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Abstract 

Objective: M6A RNA modification is closely associated with tumor genesis and progression of several 
malignancies; however, its role in prostate cancer (PCa) remains poorly understood.  
Materials and methods: Expression data and corresponding clinicopathologic information were available 
freely from the Cancer Genome Atlas (TCGA) dataset. We compared the expression level of m6A RNA 
methylation regulators in PCa with different clinicopathologic characteristics and identified subgroups based on 
their expressions with consensus clustering. To build the signature and assess its prognostic value, several 
methods were used for the analysis, including univariate Cox regression analysis, Least Absolute Shrinkage and 
Selection Operator (LASSO) regression analysis, time-dependent receiver operating curve (ROC), and 
Kaplan-Meier (KM) survival analysis.  
Results: Most of the m6A RNA methylation regulators were differentially expressed not only between normal 
and tumor tissue but also among PCa stratified by different clinicopathologic characteristics. There were 
obvious differences between two clusters, cluster 1 and 2, regarding clinicopathologic features, and the 
recurrence-free survival (RFS) in cluster 2 was significantly worse than cluster 1. We developed an eleven-gene 
signature which exhibited a high prognostic value and was able to independently predict RFS. Moreover, a 
nomogram which integrated clinical information and the gene signature was capable of distinguishing high-risk 
recurrent patients.  
Conclusion: These methylation regulators are correlated to clinicopathologic characteristics in PCa and a 
prognostic model using m6A methylation-related genes is constructed and of high predictive value for 
recurrence after RP. 
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Introduction 
As one of the most prevalent malignant tumors, 

prostate cancer (PCa) is the second most common 
cause of cancer-related death among males in the 
Western countries [1-3]. According to the American 
Cancer Society statistic 2020, it is estimated that 
approximately 191,930 newly PCa patients are 
diagnosed and there are 33,000 deaths in the USA in 
2020, accounting for 21% for incidence and 10% for 
mortality of all tumor cases [3]. Early localized PCa 
carries a 5-year survival rate of nearly 100%, while the 

rate drops to about 30% in advanced PCa [4]. As is 
known, PCa patients are treated with surgery, 
chemotherapy, hormone therapy, or radiation, and 
currently, radical prostatectomy (RP) remains the 
primary curative treatment [5-7]. Nevertheless, 
approximately 20% of patients following RP will 
suffer from recurrence within 10 years and may 
eventually develop to castration-resistant prostate 
cancer (CRPC) [8, 9]. If patients progress into CRPC, 
the treatment will be limited and the survival time 
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will decrease, though some novel drugs such as 
enzalutamide and abiraterone are clinically taken [10, 
11]. Hence, it is significant to identify PCa patients at 
high risk of recurrence following RP for the optimal 
management and surveillance. Nowadays, the 
prediction of recurrence is mainly based on several 
clinicopathologic factors, such as tumor node 
metastasis (TNM) stage, prostate specific antigen 
(PSA) level, Gleason score (GS) and surgical margin 
[12-14]. However, on account of its heterogeneity, 
patients with the similar clinical parameters might 
develop into opposite results. Therefore, more 
effective, accurate and improved prognostic markers 
are urgently required to classify PCa patients into 
different risk categories. 

In eukaryotic mRNA, N6-methyladenosine 
(m6A) is the most abundant and common post-
transcriptional modification [15, 16]. Accumulating 
evidence demonstrates that m6A RNA methylation 
can regulate a variety of biological processes, like 
mRNA splicing, stability, translation and intracellular 
distribution, and the dysregulation of m6A may result 
in cell death, decreased cell proliferation and 
developmental defects [17-19]. The biological 
processes of m6A RNA modification are invertible 
and variable, which are under the control of 
methyltransferases, demethylases, and binding 
proteins [20]. Methyltransferases (writers), including 
RBM15, ZC3H13, KIAA1429, WTAP, METTL3 and 
METTL14, can mediate the cellular m6A status, 
upregulate the m6A level, and form the multi-subunit 
methyltransferase enzyme complex[21]. Binding 
proteins (readers), containing HNRNPC, YTHDF2, 
YTHDF1, YTHDC2 and YTHDC1, can identify the 
modified site and transform the information of m6A 
RNA methylation into functional signals [22]. 
ALKBH5 and FTO are categorized as demethylases 
(erasers), which can target RNA specifically [23]. 
These findings can help to unravel the potential 
mechanism and the role of m6A RNA methylation in 
the regulation of gene expression at the 
post-transcriptional level. Increasing studies illustrate 
that m6A RNA modifications are tightly linked to the 
pathogenesis of several diseases, such as obesity, 
neuronal disorders, infertility and immunological 
diseases [24]. Moreover, m6A RNA methylation 
participates in cell fate and cancer self-renewal [25]. 
Although many researches have suggested that m6A 
RNA methylation were associated with proliferation, 
differentiation, invasion and metastasis in several 
types of malignancies, like pancreatic cancer, acute 
myeloid leukemia and hepatocellular carcinoma 
[26-28], the roles of these regulators in PCa regarding 
recurrence remain less understood and need to be 
completely explored. 

