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Abstract 

Background: Gastric cancer (GC) is a heterogeneous disease, and alternative splicing (AS) is a powerful 
universal transcriptional regulatory mechanism that contributes to the occurrence and development of cancer. 
However, the systematic analysis of AS events in GC is lacking; therefore, further studies are needed. 
Methods: Genome-wide analysis of AS events was performed using RNA-Seq data to evaluate the difference 
between GC and adjacent tissues at the AS level. Prognostic signatures based on differentially expressed 
alternative splicing (DEAS) events and a correlation network between DEAS and genes were built. 
Results: We identified 48,141 AS events, of which 2325 showed differential expression patterns. The parental 
genes before DEAS events play an essential role in regulating GC-related processes such as ribosome (FDR < 
0.0001) and thermogenesis (FDR = 0.0002). There were 76 survival-associated DEAS cases. Stratifying patients 
according to the percent spliced in index value of six types of splicing patterns formed significant Kaplan-Meier 
curves in the overall survival analysis. A prognostic feature based on DEAS performed well for stratification in 
patients with GC. 
Conclusion: The present study will enrich our understanding regarding the distinction of GC and provide a 
generous amount of biomarkers and potential targets for the treatment of GC. 
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Introduction 
According to the 2018 global cancer statistics, 

gastric cancer (GC) is one of the world’s deadliest 
cancers with over 1,000,000 new cases and 783,000 
estimated deaths in 2018, ranking third-highest in 
mortality rate [1]. In China, GC is the third most 
common malignant tumor and second-ranking in 
mortality rate, and the incidence of GC increases 
annually [2]. Although progress has been made in 
diagnoses and multidisciplinary treatments, the 
overall five-year survival rate of patients diagnosed 
with GC ranges from 25% to 27%, and the survival 
rate of patients with advanced disease is even lower 
[3]. Over the past few decades, research has shown 
that the occurrence, recurrence, and metastasis of GC 

is the result of complex interactions between the host 
and environmental factors, including phenotypic 
complexity, multiple factors, and multistep processes 
affected by genetic heterogeneity and ethnic diversity 
[4]. Therefore, understanding the relationship 
between the biological mechanism of GC regulation 
and the corresponding clinicopathological features is 
an important step for targeted therapy and 
improvement of the quality of life of GC patients. 

With the rapid development of high-throughput 
technology, a new era has opened for cancer genomics 
studies. Alternative splicing (AS) is a vital process 
involved in RNA transcription. In AS, a single 
pre-messenger RNA is spliced into different 
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permutations to generate the structure and function of 
mRNA [5]. Gene is one of the basic codes of gene 
expression. Genes are first transcribed into 
pre-mRNA that contain exons and introns. When 
pre-mRNA is spliced into mRNA, AS removes introns 
and connects exons. Alternative mRNA transcripts 
are thus produced by the retention or exclusion of 
various exons and introns [6, 7]. Studies show that the 
number of protein-coding genes is less than 25,000, 
which is much lower than the number predicted by 
about 100,000 protein-coding genes in the complexity 
of the human proteome [8, 9]. AS accounts for the 
difference between the number of protein-coding 
genes and proteins and significantly increases the 
proteome diversity and cell complexity [10]. More 
than 90% of human genes undergo AS [11], and AS 
affects protein function by adding or removing 
domains, modifying protein-protein interactions, and 
changing protein stability [12]. In recent years, 
extensive genomic and functional studies firmly 
established the role of AS in cancer [13, 14]. 
Particularly, widespread aberrant AS is a molecular 
marker of tumorigenesis [15]. AS exists in a variety of 
carcinogenic processes such as cell proliferation, 
apoptosis, hypoxia, metabolism, angiogenesis, and 
immune escape [16, 17]. In addition, AS abnormalities 
are potential biomarkers for tumor occurrence and 
prognosis as well as therapeutic targets for malignant 
tumors [17]. 

