significance [38]. The expression profiles and 
clinical parameters of these DEGs were extracted from 
the TCGA data portal, and subsequently merged for 
subsequent analyses. Overall, we incorporated 7 
clinicopathological parameters: T grade, N grade, M 
grade, Diagnosis age, Recurrence status, Plymphnode 
number, and Gleason score. The relationship between 
weighted gene co-expression modules and integrated 
clinical traits was evaluated using the WGCNA 
platform in R package. In the WGCNA algorithm, the 
elements in the defined gene co-expression matrix 
were the weighted values of the correlation 
coefficients of the genes were the key elements in the 
defined gene co-expression matrix. Significance was 
set at scale-free topological fitting index (R2 = 0.96). In 
the clustering tree, genes with high absolute 
correlation were assembled into the invariable 
co-expression module. A cluster tree was then 
generated based on FlashClust analysis. Genes were 
divided into distinct gene modules based on 
TOM-based difference metrics, based on the 
association between modules and clinical traits. The 
module Gene Significance (GS) and Module 
Membership (MM) were calculated to identify 
significant gene modules. The relationship between 
the gene modules and the 7 clinicopathological 
parameters was visualized using a heat map, at 
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P-value < 0.05. The biological functions of modules 
with the strongest association with clinical traits were 
further evaluated through GO and KEGG analyses. 

DFI associated biomarkers 
Based on TCGA database, new locoregional 

recurrences, distant metastases and new primary 
tumors were all classified in to new tumor events. DFI 
was defined as period between the initial follow-up to 
the appearance of a new event. We then used the 
TCGA-PRAD data (Prostate adenocarcinoma) to 
validate the association between the most significant 
DEGs and DFI. Univariate Cox regression analysis 
identified 113 significant DEGs (P-value < 0.05), 
which were included in the subsequent analyses. 
Lasso regression analysis was performed to identify 
the most significant prognosis-related differently 
expressed gene signatures [39-41]. The optimal 
lambda was identified after running 1,000 
stimulations based on cross-validation likelihood. 
Overall, 5 genes were identified, which were 
subsequently included in the multivariate Cox-PH 
regression model. Using the default coefficients in the 
multivariate Cox regression analyses, the risk score 
prediction model based on gene signature expression 
is set by a linear combination of expression levels of 
independent gene signatures. The risk-factors scoring 
algorithm was generated for prognosis prediction was 
as follows: Risk-score = Σ (βmRNA × exprmRNA). 
Something needs to be noted that βmRNA denotes the 
Cox-PH coefficient of mRNA while exprmRNA 
denotes the mRNA expression levels. Using the risk 
scoring prediction model, PCa patients were 
subdivided into low-risk and high-risk groups based 
on the median risk score. The DFI of low-risk patients 
and high-risk patients were calculated using the 
Kaplan-Meier survival curves and compared using 
the log-rank test. Time-dependent ROCs (Receiver 
Operating Characteristic Curves) were used to assess 
the predictive efficiency of PCa prognosis model, 
whereas the area under the curve (AUC) of the ROC 
was used to estimate the prediction accuracy of the 
model. The predictive nomogram incorporated all 
significant independent predictors identified in the 
multivariate Cox-PH regression model [42]. Risk 
curves and scatter plots were generated to display the 
relationship between the risk score and the PCa 
patient factors included in the TCGA. The robustness 
of the prognostic model was validated using the 
GSE116918 dataset [43]. 

External validation of the expression levels of 5 
gene signatures 

The relevance of the gene expression signature 
on prognosis and clinicopathological factors was 

verified using the TCGA dataset and the protein 
expression pattern was verified in Human Protein 
Atlas [44]. The differential expression of the 5 
signature genes in primary prostate cancer and 
metastatic prostate cancer tissues was analyzed using 
the GSE32269 dataset [45]. The difference in gene 
expression between prostate cancer and normal 
prostate tissue was analyzed based on ROC. The 
cutoff threshold was based on the maximized of 
Youden’s index (Sensitivity + Specificity -1). Statistical 
significance was set at P<0.05. All the statistical tests 
were two-sided. 

