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Abstract 

Annexin A2 (ANXA2) is a calcium regulated phospholipid-binding protein. It is expressed in some tumor 
cells, endothelial cells, macrophages, and mononuclear cells, affecting cell survival and mediating 
interactions between intercellular and extracellular microenvironment. Aberrant expression of ANXA2 
can be used as a potential predictive factor, diagnostic biomarker and therapeutic target in cancer 
therapy. Investigators used various technologies to target ANXA2 in a preclinical model of human 
cancers and demonstrated encouraging results. In this review article, we discuss the diagnosis and 
prognosis latent capacity of ANXA2 in progressive cancers, focus on the exploration of restorative 
interventions targeting ANXA2 in cancer treatment. Further, we comment on a promising candidate 
therapy that is conceivable for clinical translation. 
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Introduction 
Annexin A2 (also called ANXA2, annexin II, 

p36), 39 kDa proteins (appearing as a 36 kDa protein 
by SDS-PAGE) from the calcium-dependent 
phospholipid-binding peripheral membrane proteins 
family [1], is characterized by the ability to bind and 
aggregate anionic phospholipid membranes [2]. This 
calcium-dependent binding and aggregating ability 
makes up the foundation of its biological functions 
including vesicular transport, exocytosis, and 
endocytosis. Otherwise, ANXA2 participate in cell 
survival, proliferation, invasion and metastasis, thus 
acts as a regulator in tumor growth and progression, 
which support that ANXA2 is a proposing target in 
cancer treatment [3]. The aberrant expression 
character of ANXA2 showed in a wide range of cancer 
cells turn it into emerging biomarker for cancers [4]. 
In this review, we summarize the characteristics and 

roles of ANXA2 and existing therapeutic strategies 
targeting ANXA2, and propose a prospective 
compound targeting ANXA2. 

Characteristics of Annexin A2 
There are two functional regions of ANXA2 

underling its binding and aggregating activity: the 
N-terminal domain and the C-terminal core domain. 
The N-terminal domain contains the tissue 
plasminogen activator (tPA)- [5] and S100A10 (also 
called p11)-binding site, it also bears multiple 
phosphorylation sites such as Tyr23 and Ser25, which 
can be phosphorylated by Src kinase and protein 
kinase C [6, 7]. The phosphorylated ANXA2 changes 
its intracellular localization and regulating actions 
[8-12]. The core domain consists of four segments of 
internal and interannexin homology that are easily 
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identified in a linear sequence alignment [13]. It 
constitutes a highly α-helical disk with two principal 
sides, the convex and the concave [1, 14]. The convex 
surface underlies membrane-binding ability in a 
calcium-dependent manner. The concave surface, 
meanwhile, plays a key role in membrane bridging 
and has the ability to anchor the C terminus of the 
N-terminal domain [15]. The core domain includes the 
F-actin- [16], heparin- [17] and plasminogen-binding 
sites [18]. It mediates the cycle of ANXA2 between 
cytosol and the cytosolic surface of cellular 
membranes through Ca2+-regulated way [19]. The 
C-terminal core domain determines membrane- 
binding capability of ANXA2 [20], while N-terminal 
domain underlies paralog-specific functions in 
ANXA2. It is pointed out that the N-terminal domain 
is necessary in targeting to endosomes in vivo [21]. 
Tyr-23 phosphorylation in the N-terminal promotes 
the membrane-surface ANXA2 binding to endosomes 
[10]. Reactive redox-sensitive cysteines residue 
(Cys-8) in the N-terminus can regulate cycles of 
oxidation and reduction [22]. Extracellular ANXA2 
bind to enzyme plasmin and oxidized during this 
reaction, oxidation form of ANXA2 subsequently 
reduced by the thioredoxin redox system. Reduced 
form of ANXA2 can protect tumor proteins from 
oxidation. Which means ANXA2 plays a key role in 
resisting oxidative stress and in tumorigenesis [23]. 
Structural studies indicated that the flexibility of the 
N-terminal domain and C-terminal core domain is 
interrelated and oppositely regulated by Ser25Glu 
phosphomimicking mutation and Tyr23 
phosphorylation. Ser25Glu mutation disrupts the 
connection of N-terminal domain and C-terminal core 
domain, while Tyr23 phosphorylation anchors the 
N-terminal domain to the C-terminal domain and 
inhibit the membrane-bridging function. This 
inhibition can be returned by S100A4 and S100A10 
binding [24]. 