In our study, we comprehensively analyzed the 
relationship between the expression of these 
regulators and clinicopathologic factors and their 
prognostic roles in PCa. 

Materials and Methods 
Data sources  

In our study, 499 localized PCa patients 
following RP from two datasets were included. One 
was from the Cancer Genome Atlas (TCGA), and 
another was from the Gene Expression Omnibus 
(GEO). The RNA-seq transcriptome data and 
corresponding clinicopathologic information of 393 
patients were downloaded from the TCGA dataset 
(https://www.ncbi.nlm.nih.gov/geo/). The RNA-seq 
data along with clinical information of 106 patients 
were available in GSE54460. Inclusion criteria of 
patients enrolled in this study were as follows: (I) the 
clinicopathological parameters, such as age, Gleason 
score (GS), clinical stage T (cT), pathological T (pT) 
stage or pathological N (pN) stage were included; (II) 
the outcomes (overall survival (OS) or biochemical 
recurrence (BCR)) of patients were contained; (III) the 
transcriptome profiling data (RNA-seq data) of 
prostate cancer samples were included; (Ⅳ) at least 50 
samples in each dataset. The exclusion criteria were as 
follows: (I) patients receiving chemotherapy or 
radiotherapy before RP; (II) insufficient sample 
volumes. We divided the patients in TCGA dataset 
into the training set and internal validation set with 
the ratio of 7:3, and GSE54460 was taken as the 
external validation dataset, of which detailed 
clinicopathological information was displayed in 
Table 1.  

Bioinformatic analysis 
We firstly selected expression data of thirteen 

m6A RNA methylation regulators in the TCGA 
database, then systematically compared the 
expression level of these m6A RNA methylation 
regulators in PCa with different clinicopathologic 
characteristics. To explore the role of m6A RNA 
methylation regulators in PCa, we clustered patients 
into different groups with “ConsensusClusterPlus” 
(50 iterations, 80% item resampling, and Pearson 
correlation, http://www.bioconductor.org/). 
Principal component analysis (PCA) with the R 
package for R3.6.3 was used to exhibit the gene 
expression patterns in different PCa groups. Survival 
curves were generated to analyze the differences on 
OS and RFS between different groups with 
Kaplan-Meier method using the log-rank test. 
Moreover, the differences in clinicopathologic traits 
between groups were compared. 
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Table 1. Clinicopathological features of patients involved in the 
training set and validation set. 

  TCGA dataset GSE54460 
  training 

set 
internal 
validation set 

external validation 
set 

Total cases  275 118 106 
Age  61(41-78) 61(44-77) na 
GS ≤7 163 74 91 

>7 112 44 15 
psa <10 na na 72 

≥10 na na 31 
unknown na na 3 

cT T1 90 42 na 
T2 103 39 na 
T3 32 15 na 
unknown 50 22 na 

pT T2 103 49 na 
T3 160 68 na 
T4 8 1 na 
unknown 4 0 na 

pN N0 193 83 na 
N1 46 18 na 
unknown 36 17 na 

GS, Gleason Score; cT, clinical T stage; pT, pathological T stage; pN, pathological N 
stage; na, not available. 