Gene set enrichment analysis 
The differential gene expression between 

high-risk and low-risk group patients was assessed 
based on GSEA. Statistical significance was set at P < 
0.05 and FDR < 0.05. The function of the top 8 most 
differently expressed genes in the high-risk and 
low-risk groups were analyzed using the GO and 
KEGG gene sets. 

Patients and clinical tissue samples 
Clinical tissue samples for 15 pairs of freshly 

snap-frozen prostate cancer tissues and paired normal 
adjacent tissues were histopathologically and 
clinically diagnosed at The First Affiliated Hospital of 
Bengbu Medical College. All patients included in this 
study consented to the use their tissue samples and 
associated demographical and clinical data in a 
de-identified format in this research. The protocol for 
this study was approved by the Ethical Examination 
committee of Biomedical Research in People (Trial) 
(2007) and the Institutional Ethical Review Board of 
Anhui Cancer Hospital. 

Immunohistochemical staining 
After fixation in formalin, the clinical 

pathological tissues were quickly frozen to -25 °C and 
cut in to thin 4-μm sections are produced. 
Immunohistochemistry tests were performed as 
previously described/following the manufacturer’s 
protocol. Briefly, the sections were t firsts incubated at 
4 °C, overnight with primary antibodies (ZNF695, 
10508-1-AP, Proteintech; CENPA, 26754-1-AP, 
Proteintech; TROAP, 15911-1-AP, Proteintech; BIRC5, 
13634-1-AP, Proteintech; KIF20A, 25556-1-AP, 
Proteintech) in a blocking solution. Second incubation 
was performed using peroxidase-coupled IgG 
(Burlingame, CA). The immunofluorescences were 
visualized after staining and counterstaining with 
diaminobenzidine and hematoxylin, respectively. 
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Validation of mRNA expression for the 5 gene 
signatures 

Total RNA in the tissues was extracted from 
tissues using TRIzol reagent, according to the 
manufacturer’s protocol (Invitrogen, California, 
USA). The RNA quality was assessed based on 
A260/A280 ratios using an ND-1000 UV Nanodrop 
spectrophotometer (Thermo Scientific). Then RNAs 
were then reverse transcribed into cDNA by using the 
reverse transcription kit (TaKaRa, Japan) for mRNA 
expression. The quantitative reverse transcriptase 
PCR (qRT-PCR) was performed using the SYBR 
premix Ex Taq-II kit (Takara, Japan), in an ABI 
7500HT fast real-time PCR System (Applied 
Biosystems, USA). GAPDH was used as the internal 
control. The relative mRNA expression was 
determined based on the comparative cycle threshold 
(2-ΔΔCt) equation. The primer sequences used in this 
research are listed in Supplementary Table S1. 

The relationships between expression of the 
gene signatures and immune 
microenvironment 

We used CIBERSORT (http://cibersort.stanford. 
edu/) [46] and TIMER (https://cistrome.shinyapps. 
io/timer/) [47] datasets (two genes expression-based 
deconvolution algorithm) to analyze the infiltration of 
immune cells in tumor tissues relative to normal 
tissues based on mRNA seq data. CIBERSORT 
contains data for 22 different immune cells including 
monocytes, NK T cells, B cells, T cells, and so on. On 
the other hand, TIMER repository contains data for 6 
immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, 
Neutrophils, Macrophages, and Dendritic cells). 

Statistical analysis 
Unless otherwise indicated, continuous data was 

expressed as mean ± standard error of the mean 
(SEM). Differences between two groups were 
analyzed using an unpaired Student’s t-test. Two-way 
t-test or paired t-tests were used for groups with 
normally distributed data but with different variance; 
otherwise, a two-sided Wilcoxon test was used. 
Multiple hypothesis tests were performed using the 
Benjamini and Hochberg methods unless otherwise 
stated. Statistical analysis was performed using 
RStudio software v1.2.1335 (RStudio Inc.) and 
GraphPad Prism software v8.0 (GraphPad Software 
Inc.). Statistical significance was set at P < 0.05. 