ANXA2 exists as monomeric and heterotetra-
meric (comprised of two ANXA2 and two S100A10 
molecules) forms in cells. The monomer exists in the 
cell cytoplasm, nuclei and on early endosomes while 
the heterotetramer located on cell membranes [25]. 
Nuclear ANXA2 can be the component of the primer 
recognition proteins regulating DNA polymerase α 
activity and DNA replication [26, 27]. Nuclear 
ANXA2 is also a major nuclear DNA-binding protein 
and be associated with DNA synthesis, cell 
proliferation and cell cycle progression [28, 29]. 
Otherwise, accumulation of ANXA2 in nuclear 
protects cells from DNA damage during oxidative 
stress [30]. ANXA2 binds to specific mRNAs in 
cytoskeleton and perinuclear section. ANXA2 in the 
cytoplasm and on the surface of membranes can serve 

as mediators in membrane-related processes, 
including exocytosis [31, 32], endocytosis [25, 33], and 
membrane trafficking [34]. A founding proved that 
ANXA2 involved in biogenesis of polycystic transport 
intermediates via regulating the budding process of 
early endosomes rather than membrane invagination 
[35]. N-terminal domain, especially tyr-23 
phosphorylation in the N-terminal, is necessary in this 
process [10, 21]. The heterotetramer on the cell surface 
is regulated by intracellular calcium concentration. 
Change of intracellular calcium concentration can be 
provoked by heat induced stress of the cell. When 
using the small interfering RNAs (siRNA) which can 
specifically bind to S100A10 and subsequently reduce 
its expression, translocation of ANXA2 triggered by 
the heat was therefore significantly reduced. S100A10 
plays an essential role in ANXA2 translocation [12]. 
Calcium-dependent constructional change of ANXA2 
exposes a hydrophobic amino acid, it combined with 
S100A10 and form the heterotetramer. The high 
affinity for phospholipids drives heterotetramer 
translocate from the cytoplasm to the extracellular 
plasma membrane [12, 36]. The heterotetramer is a 
key plasminogen (PLG) receptor that transforms PLG 
into plasmin [37]. Plasmin is an important regulator of 
ECM degradation, fibrin polymers lysis and 
furthermore migration, invasion and angiogenesis 
[38]. 

Roles of Annexin A2 in cancer 
progression 

ANXA2 perform crucial roles in tumor cancer 
progression [3, 4, 39-45]. For tumor development, 
promoting cell proliferation and inhibiting cell 
apoptosis are both required for survival and growth. 
Neoangiogenesis, meanwhile, is another fundamental 
biological process in tumor progression [46]. It is well 
known that nutrition and oxygen are indispensable 
for tumor cells to survival and growth. So, in the early 
stage of tumor starvation, ANXA2 may support 
starving cells by inducing autophagy [47]. Invasion 
and metastasis of tumor cells improve the aggressive 
potential of human cancer. Increased researchers have 
focused on roles of ANXA2 on proliferation, 
migration, invasion and metastasis of tumor cells. 
(Figure 1). 

Roles of Annexin A2 in cell proliferation 
In nuclei, ANXA2 monomer combined with 

3-phosphoglycerate kinase (PGK). This complex 
stimulates DNA polymerase alpha in the early S 
phase and initiates the DNA replication [27]. In 
addition, nuclear ANXA2 disrupts coilin and causes 
its abnormally localized to centromeres, resulting in 
chromosome instability (CIN). CIN is a promotor of 
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tumor growth [48-50]. Study showed that cancer cells 
transfected with an antisense ANXA2 vector show 
poor capability of division and proliferation. Cellular 
DNA synthesis level in antisense transfected cells is 
significantly lower than that in sense transfected cells. 
Meanwhile, replication extracts made from antisense 
transfected cells have significantly reduced efficiency 
to support SV40 in vitro DNA replication, while those 
made from sense transfected cells have fully 
capability of replication [51]. Down-regulation of 
ANXA2 lead to reduction of the percentage of cells in 
the S phase [52]. The results agree with that ANXA2 
can promote cell proliferation by regulating DNA 
synthesis, replication and the cell cycles. Researchers 
also point out that ANXA2 activate both NF-κB and 
β-catenin signaling pathways thus causing cell 
proliferation in vivo [53]. 