The role of AS in human diseases, especially 
cancer, is widely recognized [6, 13, 18-20]. However, 
due to technical limitations, there is little research on 
the role or function of AS events in GC. Nevertheless, 
recent approaches using high-throughput techniques 
have been successful in GC. For example, one study 
showed that PTBP3 as a GC metastasis gene regulated 
CAV1 through AS [21]. Another study demonstrated 
that H3K36me3, in the region associated with 
low-level histone acetylation and histone methylation, 
was related to exon exclusion in the region 10–11 of 
the hMLH1 exon, which suggested that histone-based 
AS regulation may be involved in the identification of 
AS sites in GC [20]. Both those studies lacked relevant 
clinical information [20, 21], which hindered the 
systematic annotation of the clinical significance of 
GC-specific AS events. 

The Cancer Genome Atlas (TCGA) project 
provides a rich source of data for the study of the AS 
mode in cancer, including data on the expression 
levels of exons, splicing, and transcriptional isomers. 
To date, highly efficient and reliable bioinformatics 
processing technology is used to address low-voltage 
and complex AS events [22]. Therefore, it is possible 
to study the clinical effects of tumor-related AS events 
in the population by obtaining data from TCGA and 

using bioinformatics technology. For example, 421 
differentially expressed alternative splicing (DEAS) 
events were found in colorectal cancer The parent 
genes before DEAS have protein kinase activity, the 
signaling pathways of p53 and PI3K-Akt [19]. 
However, a comprehensive analysis of survival with 
the individual exon resolution associated with AS is 
lacking in tumors, especially in GC. Therefore, we 
systematically analyzed genome-wide AS in a GC 
cohort from TCGA, identified GC-related AS events, 
and investigated their relationship to clinical 
outcomes. A series of prognostic AS were recognized, 
and high-efficiency prognostic characteristics were 
built according to distinct AS. 

Materials and methods 
Clinical specimens 

Thirty GC patients who underwent gastrectomy 
at Guangxi Medical University Cancer Hospital from 
May to November 2020 were enrolled in this study. 
All enrolled patients had primary GC. None of the 
patients underwent chemotherapy or radiotherapy 
prior to tissue collection, and the specimens collected 
were GC and adjacent tissues. 

This study was approved by the Ethics and 
Human Discipline Committee of Guangxi Medical 
University Cancer Hospital. Written informed consent 
was obtained from all patients. All experiments and 
methods were in accordance with the relevant 
guidelines and regulations. 

Data acquisition and processing 
We downloaded AS data from TCGA SpliceSeq, 

which is a network-based resource for exploring the 
AS patterns of 33 different tumor types [23]. The level 
3 RNA-Seq and clinical data for GC were downloaded 
from the Genomic Data Commons Data Portal. The 
percent spliced in index (PSI) quantifies AS events as 
a value ranging from 0 to 1 [22]. To generate a reliable 
set of AS events, a series of stringent filters is 
necessary (AS events occurring in ≥ 75% of samples 
and the average PSI value ≥ 0.05). RNA-Seq, AS, and 
clinical data have matching TCGA barcodes. The 
inclusion criteria for patients in this study were as 
follows. (1) The clinical parameters available for the 
patient included sex, age, tumor location, lymph node 
and distal metastasis, pathological stage, and survival 
information. (2) AS and RNA-Seq data were available 
for the patient. The exclusion criteria for patients were 
as follows. (1) The clinical parameters available for the 
patient were incomplete. (2) The patient was 
diagnosed with malignant tumors other than GC. We 
downloaded AS and clinical data from the TCGA 
database for 452 GC patients including 34 from 
adjacent and 418 from GC tissues. After screening for 
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the inclusion and exclusion criteria, 34 adjacent and 
367 GC tissues were included in the study. 

Identification of differentially expressed 
alternative splicing (DEAS) events and 
enrichment analysis 

To identify DEAS in GC, the Benjamin-Hochberg 
method was used to adjust the P-value in the t-test. 
Considering the small PSI value, we set the 
significance level for identifying DEAS at P < 0.05. 
The ClusterProfler package was used to carry out the 
GO and Kyoto encyclopedia of genes and genomes 
(KEGG) enrichment analysis of DEAS parental genes 
[24]. Items with a P-value < 0.05 were selected for 
further analysis. 