 
 
Considering the prognostic differences in RFS 

between groups, the Limma package (http://www. 
bioconductor.org/packages/release/bioc/html/lim
ma.html) in R was used to identify the differentially 
expressed (DE) genes with the cut-off value of |log2 
fold change (FC)|>1 and false discovery rate (FDR) 
<0.01. In the training set, univariate Cox regression 
analysis was performed to access the prognostic value 
of these DE genes. Next, the genes closely related to 
survival were selected to develop a potential 
signature with the least absolute shrinkage and 
selection operator (LASSO) Cox regression algorithm. 
According to the signature, each patient from the 
training set and validation set got their own risk score. 
Taking the median in the training set as the cut-off 
value, patients in both sets were classified into high- 
and low-risk group. The Kaplan-Meier survival curve 
and time-dependent receiver operating characteristic 
(ROC) curve were drawn to evaluate the predictive 
value of the signature. We also explored the 
relationship between the signature and 
clinicopathologic characters. 

The nomogram model, which integrated the 
signature and clinicopathologic features, was built to 
predict survival in PCa patients as a quantitative tool. 
The calibration plot and time-dependent ROC 
analysis were used to investigate the calibration and 
the discrimination of the model. 

Statistics 
The t-test or one-way ANOVA was used for 

continuous variables, and the chi-square test or Fisher 
exact for categorical variables. The Cox proportional 

hazards regression model was used to access the 
prognostic value of each parameter. All statistics were 
performed in IBM SPSS Statistics 22.0 (SPSS lnc.) and 
R software 3.6.3 (R Foundation for Statistical 
Computing, Vienna, Austria). Two-tailed P value < 
0.05 was considered as statistically significant for all 
statistical analyses. 

Results 
Expression level of m6A RNA methylation 
regulators in PCa patients 

Except for KIAA1429, YTHDC1 and WTAP, the 
remaining 10 m6A methylation regulators were 
differentially expressed between normal and tumor 
tissue (Figure 1). In the “readers” section, YTHDC2 
(P<0.01), YTHDF1 (P<0.001), YTHDF2 (P<0.001) and 
HNRNPC (P<0.001) were all highly expressed in PCa. 
As for “writers”, ZC3H13 (P<0.001) and METTL14 
(P<0.05) decreased significantly in PCa, while the 
opposed results appeared in RBM15 (P<0.001) and 
METTL3 (P<0.001). In terms of “erasers”, both 
ALKBH5 (P<0.05) and FTO (P<0.001) had a lower 
expression in PCa. Moreover, as GS increased, higher 
expression of YTHDF1 (P<0.001), KIAA1429 
(P<0.001), RBM15 (P<0.05), YTHDC2 (P<0.01), 
YTHDC1 (P<0.001), HNRNPC (P<0.001) and METTL3 
(P<0.001) appeared. Compared with pathological 
T1/2, there was an obvious increase in the expression 
of YTHDF1 (P<0.001), YTHDF2 (P<0.05), KIAA1429 
(P<0.001), YTHDC1 (P<0.01), HNRNPC (P<0.001) in 
pathological T3/4. Similarly, the expression of 
FTHDF1 (P<0.001), YTHDF2 (P<0.01), KIAA1429 
(P<0.01), RBM15 (P<0.01), YTHDC1 (P<0.05) and 
HNRNPC (P<0.01) in pathological N1 was 
significantly higher than that in pathological N0. 
However, we also noticed that lower WTAP was 
associated with higher GS (P<0.001), pT (P<0.01) and 
pN (P<0.01). Additionally, consistent results were 
observed in GSE54460 dataset for validation (Figure 
S1A,B). 

Interaction and correlation among m6A RNA 
methylation regulators 

In the interaction network, WTAP was at the 
center and interacted with other regulators mainly 
based on currently known and predicted interactions 
(Figure 2A). Especially, its interaction with some 
regulators, such as RBM15, YTHDC2, METTL14, 
ZC3H13, HNRNPC, YTHDC1, METTL3, and 
KIAA1429, had been supported by experimental 
evidence. In PCa, WTAP was positively correlated 
with some “writers” including METTL3 and 
METTL14 (Figure 2B). As for “readers”, YTHDF1, 
YTHDF2, HNRNPC, YTHDC1, and YTHDC2 were 
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closely positively correlated with each other. In the 
“erasers”, a significant correlation was observed 
between FTO and ALKBH5 as well. In addition, there 
were obvious correlations among “writers”, 
“readers”, and “erasers”.  