Roles of Annexin A2 in cell apoptosis 
Inhibiting cell apoptosis are essential factor in 

tumor survival and proliferation. ANXA2 is 
significant ligand of C1q which directly binding to 
apoptotic cells and mediating phagocytes recognizing 
apoptosis cells [54, 55]. P53 serves as a key tumor 
suppressor protein by preventing cellular 
transformation [56]. The level of p53 impacts its target 
gene expression and regulates cellular functions such 
as cell cycle and apoptosis [57]. ANXA2 influences 
p53 level by activating JNK/c-Jun signaling, thus 
suppress expression of p53 and its downstream genes, 
p21, GADD45 and BAX, which play roles in 

promoting apoptosis [58, 59]. An experiment analysis 
the ANXA2 level of cells infected by p53 gene, it turns 
out that reduced expression was detected in all cell 
lines infected by Adv-p53 (a reconstructed adenovirus 
encoding wild type p53 gene) [60]. In NSCLC cell 
lines, silencing ANXA2 led to up-regulation of p53 
expression and inhibits cell proliferation [61]. 
Knockdown of ANXA2 up-regulating the level of p53 
and its downstream gene [62]. In addition, it is also 
reported that knockdown of ANXA2 promoting the 
lung cancer cell apoptosis [63]. Accumulating data 
suggest that ANXA2 participates in cellular apoptosis 
via regulating the expression level of p53. 

Roles of Annexin A2 in cell invasion and 
metastasis 

Studies showed that down-regulating of ANXA2 
inhibiting tumor cell invasion and metastasis, and 
overexpression of ANXA2, promote the invasion and 
metastasis capability of tumor cells [52, 64-69]. 
Anti-ANXA2 antibody have been proved to serve as a 
suppressor in tumor invasion and metastases [59, 
70-75]. The ANXA2 heterotetramer specifically 
binding tPA on the surface of cell membrane and 
transform plasminogen (PLG) into plasmin that 
contribute to extracellular matrix (ECM) degradation 
and fibrin polymers lysis [76]. Plasmin initiates 
neoangiogenesis and support tumor cell getting 
nutrition and oxygen [77, 78]. Degradation of ECM 
and lysis of fibrin polymers provide space for 
migration. Membrane synthesis and cytoskeletal 

 

 
Figure 1. The roles of ANXA2 in cell development. ANXA2 represents essential promoter in cell proliferation, migration, invasion and metastasis, concurrently inhibit the 
apoptosis. tPA, tissue plasminogen activator; PGK, phosphoglycerate kinase; CIN, chromosome instability; PLG, plasminogen; ECM, extracellular matrix; EMT, epithelial- 
mesenchymal transition. 
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rearrangements, meanwhile, are key factors in process 
of migration. ANXA2 has the ability to bind 
polymerized and monomeric actin and maintain the 
plasticity of the dynamic membrane-associated actin 
cytoskeleton [79]. In addition, epithelial-mesenchymal 
transition (EMT) is an essential process of metastasis 
in cancers. It provides stationary epithelial cells a 
chance to lose junctions with each other and be 
capable to migrate and invade [80-82]. 
Downregulation of ANXA2 block cell proliferation 
and invasion accompanied by reduction of β-catenin 
and inhibition of EMT. While over expression of 
β-catenin reversed the negative effect on EMT [72]. 
Transforming growth factor β (TGF-β) is an EMT 
inductor. TGF-β upregulates ANXA2 and activates 
internalization of both E-cadherin and ANXA2. 
ANXA2 overexpression promotes cell invasiveness 
through Src/ANXA2/STAT3 pathway. Silencing 
ANXA2 prevented TGF-β-induced invasion. 
Inhibition of Src/ANXA2/STAT3 pathway reversed 
the EMT process [83]. Twist and Snail are recognized 
as key factors in EMT initiation. They decrease 
epithelial proteins (i.e., E-cadherin) and increase 
mesenchymal proteins (i.e., N-cadherin, fibronectin, 
β-catenin, and vimentin), providing a chance for 
cancer cells to escape from one organ to a different 
indirectly connected one [81]. Study on level of twist 
and snail in NPC cells proved this mechanism [84]. 
The level of twist and snail decreased in 
ANXA2-knockdown NPC cells, and those cells 
maintain the endothelial-like phenotype rather than a 
mesenchymal-like phenotype. 