Results 
Incorporating GEO datasets and screening 
DEGs using RRA method 

The flow diagram for the development and 

validation of the 5 gene prognostic model for PCa is 
shown in Figure S1, following RRA analysis of 10 
microarray datasets extracted from the GEO 
repository. Relevant characteristics of these datasets 
such as ID, platform, the number of raw probes, and 
the number of samples are shown in Table 1. Raw 
data for each GEO dataset were first standardized to 
the baseline data of non-carriers following conversion 
to z scores (Figure S2A-J). RRA analysis identified 
1128 up-regulated genes and 962 down-regulated 
DEGs. The top 20 up-regulated and down-regulated 
DEGs based on logFC values are shown in Figure 1. 
The biological functions of the top 400 DEGs (200 
up-regulated genes and 200 down-regulated genes) 
were identified following GO and KEGG analyses. 
Based on GO analysis, the genes regulated several 
molecular functions (MF), biological processes (BP), 
and cell composition (CC) (Figure 2A). In particular, 
the model genes regulated muscle system process, 
extracellular matrix, and the actin-binding. On the 
other hand, KEGG pathway analysis revealed that the 
DEGs were significantly enriched during human 
T-cell leukemia virus 1 infection and Epstein-Barr 
virus infection as well under activated Ras signaling 
pathway, etc. (Figure 2B). 

 

Table 1. Characteristics of the GEO datasets 

GEOset ID Contributors Platform ID Samples Number of rows 
per platform 

GSE3325 Varambally S, et al GPL570 6N 13T 54675 
GSE6956 Wallace TA, et al GPL1571 20N 69T 22277 
GSE32448 Derosa CA, et al GPL570 40N 40T 54675 
GSE32571 Kuner R, et al GPL6947 39N 59T 48652 
GSE46602 Mortensen MM, et al GPL570 14N 36T 54675 
GSE55945 Arredouani MS, et al GPL570 8N 13T 54675 
GSE34312 Ashida S, et al GPL6884 10N 10T 48803 
GSE69223 Meller S, et al GPL570 15N 15T 54675 
GSE71016 Zhang L, et al GPL16699 47N 48T 62976 
GSE88808 Ding Y, et al GPL22571 49N 49T 20260 

Abbreviations: GEO: Gene Expression Omnibus; T: tumor samples; N: 
paracancerous normal samples. 

 

WGCNA analysis and Key module 
identification 

The top 5000 up-regulated genes based on RRA 
analysis subjected to WGCNA analysis. To determine 
key modules for DEGs and clinical traits of PCa 
patients, we merged clinical traits and expression 
profiles of prostate cancer from TCGA. The clinical 
traits included TNM grade, age at diagnosis, 
recurrence status, number of metastatic lymph nodes, 
and Gleason score. Dendrogram and traits heatmap 
for the PCa patients are shown in Figure 3A. Based on 
scale-free R2 = 0.96 (Figure 3B-C) and cutting height of 
0.20 (Figure 3D), we identified the gene co-expression 
modules as shown in Figure 3E. Heat map for the 
interactions of these co-expression modules (Figure 
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3F) revealed that the expression black module 
strongly and positively correlated with the Gleason 
score (correlation coefficient = 0.41, P = 4E-24) (Figure 
4A). Interestingly, a scatter plot of gene significance 
(GS) and module membership (MM) of the black 
module genes revealed that MM in the black module 
significantly correlated with Plymphnodes Number 
(correlation coefficient = 0.7, P = 3e-32), Recurrence 
(correlation coefficient = 0.76, P = 8.6e-41), and 
Gleason score (correlation coefficient = 0.92, P = 
1.5e-86) (Figure 4B). After dropping 227 genes from 
the black module, GO and KEGG analyses revealed 
the remaining genes participated in chromosome 
segregation, mitotic nuclear division, nuclear 
division, organelle fission and mitotic sister 
chromatid segregation-22 (Figure 4C). KEGG 
pathway analysis on its part revealed the genes 
regulated the Cell cycle, Tight junction, and 

Leukocyte transendothelial migration (Figure 4D). 