Consensus clustering for category 
identification 

Based on the expression similarity of m6A RNA 
methylation regulators, we chose k = 2 as a suitable 
value with clustering stability accumulating from k =2 
to 9 (Figure 3A-C). The result of PCA showed that a 
relatively evident distinction existed between two 
subgroups, cluster 1 and cluster 2 (Figure 3D). 

Moreover, patients in cluster 1 had a better RFS 
(P<0.05) than those in cluster 2, while no differences 
on OS were observed (P>0.05) (Figure 3E,F). 
Compared with cluster 1, patients in cluster 2 had a 
significantly higher pT (P<0.01) and pN (P<0.05) 
(Figure 3G). However, there were no differences on 
clinical T stage, age and GS between two clusters. In 
addition, stratified GSEA revealed that some 
pathways, such as PPAR signaling pathway and 
arachidonic acid metabolism, were enriched in cluster 
1, while some different pathways, like cell cycle, RNA 
degradation, spliceosome, and basal transcription 
factors, were associated with cluster 2 (Figure 4A,B). 

 

 
Figure 1. Expression of m6A RNA methylation regulators in PCa with different clinicopathologic characters. A, between normal and tumor tissue; B, between GS≤7 and GS>7; 
C, between pT1-2 and pT3-4; D, between pN0 and pN1. GS, Gleason score; pT, pathologic tumor; pN, pathologic lymph node. 
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Figure 2. Interaction among m6A RNA methylation regulators. A, interaction network; B, correlation analysis. 

 

Construction of a prognostic signature for RFS 
based on DE genes between two clusters 

A total of 363 DE genes were identified, of which 
235 genes were up-regulated and the remaining 128 
genes were down-regulated in cluster 1 (Figure 5A,B). 
We found that 109 of 363 DE genes were significantly 
associated with RFS, including 85 protective genes 
with HR<1 and 24 risk genes with HR>1 (Figure 6A). 
Then, 109 prognostic genes were used to develop a 
signature based on the LASSO Cox regression 
algorithm in the training set. Eventually, eleven genes 
were enrolled to construct the risk signature 
according to the minimum criteria. Based on the 
coefficients obtained from the LASSO algorithm, the 
following formula was used to calculate the risk score: 
[(0.0312)*CELSR3 expression] + [(0.0571)*CCDC144NL 
expression] + [(0.0356)*SLC9A3 expression] + 
[(0.0026)*KLK14 expression] - [(0.0031)*PCOTH 
expression] - [(0.0034)*RPE65 expression] - 
[(0.0533)*SLC7A4 expression] + [(0.6825)*TEX19 
expression] + [(0.0178)*MEX3A expression] + 
[(0.1853)*CAPN12 expression] - [(0.0688)*RBFOX3 
expression]. Patients in low-risk group had a 
significantly better RFS than those in high-risk group 
in both sets (P<0.001, P<0.001, respectively) (Figure 
6B), which was validated in GSE54460 dataset 
(P=0.011) (Figure S1C). Moreover, the powerful 
predictive value of the risk score was noticed in both 
sets (Figure 6C). 

Association of gene signature with 
clinicopathological characters and m6A 
regulators in PCa 

Compared with patients in low-risk group, 
high-risk patients had a significantly higher GS 
(P<0.001), pT (P<0.001) and pN (P<0.001) (Figure 7A). 

There were no obvious differences on clinical T stage 
and age between low- and high-risk groups. We 
noticed that risk score significantly rose when GS 
(P<0.001), pT (P<0.001) and pN (P<0.001) increased 
(Figure 7B). Similarly, risk score increased with the 
elevation of GS (P=0.001) and psa (P=0.001) (Figure 
S1D,E). In the univariate Cox analysis, age (P<0.05), 
GS (P<0.001), pN (P<0.05), pT (P<0.001), and riskScore 
(P<0.001) were closely associated with RFS (Figure 
7C). Multivariate Cox analysis presented that age 
(P<0.05), GS (P<0.001), pT (P<0.05), and riskScore 
(P<0.01) remained significantly linked with RFS, 
which indicating that gene signature could serve as an 
independent prognostic element for RFS in PCa. It 
also demonstrated that most of genes in the signature 
were differentially expressed in groups with different 
GS, cT, pT and pN (Figure 8). Moreover, part of the 
genes in the signature, except CCDC144NL and 
TEX19, were significantly correlated with some m6A 
regulators (Table 2).  