Survival analysis 
A total of 367 GC patients with complete 

follow-up information and AS data were enrolled in 
the survival analysis. Clinical data included age, sex, 
local invasion, lymph node and distant metastasis, 
TNM stage, and survival status (Table S1). For each 
DEAS event, a univariate Cox regression was 
performed according to the PSI value. Then, the DEAS 
input multivariable Cox regression with p < 0.05 in 
univariate Cox regression. Multivariate Cox 
regression was performed according to different AS 
patterns to establish the prediction models. The 
independent DEAS in the final multivariate Cox 
regression was screened from the multivariate Cox 
regression of different AS patterns. The final 
prognostic model was constructed based on the 
independent DEAS from the final multivariate Cox 
regression. We used a Kaplan-Meier curve to evaluate 
whether the prognostic model could distinguish 
between subgroups of GC patients with good or poor 
prognosis. The identification of each prognostic 
model over five years (1825 days) was further 
evaluated by receiver operating characteristic (ROC) 
curves using the survival ROC package. 

Gene interaction network analysis 
We downloaded the parent genes related DEAS 

from the Retrieval of Interacting Genes/Proteins 
(STRING) 9.1 database [25]. The interaction score for 
the protein interaction network generated in STRING 
was set to 0.9, and all other settings were set to default 
parameters. The gene interaction network was 
visualized by Cytoscape v3.4.0 [26]. 

RT-qPCR validation of AS events in gastric 
cancer (GC) 

Differential expression of AS events was 
validated using RT-qPCR. Total RNA was extracted 
using Trizol reagent (Invitrogen, USA). The cDNA 
was reverse transcribed using 2-6 μg of total RNA 

with the M-MLV reverse transcriptase (Promega, 
USA). RT-qPCR was performed on a qTOWER3 G 
real-time PCR system (Analytik Jena, Germany). The 
total reaction volume was 20 μL and consisted of 0.1 
μM of each primer 10 μL of GoTaq® qPCR Master Mix 
(Promega, USA), and 20-100 ng of cDNA. The PCR 
reaction condition was as follows: 95 °C for 10 min, 
then 40 cycles of 95 °C for 15 s, and 60 °C for 1 min. 

We chose a method similar to the PSI value 
calculation to quantify the expression of a specific AS 
event in GC and adjacent tissues. Two pairs of 
primers (Table S2) were used to amplify the AS 
isoforms and common transcripts. Data normalization 
with the reference GAPDH gene expression and the 2 
-∆∆CT method was used to calculate the relative 
expression of each gene. 

Results 
DEAS events in GC 

To examine the expression levels of AS in cancer 
and adjacent tissues, the common internal reference 
genes, GAPDH and β-actin, were applied. There was 
no significant difference between the two groups 
(Figure 1) (all P > 0.05). 

 

 
Figure 1. Internal reference genes GAPDH and Beta-Actin to examine the 
expression of AS levels in cancer and adjacent tissues. 

 
Integrated AS event profiles were explored in 

depth for 367 GC patients. In total, 48,141 AS events 
from 22,039 genes remained to be further analyzed. 
There were seven types of splicing patterns including 
19,121 exon skip (ES) events in 6,973 genes, 226 
mutually exclusive (ME) exon events in 219 genes, 
2,944 retained intron (RI) events in 1,956 genes, 10,004 
alternate promoter (AP) events in 4,025 genes, 8,390 
alternate terminator (AT) events in 3,666 genes, 3,450 
alternate donor site (AD) events in 2,401 genes, and 
4,006 alternate acceptor site (AA) events in 2,799 genes 
(Figure 2B). The ratio of AS events to genes was 
approximately 2, indicating an average of two events 
per gene. Furthermore, the results demonstrated that 
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half the AS events were ES. All the above AS events 
were quantitated according to the PSI value, which is 
typically used to quantify AS events. Some splice 
isomers had extremely low expression levels (PSI < 
0.05). Therefore, to obtain a set of reliable GC AS 
events, >75% of the samples were classified as AS 
events and the average PSI was >0.05. 