Annexin A2 is an emerging biomarker for 
cancers 
Overexpression of Annexin A2 in cancer cell 

Aberrant expression of ANXA2 is observed in 
extensive range of cancer cells. In breast cancer cell, 
expression of ANXA2 is detected in the metastatic 
MDA-MB231 cell but not in the nonmetastatic MCF-7 
cell [85, 86]. Overexpression of ANXA2 detected both 
in herceptin resistant and Her-2 negative breast 
cancer cells [87]. In 105 cases of primary colorectal 
carcinoma tissues, ANXA2 is overexpressed in the 
cancer cell membrane of the carcinoma cells more 
than in tumor stroma fibrous tissue, the muscularis 
propria, the vessel wall, and the adjacent normal 
bowel wall. Similar results also showed in other 
colorectal cancers [88, 89]. A clinical data collected 150 
pairs of colorectal carcinoma tissue and the 
corresponding paracancerous tissue shows that 
ANXA2 is overexpressed in tumor cells and mainly 
located in the plasma membrane [90]. A study based 
on immunohistochemistry provide evidence of 

ANXA2 presence in cancer samples, ANXA2 
expression was increased in human tumor tissues. 
And ANXA2 levels were higher in stage IV and 
metastasis tumors compared with stage I-III. While 
E-cadherin, an epithelial marker, decreased in stage 
II-IV and increased in metastasis [83]. Moreover, the 
expression of ANXA2 is positively correlated with 
histological type, tumor size, depth of invasion, and 
pathological tumor-node-metastasis stage. Higher 
level of ANXA2 is detected in human colorectal 
carcinoma cell lines including SW480, SW620, 
HCT116 and HT29 than normal colonic epithelial cell 
line NCM460 [69]. In 153 primary gastric carcinoma 
patients, about 30% are immunopositive for ANXA2 
[90]. In another 436 gastric cancer cases, 133 gastric 
cancer tissue display upregulation of ANXA2. 
Additionally, ANXA2 expressed more strongly in the 
cell membrane than that in the cytoplasm of 
carcinoma cells [91]. In terms of hepatocellular 
carcinoma (HCC), both the expression level and 
tyrosine phosphorylation of ANXA2 are upregulated 
in HCC compared to normal or cirrhosis tissue [92]. 
Intense ANXA2 immunoreactivity is detected in lung 
adenocarcinoma, squamous cell carcinoma and 
non-small cell lung cancer (NSCLC) [59, 63, 93, 94]. 
Additionally, increased expression of ANXA2 
detected in acute promyelocytic leukemia (APL) 
[95-97], glioma [98], multiple myeloma (MM) [99], 
pancreatic cancer [100-102] and oral squamous cell 
carcinoma (OSCC) [103, 104]. To further confirm 
expression of Annexin A2 gene in cancers, we 
performed bioinformatics analysis to detect Annexin 
A2 gene level in different cancer cells (Figure 2). 
ANXA2 overexpressed in colon adenocarcinoma 
(COAD), rectum adenocarcinoma (READ), liver 
hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), stomach adenocarcinoma 
(STAD). The results are in accordance with above- 
mentioned studies. This analysis also indicates high 
expression of ANXA2 in cervical and endocervical 
cancers (CESC), lymphoid Neoplasm Diffuse Large 
B-cell Lymphoma (DLBC), glioblastoma multiforme 
(GBM), kidney renal papillary cell carcinoma 
(KIRP), brain lower grade glioma (LGG), ovarian 
serous cystadenocarcinoma (OV), testicular germ 
cell tumors (TGCT), thymoma (THYM). 