Genes associated with DFI 
Given the results in Figure 4, we speculated 

expression of black module genes may impact on PCa 
outcome (Gleason score, recurrence, lymph node 
metastasis, etc.). We filtered the gene pool to obtain 
fewer candidate variants. In the end, we remained 
with 113 genes that were included in the lasso 
regression model. According to the results of 
Cross-validation for tuning parameter selection in the 
proportional hazards model, 5 genes were 
incorporated into the multivariate Cox regression 
model (Figure 5A-B). The multivariate regression 
analysis and the hazard ratio (HR) of these 5 genes 
was based on the risk score at 95% confidence interval 
(95% CI) is shown in Figure 5C (Concordance 
Index=0.78). The constructed nomogram 

incorporating expression profile of hub 
genes (log2 transform) for prognosis of 
PCa is shown in Figure 5D. The 
prognostic model was evaluated using 
expression profile of genes in 495 PCa 
tissues extracted from TCGA database. 
The data was randomly classified into 
the discovery cohort and the validation 
cohort in the ratio of 3:7. The Cox-PH 
model based on 5 gene signatures was 
executed to further validated the 
robustness of the prognostic model 
using the discovery cohort, validation 
cohort, and total cohort. Scatter plots 
were generated to display the risk 
score and new event risk of PCa 
patients in the total cohort. The 
clinicopathological characteristics of 
patients in the total cohort are shown 
in Table 2. Patients in high-risk groups 
were more likely to develop new 
events than their low-risk group 
counterparts (Figure 6A-F). Then, the 
Kaplan-Meier curve revealed that the 
accuracy and specificity of the risk 
score based prediction model was 
satisfactory (P < 0.001), with patients in 
the high-risk score group found to 
have a shorter disease-free interval 
(Figure 6G-I). The AUC curve for 3 or 
5 year DFI of the PCa patients was 
0.784, and 0.758, respectively (Figure 
6J-L). Overall, these findings 
demonstrated the independent 
prognosis value of the 5 gene 
signatures (ZNF695, CENPA, TROAP, 
BIRC5 and KIF20A) in PCa. 

 

 
Figure 1. Heatmap shows top 20 DEGs in up-regulated and down-regulated genes based on RRA DEGs were 
defined with P-value < 0.05 and |logFC| ≥ 1. 
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Figure 2. Gene functions enrichment analyses of DEGs. (A) GO terms enrichment analysis of DEGs in MF, BP, and CC. (B) KEGG pathways enrichment analysis of DEGs. 

 

Table 2. Visualization of specificity, sensitivity, and cutoff values of 
these 5 gene signatures as diagnostic and prognostic markers 

Clinical traits Risk score χ2 P value 
High risk, n (%) Low risk, n (%) 

Age   20.05 <0.0001 
≤60 86 (38.74%) 136 (61.26%)   
>60 161 (58.97%) 112 (41.03%)   
T   8.085 0.0443 
T1 82 (45.30%) 99 (54.70%)   
T2 98 (48.52%) 104 (51.48%)   
T3 64 (58.72%) 45 (41.28%)   
T4 3 (100.00%) 0 (0.00%)   
N   18.10 <0.0001 
N0 173 (44.82%) 213 (55.18%)   
N1 74 (67.89%) 35 (32.11%)   
M   0.5165 0.4724 
M0 242 (49.69%) 245 (50.31%)   
M1 5 (62.50%) 3 (37.50%)   
Gleason Score   75.88 <0.001 
6 16 (35.56%) 29 (64.44%)   
7 82 (33.33%) 164 (66.67%)   
8 42 (66.67%) 21 (33.33%)   
9 104 (75.91%) 33 (24.09%)   
10 3 (75.00%) 1 (25.00%)   
New tumor event   41.70 <0.001 
No 154 (41.51%) 217 (58.49%)   
Yes 93 (75.00%) 31 (25.00%)   

 

5 Gleason score-associated gene signatures are 
independent risk factors for tumor recurrence 
in PRAD 

Based on the above-mentioned prediction 
model, the plotted calibration curve further 
demonstrated the strong consistency between 
predicted risk and the eventual outcome (Figure 
7A-B). Various clinical variables affect the prognosis 
of PCa patients. Except for patient’s Age, the other 
clinical characteristics (T, N, M, Stage, cancer status, 
and new tumor event) were all significantly 
associated with poor prognosis. Complete clinical 
characteristics carried by the TCGA-PRAD data set in 
Table 2. The correlation between different risk 