To discern any differences in the expression 
levels of AS, we compared the expression of AS in 34 
pairs of matched GC and adjacent tissues. A total of 
2,325 DEAS events in 2,004 genes were identified 
(Figure 2C), which accounted for 4.83% of the AS 
events. On average, one gene may have one or more 
AS events, indicating a diverse involvement of DEAS 
events in GC. Considering that, we used the UpSet 
plot to visualize the intersection sets of each AS type 
(Figure 2E). There were only a few genes that had 
more than one type of AS event and were 
differentially spliced in GC. The volcano plot 
visualized the DEAS events identified in GC (Figure 
2A). All DEAS events were expressed at different 
levels in GC and adjacent tissues, which were 
statistically significant (adjusted P-value < 0.05, 
|logFC| ≥ 1) (Figure 2A). On this basis, an 
unsupervised hierarchical clustering method was 
used to divide the GC and adjacent tissues into two 
groups. The screened DEAS was credible (Figure 2D). 
The results suggest that the relationship between 
GC-related AS events and GC biology needs to be 
further researched in the future. 

Enrichment and interaction analysis of DEAS 
events 

AS may directly regulate protein function 
through a variety of mechanisms. Hence, we carried 
out an enrichment analysis based on differential 
splicing genes (DSGs) to explore the potential 
function and pathways of DEAS. In the KEGG 
pathway analysis, DEAS increased when the KEGG 
pathway was hypoexpressed in GC, which was 
significantly enriched at the adherens junction (P = 
0.02) (Figure 3A). DEAS increased when the KEGG 
pathway was hyperexpressed in GC, which was 
significantly enriched in ribosome (P = 4.5×10-22) and 
thermogenesis (P = 1.8×10-4) (Figure 3D). In GO 
molecular function (MF) enrichment analysis, actin (P 
= 1.9×10-12) and cell adhesion molecule binding (P = 
8.0×10-6) were enriched in the hypoexpression of MF 
in GC (Figure 3B), whereas cell adhesion molecule (P 
= 1.3×10-3) and actin binding (P = 2.8×10-4) were 
enriched in the hyperexpression of MF in GC (Figure 
3E). In GO biological process (BP) enrichment 
analysis, regulation of GTPase activity (P = 1.8×10-3) 
and small GTPase-mediated signal transduction (P = 
1.7×10-8) were enriched in the hypoexpression of BP in 
GC (Figure 3C), whereas RNA (P = 7.4×10-20) and 
mRNA catabolic processes (P = 4.5×10-21) were 
enriched in the hyperexpression of BP in GC (Figure 
3F). 

 

 
Figure 2. Overview of AS events profiling in gastric cancer. (A) Volcano plot shows that all the differentially spliced AS (DEAS) events have different levels of expression 
in the tumor tissues and the adjacent tissues. The log FC indicates the logarithmic conversion multiple of the PSI value of DEAS. (B) The number of AS events and the number 
of genes associated with each AS type in 367 with gastric cancer patients. (C) Upregulated of DEAS events in gastric cancer. (D) Heatmap of DEAS events in tumor tissues and 
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the adjacent tissues. (E) UpSet plot showing the interactions between the seven patterns of DEAS increased in gastric cancer. Seven types of AS events, including alternate 
acceptor site (AA), alternate donor site (AD), alternate promoter (AP), retained intron (RI), exon skip (ES), and mutually exclusive exons (ME). 

 
Figure 3. Functional KEGG analysis and GO analysis of differentially spliced genes. (A and D) KEGG pathway. (B and E) GO molecular function. (C and F) GO 
biological process. 

 

Survival-associated DEAS events in GC 
To explore the underlying relationship between 

DEAS and overall survival (OS) in GC, we performed 
a univariate Cox regression of 2,325 DEAS in 367 
patients. As shown in Figure 4A, 76 survival- 
associated DEAS events were identified (P < 0.05), 
which accounted for 0.16% of the AS events. AA, AD, 
AP, AT, ES, and RI contained survival-associated 
DEAS. Survival-associated DEAS was most common 
in ES (25 cases), followed by AP (18 cases). 
Survival-associated DEAS was least common in AA 
and AD (4 cases). For each splicing pattern, the hazard 
ratios (HRs) of five AS events with the smallest 
P-values were selected (Figure 4B-H). Then, to 
identify independent prognostic DEAS in GC, we 
used a single factor Cox regression for preliminary 
screening and the filter (P < 0.05 in the univariate Cox 
regression) for selecting variables for the multivariate 
Cox regression. Six types of splicing patterns were 
analyzed using multivariate Cox regression. Next, six 
different types of independent prognostic DEAS were 
combined to construct the final prognostic predictor. 
The multivariable Cox regression results for each AS 
pattern are shown in Figure 5A-5F, and all AS 
patterns are shown in Figure 5G. The GC patient 
grouping was based on the median risk score 
predicted by the prognostic model, which was 
divided into high-and low-risk groups. Six prognostic 
models were capable of predicting the prognosis of 
patients with GC. The prognostic models based on ES, 
RI, and ALL AS patterns were the most significant 
factors affecting prognosis (P < 0.0001). To further 