Prognostic and diagnostic significance of 
Annexin A2 in cancers 

Detection of ANXA2 level is of interest due to its 
prognostic and diagnostic significance in cancer 
treatment. It is pointed out that ANXA2 
overexpression in NSCLC [59], HCC [105], serous 
ovarian cancer [106], biopsies of epithelial ovarian 
cancer [107], urothelial carcinoma [108], breast cancer 
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[109, 110] and nasopharyngeal carcinoma (NPC) [84] 
was associated with poor prognosis. A meta-analysis 
performed on 2321 patients with various cancers to 
confirm that high expression of ANXA2 was 
correlated with both overall survival (OS) (hazard 
ratio [HR] 1.56; p < 0.001) and disease-free survival 
(DFS) (HR 1.47; p < 0.001) [111]. On the other hand, 
ANXA2 performs the function of a diagnostic factor 
for screening cancers. Increased ANXA2 serum level 
in peripheral blood has been evaluated in HCC [105, 
112-114], gastric cancer [115] and OSCC [116]. The 
data are described in Table 1. Besides excessive 
ANXA2 can be detected in sera of cancer patients, it is 
also reported that high ANXA2 expression is related 
to a high risk of metastases and recurrence [84, 117]. It 
suggests that ANXA2 may represent a latent target of 
diagnosis and an emerging biomarker of prognosis in 
cancer therapy. Investigators have screened out a 

panel of probes, Tz6/10, and demonstrated those 
probes play the roles of cancer diagnosis and therapy 
by labeling and/or imaging ANXA2 from different 
cancer cell lines [118]. 

Annexin A2 is a potential therapeutic 
target for cancers 

It is known that ANXA2 expression is 
upregulated in board spectrum of cancer cells. 
ANXA2 perform important roles in tumor 
progression, including cell survival, proliferation, 
migration, invasion and metastatic. In addition, 
abnormal expression of ANXA2 is link to multidrug 
resistance in cancer treatment [41, 66, 93, 119-121]. 
More attention has been focused on exploring 
therapies targeting ANXA2 in cancer treatment. 

 

 
Figure 2. The expression of the ANXA2 gene in GEPIA database. ANXA2 is aberrantly expressed in a board range of cancer cells. The results consistent with the 
aforementioned studies. 

Table 1. ANXA2 serum level in peripheral blood 

Cancer  Expression of ANXA2 References 
HCC ANXA2 in peripheral blood significantly increased in HCC patients (median, 69.6 ng/ml) compared to chronic liver disease 

patients (median, 16.8 ng/ml) and control group (median, 9.5 ng/ml) (p < 0.001) 
Nevine El-Abd et 
al 

HCC Significantly increased ANXA2 is detected in the sera of HCC (median, 24.75 ng/µl) compared with that in the healthy (median, 
16.69 ng/µl), benign tumor (median, 19.92 ng/µl), hepatitis (median, 6.48 ng/µl), and cirrhosis controls (median, 7.39 ng/µl) 

Yulin Sun et al 

HCC Higher expression (t=10.32, P<0.001) was found in the HCC group (24.82±8.18 ng/mL) than those in the benign liver disease 
group (12.80±7.21 ng/mL) 

Haijian Zhang et 
al 

Early stage 
HCC 

Serum ANXA2 level is 130 ng/ml compared with 15 ng/ml and 17 ng/ml in chronic liver disease patients and control group 
respectively 

Mohamed K 
Shaker et al 

Gastric 
cancer 

ANXA2 levels in serum were significantly different between gastric cancer patients and control group (median, 211.0 vs. 120.5 
μg/mL, respectively 

Faruk Tas et al 

OSCC The ANXA2 level was significantly higher in OSCC patients (median, 27.1 ± 9.81 ng/mL) than in patients with benign disease 
and controls (median,15.9 ng/mL and 15.0 ng/mL, respectively) 

Wei Zhang et al 

† HCC, hepatocellular carcinoma; ‡ OSCC, oral squamous cell carcinoma. 
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ANXA2 was identified a bleomycin binding site 
in the pulmonary fibrosis which result in resistance 
for bleomycin treatment [121]. In the research, it is 
further proved that Glu139 (E139) of ANXA2 
(ANXA2E139A) is required in bleomycin reduced 
pulmonary fibrosis. Mutating ANXA2E139A in lung 
epithelial cells blocks the binding of bleomycin and 
ANXA2 and activates the transcription factor EB 
(TFEB) which regulates autophagy. TFEB-mediated 
autophagy substantially accelerates autophagic flux, 
leading to inhibition of epithelial cells apoptosis and 
proliferation, and ameliorates pulmonary fibrosis in 
bleomycin-treated mice. This founding makes 
ANXA2 a specific bleomycin target. Inhibiting 
ANXA2 may promote efficacy of bleomycin for cancer 
treatment. 