stratification and clinicopathological characteristics 
according to risk score was calculated using the 
chi-square test. However, forest plots for univariate 
and multivariate cox regression analysis revealed that 
the risk score could not only independently predict 
the prognosis of PCa, but its prediction power was 
superior to that of other clinical characteristics (Figure 
7C-D, F). The distribution of clinicopathological 
characteristics and expression of gene signatures in 
low-risk and high-risk groups is displayed in Figure 
7E. KM-plot revealed that compared to T1-2, patients 
in the T3-4 group displayed significantly shorter 
disease-free interval (P < 0.001) (Figure 8B). Similarly, 
patients in higher pathological grades have shorter 
disease-free interval, relative to the lower-grade 
counterparts (N1 vs N0, P < 0.001; M1 vs M0, P = 
0.016; Gleason >7 vs Gleason ≤7, P < 0.001) (Figure 
8C-F). However, we found age was not an 
independent predictor of PCa prognosis (Figure 8A). 
The accuracy, sensitivity and specificity of the novel 
model were validated using external GEO cohort 
(GSE116918) (248 samples). Based on the TCGA 
median risk score, the patients were divided into 
low-risk (n = 146) and high-risk groups (n = 102) 
(Figure 9A-B). K-M survival analysis revealed that 
compared to high-risk group patients, low-risk 
patients displayed longer disease-free interval (Figure 
9C). Time-independent ROC curve and calibration 
curves further demonstrated the high robustness of 
the prediction model with regard to new tumor 
events after 3 (AUC = 0.837) or 5 years (AUC = 0.857) 
(Figure 9D-F). Survival age cluster analysis using the 
entire TCGA-PRAD cohort data revealed that 
compared to patients ≤60, those above 60 exhibited 
considerably lower disease-free interval (Figure 
10A-B). All high risk group patients based on TNM or 
Gleason scores (Figure 10C-J) had a significantly 
shorter DFI relative to their low risk counterparts. 
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Figure 3. WGCNA analysis for DEGs. (A) Dendrogram and traits heatmap between TCGA-PRAD samples and clinical traits. (B) Analysis of the average connectivity and 
scale-free fit index by setting unequal soft-thresholding power. (C) The scale-free R2 reached its maximum value when setting soft-thresholding power at 6. (D) Clustering of 
module eigengenes. The red line indicates cut height (0.20). (E) Dendrogram of all DEGs clustered based on TOM. (F) Analysis of the relationship of co-expression modules 
based on the pearson correlation coefficient. 

 

Biological mechanisms underlying the function 
of model genes 

GSEA (Figure 11A-B) of pathways identified 
following GO and KEGG analysis revealed that the 
novel model genes were over-expressed in the 

high-risk group individuals, and regulated multiple 
biological processes, such as meiotic chromosome 
segregation, chromatin remodeling at centromere, 
homologous chromosome segregation, cell cycle, 
homologous recombination, DNA replication, etc. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

3634 

 
Figure 4. Identification of key genes and functional annotation of the black module. (A) The correlation between modules and the clinical traits. (B) Scatter plot of module 
eigengenes in the black module related with Plymphnodes Number (correlation coefficient = 0.7), Recurrence (correlation coefficient = 0.76), and Gleason score (correlation 
coefficient = 0.92). (C) Chord plot depicted the relationship between genes and GO terms of molecular function. (D) Chord plot indicated the relationship between genes and 
KEGG pathways. 
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Figure 5. Identification of gene signatures associated with disease-free interval based on Cox-PH regression model. (A) Lasso coefficient profiles of the 495 progression- 
associated events in PCa. (B) Selection of the tuning parameter (λ) in the LASSO model through 10-fold cross-validation procedure was plotted as a function of log(λ). (C-D) 
Construction of multivariate Cox-PH regression model and ZNF695, CENPA, TROAP, BIRC5, KIF20A were considered significant and used to construct a prognostic model. 