evaluate the discriminability of these prediction 
models, ROC curves were drawn and the area under 
the curve (AUC) was calculated (Figure 5H). In the 
prognostic model, AT demonstrated the best 
discrimination with an AUC of 0.765, followed by ES 
with an AUC of 0.763 and ALL with an AUC of 0.754. 
To obtain the final prognostic model, a multivariate 
Cox regression was used to evaluate the independent 
prognostic DEAS in each splicing pattern. Ten DEAS 
events were identified as independent prognostic 
factors in the multivariate Cox regression, and these 
ten DEAS events were used to construct the final 
prognostic model. The HRs and P-values of DEAS 
events with independent prognosis in the 10 cases are 
shown in Figure 6A & B. Risk score analyses indicated 
that the final prognostic model showed a significant 
ability to distinguish between good and poor 
prognosis in GC patients (Figure 6C). In the final 
prognostic model, subgroup analysis indicated that 
the model could effectively distinguish between good 
and poor outcomes in patients with stage I–IV GC 
(Figure 6D-E). The expression of 10 independent 
prognostic DEAS events in GC is shown in Figure S1. 
Details of the 10 AS events in the prognostic model 
are shown in Table 1. 

 

Table 1. The detailed information of the 10 AS events in the 
prognostic model 

Symbol As id Splice type Exons From exon To exon 
URGCP 79358 RI 4.4:4.5 4.3 4.6 
CD58 4363 AA 5.1 4.1 5.2 
SLC38A1 21327 ES 1.2:3 1.1 4 
FBXL12 47420 ES 4.2 2.4 5 
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HM13 58890 ES 12.1:12.2 11 13 
ERGIC3 59177 ES 9 8 12 
ADNP 59790 AP 4.1   

MGAT1 75019 AP 2   
ENDOV 44054 AT 13   
GBGT1 88019 AT 4   

 
Figure 4. Forest plots of hazard ratios for survival-related DEAS of subgroup analyses in gastric cancer. (A) The volcano plot depicts the P-values of the univariate 
Cox regression of the 2325 DEAS in 367 patients. (B-H) forest plots of HRs for top5 smallest P-values AS events for seven splicing patterns AA, AD, AP, AT, ES, RI and ME, 
respectively. The P-values are represented according to the color scale of the side. Horizontal bars represent 95% CIs. 

 
Figure 5. Kaplan-Meier and ROC curves of prognostic predictors for gastric cancer. (A-F) Kaplan-Meier curves of prognostic predictor models constructed 
according to six AS patterns including AA, AD, AP, AT, ES and RI. The blue line represents the trend of the low-risk group, while the red line represents the trend of the high-risk 
group. (G) ROC curves of predictive models with different AS patterns. 

 

Validation of survival-associated DEAS events 
in GC 

To validate survival-associated DEAS expression 
in GC, RT-qPCR was used. The expression of ten 
independent prognostic AS events in GC and adjacent 
tissue specimens was assessed. The expression of 
ANDP, CD58, ERGIC1, and URGCP was significantly 
higher in GC than in adjacent tissues (P < 0.05) (Figure 
7A, B, D & J). On the other However, the expression of 

ENDOV, FBXL12, GBGT1, HM13, MGAT1, and 
SLC38A1 did not differ significantly between GC and 
adjacent tissues (Figure 7C, E, F, G, H & I). 