Natural compounds are prospective directions in 
ANXA2-targeting therapy. Ginsenosides Rg5 and 
Rk1, having similar structure, have been found 
specifically binding to ANXA2. The interaction 
between those two ginsenosides and ANXA2 inhibit 
NF-κB activity and down-regulate inhibitor of 
apoptosis proteins, activating caspase and promoting 
apoptosis [122]. Investigators purified plant lectin 
from chickpea (cicer arietinum agglutinin) and 
testified the anti-tumor efficacy. It turns out that the 
plant lectin can inhibit tumor cell proliferation, 
migration and promote apoptosis by block the 
binding of ANXA2 and galectin-3, causing 
suppression of EGFR-mediated signaling [123]. 
Matrine, a plant alkaloid, purified from Chinese 
medical herb Sophora flavescens has been identified 
the anti-tumor activities by directly targeting ANXA2 
[124]. 

Investigators have designed and constructed a 
chemical modified DNA/RNA hybrid nanoparticle 
for ovarian cancer. This nanoparticle consists of a 
thiodeoxyribonucleic acid aptamer targeting ANXA2 
and a highly thermodynamically stable three way 
junction (3WJ) core motif derived from pRNA of 
phi29 bacteriophage. The other arm of pRNA-3WJ is 
extended with GC rich sequences for doxorubicin 
loading. This construction maintains the property of 
targeting ANXA2 and the cell toxicity of doxorubicin. 
In vivo experiment, nanoparticles remained integrated 
construction and are selectively enriched in tumors 
while little accumulation in healthy organs 6 h 
post-injection [125]. This result indicated that the 
novel cancer cell targeted drug delivery system may 
be a potential candidate to enhancing chemical drug 
efficiency in ovarian cancer treatment in an 
ANXA2-targeted manner. Another aptamer, ACE4G, 
is also demonstrated that it not only identifies ANXA2 
on the membrane but realizes the enriched 
internalization into MCF-7 cell line [126]. 

It is reported that a cationic lipid-guided carrier 
with ANXA2 shRNA was designed to retarded tumor 
growth by silencing ANXA2, which have been proved 
a stable nanoparticle sustained targeting and 
localization in lung tumors nanoparticles both in vitro 
and in vivo [127]. 

Recently attentions have been focused on roles of 
microRNAs (miRNAs) in tumor regulations. MiR-206 
has been testified directly targeting oncogenes KRAS 
and ANXA2 on tumor cell surface [128]. Further study 
revealed that ANXA2 N-terminus, especially Tyr23, 
play crucial roles in maintaining the high malignancy 
of colonic adenocarcinoma and miR-206 act as a 
tumor suppressor in colonic adenocarcinoma [129]. 
MiR-101 is also discovered being an ANXA2-targeted 
molecule and have capability of down-regulating 
expression of ANXA2 in drug-resistant gastric cancer 
[120]. 

Kim VM and his colleagues developed a Listeria- 
based, ANXA2-targeting cancer immunotherapy (Lm- 
ANXA2) and testing its efficacy for PDAC within two 
murine models. It turns out that PDAC model mouse 
treated with Lm-ANXA2 showed high survival rate, 
supporting the assumption that Lm-ANXA2 can serve 
as a targeted agent for PDAC treatment [130]. 

An anti-ANXA2 monoclonal antibody (mAb) 
[67] generated in lab showed significant suppression 
of cell growth of breast tumor in vivo [131]. Simeon 
Cua and his colleagues generate a mAb, IgG1 2448, 
targeting a unique glycan epitope on ANXA2. It 
demonstrated good anti-tumor efficacy in vivo and 
indicated that 2448 can be a potential candidate of 
targeted therapy for ovarian and breast cancer [132, 
133]. 