 

Validation of 5 gene signatures in PCa 
In assessing the relationship between expression 

profiles of the model genes in PCa tissues and related 
clinicopathological characteristics based on TCGA 
data, we further found the 5 model genes were 
over-expressed in prostate cancer tissues, relative to 
normal prostate tissue (Figure 12A). Analysis of the 
Human Protein Atlas further validated the 
over-expression of proteins coded by the 5 signature 
gene in PCa tissues relative to paracancerous normal 
tissues (Figure 12B). Combined with WGCNA 
findings, it can be inferred that the expression of the 5 
signature gene strongly and positively correlates with 
PCa Gleason score (Figure 12C). The expression levels 
of these 5 gene signatures in primary and metastatic 
tumors (bone metastasis or lymph node metastasis) 
were evaluated using GSE32269 data, also from GEO 
repository. Intriguingly, we found the five signature 
genes were over-expressed in metastatic tumors 

(Figure 12D), suggesting that up-regulated expression 
of the 5 signature genes promotes metastasis. 
Meanwhile, further revealed higher expression of the 
genes was strongly associated with shorter disease- 
free interval (Figure 12E). Moreover, the AUC plots 
demonstrated the expression pattern of the model 
genes was highly accurate in diagnosing PCa (Figure 
12F). Based on Yuden index, the 5 model were highly 
specific and sensitive in predicting PCa prognosis 
(Table 3). Combined, AUC for the specificity and 
sensitivity of the 5 signature genes reached 0.9473 
(95% CI = 0.9149 ~ 9698) (Figure S3). 

Expression of the 5 prognostic gene signatures 
in clinical samples 

QRT-PCR revealed that the mRNAs for the 
expression of the 5 signature genes (ZNF695, CENPA, 
TROAP, BIRC5, and KIF20A) were over-expressed in 
15 PCa and adjacent tissues, relative to adjacent 
normal tissues (Figure 13A). Immunohistochemical 
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(IHC) analysis further demonstrated moderate or 
high staining intensity of the 5 proteins in PCa tissues, 
relative to normal tissues (Figure 13B). These findings 

demonstrated the upregulated expression of signature 
gene in PCa tissues, consistent with previous 
bioinformatics analysis. 

 

 
Figure 6. Risk curves (A-C) and scatter plots (D-F) implied the risk score and new event risk for each PCa patient. (G-I) KM survival curves revealed that the prediction model 
of risk score had good discrimination and patients with high-risk scores have a shorter disease-free interval. (J-L) According to the prognostic model, the ROC curve has a higher 
efficiency in predicting 3 or 5 years of DFI in PCa patients. 
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Figure 7. (A-B) Calibration curves of the nomogram for predicting the probability of DFI at 3 and 5 year. (C-D) The univariate and multivariate Cox regression analysis of risk 
score, age, Gleason score, and TNM stage. e Distribution characteristics of expression profiles of 5 gene signatures in different risk and clinicopathological groups. (F) Multiline 
ROC curves showed the superiority of 5-gene panel based on a 10-fold cross-validation, for predicting new tumor events. 

 

Expression of signature genes and infiltration 
of immune cells in tumor tissues 

Based on CIBERSORT and TIMER analyses 

(Figure 14A) of TCGA-PRAD, we revealed strong 
exhaustion of T cells CD8 (P = 0.026), T cells CD4 
memory resting (P = 0.047), NK T cells activated 
(0.037), Macrophages M0 (P = 0.044), and Mast cells 
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resting (P = 0.033) (Figure 14B) in tissues of high-risk 
group patients, relative to their low-risk group 
counterparts. TIMER tool further revealed expression 
of the 5 signature genes (ZNF695, CENPA, TROAP, 
BIRC5 and KIF20A) was strongly and positively 
correlated with high tumor purity but negatively 
influenced the infiltration of CD8+ T cells and 
macrophages. In addition, we observed weak or no 
associations between the expression of the 5 genes 
and infiltration of B cells, CD4+ T cells, neutrophils, 
and dendritic cells (Figure 14C). 

Discussion 
Prostate adenocarcinoma, the third most 

prevalent cancer globally, causes substantial 
morbidity and mortality in Europe and the United 
States. In China, PCa is among the top 10 causes of all 
disease morbidity and mortalities in the country. The 
increase in incidences of PCa has been attributed to 
the increase in older population and unhealthy diet 
[48-50]. Despite the advances in molecular basis of 
PCa tumorigenesis, early diagnosis and prognosis 
prediction of PCa, particularly tumor recurrence, 
remain a challenge. The heterogeneous nature of PCa 
results in varied pathogenesis, and subsequently, 
diverse chemotherapy response. Numerous 
microarrays and RNA-seq studies have revealed 
effective therapeutic targets for PCa. Therefore, we 
aimed to identify novel genomic markers that assess 
PCa responses to different therapeutic interventions 
and subsequent prognosis. Overall, our univariate 