Gene interaction network of DEAS 
Because of the structural variation (AS) in gene 

transcripts, it is possible that protein translation will 
be affected, thereby modifying the characteristics of 
the proteins [27, 28]. Therefore, it is very important to 
understand the interaction between DSGs from the 
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perspective of the protein network. The DSG-based 
protein-protein interaction (PPI) network analysis 
shows DSG interactions in GC (Figure S2). The 
network consists of 29 nodes and 30 edges. RPL21, 
UBB, and SKP1 were identified as hub genes in the 
network, which suggested that the AS of ribosomal 
proteins and ubiquitin-proteasomes were implicated 
in the tumorigenesis and development of GC. 

Discussion 
GC is a disease characterized by the complex 

interactions between host and environmental factors, 
including phenotypic complexity, multiple factors, 
and multistep processes affected by genetic 
heterogeneity and ethnic diversity [4]. Although 
molecular differences in GC at genomic and 
epigenetic levels have been partially revealed, there 
are still areas that remain unknown. AS is the main 

 

 
Figure 6. The prognostic predictors’ value of the DEAS signature in gastric cancer. (A) Univariate analysis of the 10 overall survival predictive factors. The P-values 
are represented according to the color scale of the side. Horizontal bars represent 95% CIs. (B) Multivariate analysis of the 10 overall survival predictive factors. The P-values are 
represented according to the color scale of the side. Horizontal bars represent 95% CIs. (C-E) Risk score analysis of gastric cancer patients. The top groups indicated the risk 
scores of the patients. The middle groups indicated that the survival status and duration of patients were distributed according to the risk score. The bottom groups indicated 
that the PSI values of the 10 predictive factors were distributed according to the risk score in the heatmap. (C) All gastric cancer patients. (D) Stage I-II for gastric cancer patients. 
(E) Stage III-IV for gastric cancer patients. 
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mechanism for controlling gene expression and 
determines the complexity of the cell and the diversity 
of the proteome. Aberrant AS is widely accepted as a 
contributor to the occurrence, development, and 
metastasis of cancer [29, 30]. A comprehensive 
analysis of AS expression in GC is of great 
significance. The present study identified a significant 
correlation between AS and the clinical outcomes of 
GC. A total of 48,141 AS events were detected in 
22,039 genes. There were 65,152 AS events in breast 
cancer, 70,342 AS events in liver cancer, and 70,637 AS 
events in lung cancer [31]. Compared with the AS 
events reported in GC in the present study, the 
number of AS events in the other cancer types were 
much higher than that in GC, possibly because of the 
low mutation rate in GC [31]. In addition, 2,325 DEAS 
events and 2,004 genes were associated with GC, and 
76 of those DEAS events were associated with OS. A 
prognostic feature including 10 survival-related 
DEAS events was built. In general, there are seven 
types of AS patterns including AA, AD, AP, AT, ES, 
ME, and RI. The most common AS pattern in both 
vertebrates and invertebrates is ES, which accounts 
for approximately 30% of all AS patterns [32]. 
However, in this study, AP (31.7%) was the most 
common AS pattern, followed by ES (26.2%), which 
may be related to the heterogeneity and epigenetics of 
GC but this relationship needs further study. 
Moreover, an interaction network between the gene 
and DEAS was constructed, which provided the basis 
for a comprehensive understanding of the function of 
AS in GC. 

In the enrichment analysis, all three enrichment 
analyses were associated with cancer, which indicated 
that DEAS was involved in the tumorigenesis and 
progression of GC. 

In the KEGG pathway analysis, adherens 
junction was the most significant pathway in the 

hypoexpression of KEGG pathway. The adherens 
junction is involved in many biological processes such 
as epithelial monolayer bending, collective cell 
migration, cell extrusion, and wound healing [33-35]. 
The enrichment analysis of cholangiocarcinoma 
revealed an increase in adherent function in the 
disease [36]. However, our study showed that the 
adherens junction was increased when the KEGG 
pathway was hypoexpressed; therefore, regardless of 
whether the expression of the adherens junction 
increases or decreases, it can cause cancer. Moreover, 
ribosome and thermogenesis were the most 
significant pathways when the KEGG pathway was 
hyperexpressed. An increase in ribosome when the 
KEGG pathway was hyperexpressed was reported in 
colorectal cancer [37], but there was a lack of research 
on the relationship between thermogenesis and all 
cancers. In GO molecular MF enrichment analysis, 
actin and cell adhesion molecule binding were the 
most significant pathways in the hyperexpression and 
hypoexpression of MF; both are closely associated 
with oncogene expression, tumor metastasis, and 
recurrence [38-40]. In GO BP enrichment analysis, 
regulation of GTPase activity and small GTPase- 
mediated signal transduction were the most 
significant pathways in the hypoexpression of BP; 
both have been linked to cancer progression [41, 42]. 
One study showed that small GTPase-mediated signal 
transduction in glioblastoma cell apoptosis can be 
induced by excessive expression of RND3 [42]. In 
addition, RNA and mRNA catabolic processes were 
the most significant pathways in the hyperexpression 
of BP. The synthesis of RNA and mRNA is a key step 
in transcription and translation [5]. If mutations or 
errors occur, they can lead to protein synthesis errors 
and even diseases, including cancer [43]. RNA and 
mRNA catabolic processes are key in detecting and 
eliminating improperly processed cell RNA [44, 45]. 