A promising therapeutic strategy 
targeting Annexin A2 

Therapeutic strategy targeting ANXA2 have 
showed significantly antitumor effect both in vitro and 
in vivo in preclinical study, barely any of those reach 
clinical trials, especially the anti-ANXA2. The 
probable reason is that surface epitopes on ANXA2 
are challenging to recapitulate for generation 
purposes [132]. In this review, we propose a 
prospective candidate for ANXA2-targeted 
therapeutic strategies, a targeting peptide selected via 
phage display technology showing highly selectivity 
and affinity to ANXA2. 

There is a new peptide motif have been reported 
before [134], investigators discussed the LGRFYAASG 
peptide which is screened from internalizing phage 
peptide library in sarcoma cells. The peptide fused 
with the cell-penetrating peptide, pen motif, showed 
specific affinity and inhibitor effect in tumor cell. 
Notably, we get an ANXA2-targetting peptide motif – 
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CBP12 (colorectal cancer binding peptide) in 
laboratory as well. We screened the phage display 
peptide libraries in human colorectal adenocarcinoma 
cell SW620 and human normal intestinal epithelial cell 
line HIEC (SW620 was used as the target cell and 
HIEC as the negative adsorption cell), collected the 
eluate and amplified by E. coli ER2738E infection. The 
CBP12 motif was specifically enriched after four 
rounds of selections. Consistently, we verified that 
phage display peptide CBP12 have specifically 
affinity to colorectal cancer cells. CBP12 can be a new 
targeting peptide and provide new directions in the 
early diagnosis and targeted therapies. Related 
articles will be published later. 

Large number of literatures demonstrated the 
modification method of targeting peptide which 
inspire us the methods to improve the therapeutic 
effect of targeting peptide in tumor treatment. One 
way is to combine targeting peptide with classical 
killer peptide, KLA (KLAKLAKKLAKLAK), this kind 
of polypeptide showed favorable tumor cell toxicity 
and reduction of tumor volume in vivo with no 
apparent toxicities [135-137]. KLA is a proptosis 
peptide, contributing to cell death via causing 
mitochondrial swelling and permeabilization and the 
release of cytochrome c, which disrupt mitochondrial 
membrane [138-142]. While KLA barely permeate the 
eukaryotic plasma membrane separately because of 
its characteristic of cationic amphipathic [143]. 
Accordingly, on the one hand, KLA requires the 
assistance of targeting peptides to transmembrane 
and play a role in programmed cell death. On the 
other hand, KLA shows no toxicity for normal cell as 
its low penetration in mammalian cells [144]. 
Alternatively, the concept of antibody-drug conjugate 
(ADC) proposes different direction in cytotoxic 
payload link to the specific antibody [145-148]. We 
can link the targeting peptide with the cytotoxic 
compounds which have been announced anti-tumor 
efficacy in clinical. Those compounds including 
auristatins, derivatives of dolastatin 10 [149]; 
maytansine, a potent microtubule inhibitor [150]; 
calicheamicin, a DNA damaging agent causing DNA 
double strand breaks [151]; duocarmycin and 
indolinobenzodiazepine pseudodimers, DNA 
damaging agents alkylating DNA [152, 153]; and PBD 
dimers, a DNA damaging agents for cross linking 
DNA [154]. 

Conclusions 
It is known that ANXA2 overexpress in the 

surface of cancer cells and have been announced a 
biomarker of diagnosis and prognosis of cancers. 
ANXA2 serve as a potent target of therapeutic 
intervention and multiple therapeutic strategies 

targeting ANXA2 have been testified and showed 
favorable anti-tumor efficacy both in vitro and vivo. 
Here, we propose a promising targeting peptide with 
high affinity to ANXA2 selected from phage display 
technology. Based on the conception of polypeptide 
which comprised of targeting peptide and 
pro-apoptotic peptide and ADC which comprised of 
specific targeting antibody and toxicity compound, 
we pose a hypothesis that link the targeting peptide to 
a pro-apoptotic peptide or a mutual toxicity 
compound. The targeting peptide bind to ANXA2 on 
tumor cells and trigger the endocytosis, endosomes 
take the composition into cytoplasm and release the 
cytotoxic agent from the composition and exert 
cytotoxicity such as interrupting mitochondria, 
blocking cell division, damaging DNA. 
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