Combination with clinicopathological variables 
to build a predictive nomogram 

We drew a nomogram plot to quantify the 
possible risk of RFS in PCa by integrating the gene 
signature with clinicopathological information (age, 
GS, cT, pN, pT) (Figure 9A). This allowed us to 
calculate the estimated possibility of recurrence in 
PCa patients at 1, 3 and 5 years by plotting a vertical 
line between the total points and each prognosis axis. 
The AUC value of 1-year, 3-year and 5-year 
recurrence of nomogram was 0.843, 0.841 and 0.812, 
respectively (Figure 9B). Calibration curves of the 
nomogram showed no deviations from the reference 
line and no recalibration required (Figure 9C). 
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Table 2. Correlation of the genes in the signature with m6A methylation regulators in PCa. 

 KIK14 CCDC144NL TEX19 SLC9A3 CAPN12 MEX3A CELSR3 PCOTH SLC7A4 RBFOX3 RPE65 
FTO -0.09 0.02 -0.14 0.09 -0.02 0.07 0.02 -0.2 -0.04 0.03 0.2 
ALKBH5 -0.05 0.09 0.01 0.01 0.1 0.01 -0.03 -0.08 -0.05 0.11 0.15 
METTL3 0.08 0.11 0.02 0.14 0.22 0.14 0.15 0.09 -0.11 -0.35 -0.21 
METTL14 -0.05 0.09 -0.1 0.11 -0.01 0.09 -0.03 -0.15 0.01 -0.15 0.11 
WTAP -0.11 -0.04 -0.06 -0.09 -0.11 -0.1 -0.15 0.17 0.24 -0.1 0.05 
ZC3H13 0.01 -0.04 -0.07 0.08 0.01 0.16 0.01 -0.17 0.01 -0.04 0.19 
KIAA1429 0.26 0.03 -0.01 0.22 0.08 0.39 0.12 -0.2 -0.19 -0.24 -0.09 
RBM15 0.02 0.1 0.05 0.08 0.08 0.22 0.13 -0.09 -0.17 -0.29 -0.19 
YTHDF1 -0.02 0.1 0.09 0.1 0.2 0.19 0.21 -0.2 -0.11 -0.36 -0.17 
YTHDF2 0.15 0.1 0.03 0.14 0.16 0.45 0.19 -0.2 -0.19 -0.37 -0.18 
YTHDC1 0.07 0.02 -0.04 0.2 0.23 0.28 0.09 -0.22 -0.14 -0.22 0.01 
YTHDC2 0.03 0.09 0.01 0.2 0.08 0.25 0.18 -0.17 -0.2 -0.32 -0.06 
HNRNPC 0.24 0.11 0.11 0.22 0.26 0.53 0.32 -0.27 -0.22 -0.38 -0.26 
Bold numbers mean P <0.05. 

 

 
Figure 3. Consensus clustering for category identification. A, consensus clustering CDF for k=2 to 9; B, relative change in area under CDF curve for k=2 to 9; C, consensus 
clustering matrix for k=2; D, principal component analysis of the total RNA expression profile; E, KM curve of OS between two clusters; F, KM curve of RFS between two 
clusters; G, heatmaps and clinicopathologic characters of two clusters. CDF, cumulative distribution function; KM, Kaplan-Meier; OS, overall survival; RFS, recurrence-free 
survival. *P<0.05, **P<0.01. 
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Figure 4. Stratified GSEA analysis. A, KEGG pathways enriched in cluster 1; B, KEGG pathways enriched in cluster 2. GSEA, gene set enrichment analysis. 

 
Figure 5. Differential expression analysis between two clusters. A, heatmap; B, volcano map. 
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Figure 6. Construction of a prognostic signature for RFS based on DE genes between two clusters. A, the process of building the signature; B, KM curves of RFS for patients 
in the training (left) and validation (right) set; C, ROC curves for 1, 3, 5-year survival prediction by the risk signature. RFS, recurrence-free survival; DE, differentially expressed; 
KM, Kaplan-Meier. 