and multivariate Cox proportional hazard regression 
identified 5 key gene signatures (ZNF695, CENPA, 
TROAP, BIRC5 and KIF20A). WGCNA and 
hierarchical clustering analysis revealed that the 
DEGs between PCa and adjacent normal tissues were 
associated with several clinicopathological 
characteristics. In addition, ROC curves revealed that 
the signature model genes were accurate, highly 
sensitive and specific diagnosis biomarkers for PCa. 
Thus expression profile of these genes can be utilized 
clinically in assessing chemotherapy response of PCa 
with a view of improving the disease treatment 
outcome. 

ZNF695 encodes the zinc finger family of 
proteins, whose function is not known, particularly in 
prostate cancer [51]. In this study, we found ZNF695 
was overexpressed in PCa, which correlated with 
worse disease outcomes such as tumor progression 
and metastasis. CENPA, a histone H3 variant, 
regulates chromosome segregation during cell 
division [52, 53]. Over-expression of CENPA is 
associated with shorter DFS (Disease-free survival) in 
patients with breast cancer [54], whereas up-regulated 
CENPA-mediated pRb depletion promotes the 
development and progression of retinoblastoma [55]. 
Meanwhile, research shows that TROAP is 
dysregulated in various tumors such as breast cancer, 
liver cancer, prostate cancer, and gastric cancer. The 
protein promotes proliferation and distant metastasis 
of tumors through multiple signaling pathways such 
as WNT3/survivin [56-60]. In our study, we found 

 

 
Figure 8. (A-E) KM survival curves shows that T classification (P < 0.001), N classification (P < 0.001), M classification (P = 0.016) and Gleason score (P < 0.001) are independent 
risk factors, except for age (P = 0.167). 
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TROAP promoted PCa metastasis, besides being an 
independent predictor of risk for new prostate cancer 
events. BIRC5 (Survivin) proteins perform multiple 
cell functions. In normal cells, they directly regulate 
apoptosis and filament-division of embryonic cells 
during embryo development. On the other hand, they 
promote tumor occurrence and metastasis of cancers. 
The expression of BIRC5 proteins correlates with poor 
differentiation and worse disease prognosis of 
malignant peripheral nerve sheath tumors, renal cell 
carcinoma, lung adenocarcinoma and ovarian cancer 
[61-64]. Kinesin family member 20A (KIF20A) is a 

mitochondrial-related kinesin (MCAK) and is the 
most common member of the kinesin-6 proteins. It 
participates in disaggregation of microtubules, 
bipolar spindle formation, and chromosome 
segregation, and overall, mitosis and the cell-cycle [65, 
66]. Under or inhibition of KIF20A expression will 
disrupt the normal mitotic process, all of these are 
regarded as potential causes of tumorigenesis. The 
role of KIF20A in numerous tumors has been 
previously reported, such as bladder cancer, lung 
adenocarcinoma, renal clear cell carcinoma has been 
previously reported [67-70]. 

 

 
Figure 9. (A-D) Risk score, KM survival curves and time-dependent ROC curves of DFI in GSE116918 validation cohort. (E-F) Calibration curves of the nomogram for 
predicting the probability of DFI at 3 and 5 year (G) Multiline ROC curves showed the superiority of 5-gene panel than Age, T classification, Gleason score, and PSA value. 
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Figure 10. KM survival curves for the high and low risk groups stratified by clinicopathological variables. Age (A, B), T classification (C, D), N classification (E, F), M 
classification (G, H), and Gleason score (I, J). 