 

 
Figure 7. Validation of the 10 survival-associated DEAS events in gastric cancer. *P < 0.05. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2990 

Our results indicated that regardless of whether the 
expression of DEAS was increased or decreased, the 
immune-related pathways were implicated in the 
tumorigenesis of GC. 

To evaluate the potential value of specific DEAS 
events as a prognostic indicator of GC, we established 
a prognostic model for a single AS pattern. The results 
showed that the ES pattern was the most effective in 
assessing the survival outcome of patients with GC. In 
addition, the ideal prognostic model was a 
combination of all AS patterns. The 10 prognostic 
factors in the final prognostic model included 
URGCP-RI, SLC38A1-ES, MGAT1-AP, HM13-ES, 
GBGT1-AT, FBXL12-ES, ERGIC3-ES, ENDOV-AT, 
CD58-AA, and ADNP-AP. URGCP, known as URG 4, 
is upregulated in many common cancers, including 
hepatocellular carcinoma, osteosarcoma, epithelial 
ovarian cancer, and GC [46-49]. URGCP is a tumor 
promoter that promotes the proliferation of GC cells 
[48, 50]. URGCP is related to cell cycle, cell adhesion, 
apoptosis, transcription, and gene expression [48, 50] 
and located on chromosome 7 (7p13). Previous data 
suggested that URGCP was upregulated in both 
human GC tissues and cell lines [48]. Upregulation of 
URGCP could promote cell proliferation, whereas 
downregulation of URGCP could inhibit proliferation 
and tumor formation of GC cells [48]. In this study, RI 
occurred in 4.4:4.5 exons of URGCP and was 
associated with OS in GC. AS in URGCP may change 
the structure of proteins, therefore the role of different 
URGCP isoforms in GC requires further study. 
SLC38A1 is an amino acid transporter A that is 
involved in amino acid uptake via small side chains, 
such as alanine, serine, proline, and glutamine [51, 
52]. The activity of SLC38A1 is affected by cell 
volume, pH, glucagon, insulin, and insulin-like 
growth factor-1 [51]. The expression of SLC38A1 in 
GC is closely related to age, TNM stage, PCNA 
expression, differentiation status, and lymph node 
metastasis, which can be used as an indicator of 
disease invasiveness [53]. Overexpression of SLC38A1 
correlates with poor prognosis [53]. However, the 
expression and function of different subtypes of 
SATB2 in GC require further study. 

Finally, our program succeeded in identifying 
several AS events in genes and established efficient 
prognostic models for GC. However, several potential 
limitations to our study should be mentioned. First, 
we failed to identify a few typical DEAS events in the 
development of GC, such as CD44, survivin, and 
MYH [54]. This may be due to the strict inclusion 
criteria we used. Second, the results of the PPI 
network analysis need to be validated by molecular 
biological experiments. Lastly, the clinical specimens 
used to validate the DEAS events were small; 

therefore, large clinical specimens are needed to 
validate the results of this study. 

In summary, this study successfully analyzed the 
common cancer-specific and survivor-related events 
in GC. A series of prognosis-associated DEAS events 
were identified. An efficient prognostic model and an 
interaction network between DEAS and genes were 
constructed. The present study will enrich our 
understanding of the distinction of GC and provide a 
generous amount of biomarkers and potential targets 
for the treatment of GC. 
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