 
Figure 7. Relationship between the risk signature and clinicopathologic characters. A, heatmap showing clinicopathologic characters between low- and high-risk group; B, 
distribution of risk scores in PCa patients stratified by GS, pT and pN; C, univariate and multivariate Cox regression analysis for RFS in PCa patients. GS, Gleason score; pT, 
pathologic tumor; pN, pathologic lymph node; cT, clinical tumor; RFS, recurrence-free survival. ***P<0.001. 

 
Figure 8. Expression of genes in the signature at different clinicopathologic characters. A, GS; B, cT; C, pT; D, pN. GS, Gleason score; pT, pathologic tumor; pN, pathologic 
lymph node; cT, clinical tumor; ns, not significant. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 9. Combination with clinical variables to build a predictive nomogram. A, Nomogram plot to predict 1-, 3- and 5-year survival; B, Calibration plot of the nomogram to 
predict 1-, 3- and 5-year survival; C, ROC curves of the nomogram to predict 1-, 3- and 5-year survival. GS, Gleason score; pT, pathologic tumor; pN, pathologic lymph node; 
cT, clinical tumor. 

 

Discussion 
PCa is one of the most prevalent tumors among 

elderly males [3]. More than half of patients will 
choose RP as the primary treatment [29-31]. After the 
surgery, a significant proportion of PCa patients may 
experience recurrence, including biochemical 
recurrence, locoregional recurrence, distant 

metastasis, and new primary tumor. However, some 
patients with indolent PCa should be treated without 
immediate therapies, which may have few effects on 
the living quality. Therefore, to propose the early 
intervention to recurrent PCa and to avoid 
unnecessary overtreatment of indolent PCa, it is 
important to identify a more precise predictive risk 
stratification tool to classify patients into different risk 
categories after RP. 
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Studies have demonstrated that traditional 
epigenetics have different kinds of functions in PCa 
carcinogenesis, metastasis and outcomes [32, 33]. In 
our study, we systematically analyzed another area of 
epigenetics, namely m6A RNA methylation, and their 
prognostic value for recurrence in localized PCa 
patients for the first time. Firstly, we compared the 
expression value of m6A RNA methylation regulators 
in PCa and control tissues. Then, we comprehensively 
explored the association between these regulators and 
clinicopathological variables in PCa. Among these 
regulators, Cai, et al. pointed out that METTL3, the 
m6A methyltransferase, was overexpressed in PCa 
cell lines, and via the hedgehog pathway, METTL3 
contributed to the growth and motility of PCa cells 
[34]. Similarly, in our study, we found that compared 
to normal tissue, METTL3 expressed higher in PCa. In 
addition, as GS increased, higher expression of 
METTL3 would appear, which indicated that 
METTL3, serving as one of the ‘writers’, might made a 
great contribution to the growth and progression of 
PCa. WTAP, another ‘writer’, was the center and 
interacted with other regulators. Recently, WTAP 
displays oncogenic activities in different tumors, such 
as acute myeloid leukemia and serous ovarian cancer 
[35, 36]. Melissa, et al. illustrates that WTAP 
upregulation has an oncogenic effect only when a 
functional METTL3 exists [37]. The regulation of 
WTAP might be controlled by METTL3 in direct and 
indirect manners, such as mRNA translation and 
stability. Meanwhile, in our analysis, WTAP was 
positively connected with METTL3 according to the 
interaction network. The two ‘erasers’, FTO and 
ALKBH5, had a low expression in PCa. Liu, et al. 
claims that FTO affects cellular energy metabolism in 
breast cancer, such as lactic acid, adenosine 
triphosphate, and hexokinase activity via the 
PI3K/AKT signaling [38]. As reported by Pu, et al, 
ALKBH5 expression is obviously elevated in 
endometrial cancer, and through erasing IGF1R 
mA-modifications, ALKBH5 positively regulates 
proliferation and invasion of cancer [39]. With respect 
to ‘readers’, both YTHDF1 and YTHDC1 were linked 
to higher GS, pathological T and pathological N. 
YTHDF1 is overexpressed in the colorectal cancer 
(CRC), and inhibition of Wnt/β-catenin pathway can 
be achieved by YTHDF1 silencing in CRC cells[40]. A 
case-control study from 7 centers about Chinese 
children shows that polymorphisms of the YTHDC1 
gene have been associated with increased risk of 
hepatoblastoma[41]. Taken together, similar to other 
tumors, these regulators may participate in 
pathological processes in PCa, which uncovers the 
mechanism of regulators in the development of 
tumors from a different perspective. 