 

Table 3. Baseline characteristics of patients in TCGA cohorts 

Gene AUC Std. 
Error 

95% CI Cutoff 
(log2) 

Sensitivity 
% 

Specificity 
% 

ZNF695 0.7868 0.03956 0.7093 ~ 0.8643 3.566 67.8 84.62 
CNEPA 0.8740 0.03153 0.8122 ~ 0.9358 4.413 81.53 86.54 
TROAP 0.8923 0.02976 0.8340 ~ 0.9506 5.499 89.36 86.29 
BIRC5 0.8864 0.02865 0.8302 ~ 0.9425 6.930 85.4 84.62 
KIF20A 0.8506 0.03188 0.7881 ~ 0.9130 3.349 83.73 75.00 

 
 
Our research proposes and validates a novel 5 

gene signature that stratifies and predicts the 
prognosis of PCa patients. The prognostic biomarkers 
may guide clinical personalized treatment, potentially 

improving the disease outcomes. A wealth of 
compelling evidence demonstrates that tumor 
microenvironment influences progression of the 
cancer. Microenvironmental changes may further 
impact on tumorigenesis and relapse after 
chemotherapy. The majority of prostate cancers 
spread to the bones. Meanwhile, 65%-80% of prostate 
cancers advance to more aggressive forms [71, 72]. 
The complex interactions between the skeletal 
microenvironment and tumor cells have been 
implicated in the development of castration-resistant 
prostate cancer (CRPC). Besides being stem cell 
precursors, bone marrow contains different types of 
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recirculating mature immune cells, including 
Dendritic cells (DC), macrophages, different subsets 
of T and B lymphocyte subsets, myeloid-derived 
suppressor cells (MDSCs), and NK cells. Some of 
these leukocytes participate in the pathogen clearance 
and anti-tumor processes [73, 74]. Using CIBERSORT 
and TIMER, we found a significant infiltration 
inhibition of several immune cell subsets, particularly 
CD8+ T cells, in PCa. Intriguingly, this phenomenon 
increased the risk of recurrence and metastasis. Given 
its immunomodulatory function, infiltration of 
immune cells in tumor micro-environment improves 
the overall survival of patients with varied tumor 
types [75-77]. We found abnormal expression of the 5 

signature genes inhibited optimal expression of CD8+ 
T cells in PCa tissues, particularly in high risk 
patients. Given the critical role of tumor immune 
microenvironment on metastasis, proper and timely 
interventions to dysregulated immune cell infiltration 
can avert tumor recurrence. 

Besides PCa, analysis of other TCGA databases 
revealed that the expression of the signature genes 
also participate in the development of other tumor 
types (Figure S3). Our findings notwithstanding, the 
clinical application of the novel genes as biomarkers 
for diagnosis and prognosis of PCa need further 
validation. 

 

 
Figure 11. GSEA delineates biological pathways and processes between high and low risk using gene sets of GO (A) and KEGG (B). Each run was performed with 1000 
permutations. 
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Figure 12. External validation of 5 gene signatures in PCa. (A, B) Differential expression of these 5 gene signatures in PCa tissue and paracancerous normal samples at mRNA 
and protein level. (C) The expression levels of these 5 gene signatures increased with increasing Gleason score. (D) The expression levels of these 5 gene signatures in primary 
and metastatic tumors. (E) Kaplan-Meier survival curves showed that higher expression of these genes was significantly associated with poor PFS. (F) ROC curve implied higher 
diagnostic efficiency of these 5 gene signatures. 
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Figure 13. Experimental verification for 5 gene signatures. (A) IHC analysis was conducted to study altered protein expression in PRAD and paracancerous tissues (B) Increased 
expression of 5 genes was validated by qRT-PCR (**P < 0.01, ***P < 0.001). 

 

Conclusion 
Overall, we identified a set of novel genes useful 

in accurate diagnosis and prognosis prediction of 
PCa. These findings set the foundation for the 

development of better and more effective markers for 
various PCa parameters. Therefore, further 
experimental and functional studies utilizing large 
samples are required to further validate the utility of 
the proposed biomarkers in the diagnosis and 
prognosis prediction of PCa. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

3644 

 
Figure 14. Evaluation of relationships between gene signatures and the immune microenvironment. (A) Assessment of the proportion of 22 immune cells calculated by the 
CIBERSORT algorithm in PCa tissues based on normalized expression in TCGA-PRAD. (B) Violin plot depicted the infiltration of significantly different subsetst (T cells CD8, T 
cells CD4 memory resting, NK T cells activated, Macrophages M0, and Mast cells resting) between the high and low risk. (C) TIMER algorithm implied these 5 gene signatures 
were positively correlated with tumor purity and negatively correlated with CD8+ T cells. 
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