By utilizing the consensus clustering, localized 
PCa patients were divided into two subgroups 
(cluster 1 and 2) based on the expression of 13 
regulators. Marked differences in the RFS and several 
clinicopathological parameters, such as pT and pN, 
were identified between two subgroups, which 
suggested that these regulators expression were 
dramatically linked to the features of PCa. 
Additionally, stratified GSEA also illustrated that two 
subgroups were enriched in different pathways. 
Further, a total of 363 DE genes were identified 
between two clusters, and 11 eligible DE genes 
(CELSR3, CCDC144NL, SLC9A3, KLK14, PCOTH, 
RPE65, SLC7A4, TEX19, MEX3A, CAPN12 and 
RBFOX3) were eventually selected to establish the 
gene signature that could stratify PCa patients into 
different risk categories. The patients in the low-risk 
category had a significantly better RFS than those at 
high risk, in both training and validation set. By Cox 
regression analysis the risk score emerged as an 
independent prognostic element for recurrence in 
localized PCa patients. Next, it showed that patients 
at high risk exhibited higher GS, pT, and pN, and with 
the increase of GS, pT and pN, the risk score had a 
tendency to rise. Besides, we also found that the 
candidate DE genes, except CCDC144NL and TEX19, 
had a strong association with several m6A RNA 
modification regulators. Among these candidate DE 
genes, some studies indicated that they played 
primary roles in tumorigenesis and development, 
even in PCa. For example, PCOTH is overexpressed in 
PCa cells, and through the TAF-Ibeta pathway, it 
takes part in the growth and survival of PCa cells, 
which might be a potential therapeutic target for PCa 
treatment [42]. Regarding KLK14, it is reported that 
KLK14 demonstrates key modulatory roles in 
advanced PCa [43]. Highly expressed KLK14 is an 
indicator for poor prognosis, and its gene 
polymorphisms are remarkably linked to PCa 
aggressiveness [44]. TEX19, known as one of the 
cancer/testis (CT) genes, might drive cell proliferation 
in a variety of cancers through the oncogenic 
transcript regulation mechanism. Planells-Palop et al. 
displays that TEX19 expression might become a new 
tumor biomarker and have the broad-spectrum 
potential to provide the cancer-specific therapeutic 
target [45]. Luo discovers that RBFOX3 promotes cell 
division and invasion, and improves migratory ability 
in gastric cancer [46]. In addition to the 
above-mentioned genes, other genes play some roles 
in the progression and prognosis of tumors, such as 
CELSR3 in hepatocellular carcinoma [47], 
CCDC144NL in gastric cancer [48], RPE65 in 
nonmelanocytic skin tumor [49], SLC27A4 in lung 
cancer [50], MEX3A in bladder urothelial carcinoma 
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[51], CAPN12 in laryngeal cancer [52] and SLC4A4 in 
breast cancer [53]. In a word, the functional roles and 
underlying mechanisms of 11 eligible DE genes in the 
signature, and their association with m6A 
methylation regulators in PCa are still need further 
researches. 

It is worth noting that our study suffers from 
some limitations. One limitation is the retrospective 
design and relatively small sample size. Another 
limitation is lack of experimental verification. Despite 
aforementioned limitations, the role of m6A RNA 
regulators and the prognostic value of our signature 
for RFS in PCa cannot be denied. 

 In conclusion, we systematically analyzed the 
expression of m6A RNA methylation regulators in 
PCa (Figure 10) and constructed a prognostic model 
with high predictive value based on m6A 
methylation-related genes for recurrence after RP, 
which might contribute to a better understanding of 
the role of m6A RNA methylation in PCa. 
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Figure 10. Summary for the expression levels and potential roles of m6A RNA methylation regulators in PCa. The red and green represent the risk and protective gene, 
respectively. 
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