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Abstract 

Overexpression of Centromere Protein F (CENPF) is associated with tumorigenesis of many human 
malignant tumors. But the molecular mechanism and prognostic value of CENPF in patients with 
hepatocellular carcinoma (HCC) are still unclear. In this essay, expression of CENPF in HCC tumors were 
evaluated in a series of databases, including GEO, TCGA, Oncomine, GEPIA, The Human Protein Atlas 
and Kaplan–Meier plotter. It was apparent that mRNA and protein expression levels of CENPF were 
significantly increased in patients with HCC and were manifestly associated with the tumor stage of HCC. 
Aberrant expressions of CENPF were significantly linked with worse overall survival (OS) and 
progression-free survival (PFS) in HCC patients. Then, immunohistochemistry of CENPF in human HCC 
samples was carried out to suggest that CENPF protein was over-expressed in HCC tissues, compared 
with paired adjacent non-cancerous samples. And small interfering RNAs of CENPF in the human HepG2 
cells were further performed to reveal that down-regulation of CENPF significantly inhibited cell 
proliferation, cell migration, and cell invasion, but slightly promoted cell apoptosis in human HepG2 cells. 
Moreover, the gene-set enrichment analysis (GSEA) was conducted to probe the biology process and 
molecular signaling pathway of CENPF in HCC. The GSEA analysis pointed out that CENPF was principally 
enriched in cell cycle and closely related to E2F1 and CDK1 in the regulation of cell cycle, especially during 
G2/M transition of mitosis in HCC. Additionally, immune infiltration analysis by CIBERSORTx revealed 
that mutilpe immune cells, including Treg, etc., were significantly different in HCC samples with CENPFhigh, 
compared with CENPFlow. These results collectively demonstrated that CENPF might serve as a potential 
prognostic biomarker and novel therapeutic target for HCC. However, further research is needed to 
validate our findings and promote the clinical application of CENPF in HCC. 

Key words: CENPF, HCC, hepatocellular carcinoma, biomarker, survival, prognostic value, bioinformatics 
analysis. 

Introduction 
Hepatocellular carcinoma (HCC), as the most 

common primary liver neoplasms, is one of the most 
malignant tumors with high morbidity and mortality, 
which makes it a notable healthcare issue for human 
beings in the global world [1, 2]. Liver neoplasms are 
the fourth leading cause of cancer-related death and 
ranks sixth among new cases worldwide [3, 4]. 
Surpassing breast, prostate, and colorectal cancers, 

liver neoplasms is predicted to be the third leading 
cause of cancer-related death in Europe and the 
United States by 2030 [5, 6]. The World Health 
Organization estimates that the global incidence of 
HCC is rising and might reach one million cases 
annually in the next decade [7, 8]. HCC has high 
molecular heterogeneity, with a poor prognosis [9, 
10]. Due to the lack of effective biomarkers to detect 
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diseases and predict individual differences in 
patients, the mortality rate of HCC is high. Over 80% 
of patients are diagnosed with advanced liver cancer 
[11, 12]. As the 5-year survival rate is only 18%, liver 
cancer is the second most fatal tumor after pancreatic 
cancer [13-15]. For patients in Asian countries such as 
China, the situation is even more severe, with a 5-year 
survival rate reported as low as 12% [16, 17]. So far, 
some biomarkers with potential diagnostic, 
prognostic or therapeutic value for HCC have been 
reported. Molecular studies [18-20] have shown that 
the most common variations in HCC include 
mutations in the TERT promoter, TP53 and CTNNB1, 
copy number variation, abnormal DNA methylation 
[21], overexpression of PD-L1 [22-24], etc [25]. 
Although some of the above-mentioned biomarkers of 
HCC have aroused extensive concern, most of them 
were studied separately rather than as a part of the 
whole carcinogenesis process; the related studies are 
still in the preliminary investigation or clinical 
verification stage. Therefore, it is urgent to find 
reliable biomarkers to predict the early or accurate 
prognosis, and to develop new molecular targeted 
therapy strategies for HCC. 

As a cell cycle-related nuclear antigen, the 
Centromeric protein F (CENPF) is expressed at low 
levels in G0/G1 cells and accumulates in the nuclear 
matrix in the S-phase, with the highest expression 
level in G2/M cells [26]. The abnormal expression or 
activation of CENPF has been reported in several 
human malignant tumors, including HCC [27, 28], 
breast cancer [29], and other tumors [30]. 
Additionally, elevated CENPF expression contributes 
to unregulated cell proliferation in HCC [28]. Recent 
studies have shown that CENPF and FOXM1 were 
important regulators of prostate cancer malignancies 
and prognostic indicators for poor survival and 
extensive tumor metastasis [31]. Further studies have 
shown that COUP transcription factor 2 promoted 
prostate cancer metastasis through CENPF signal 
transduction [32]. Generally, CENPF might emerge as 
a promising biomarker for predicting the prognosis of 
HCC. Therefore, identifying the masked mechanism 
of CENPF-mediated oncogenes or tumor suppressor 
genes as predictive biomarkers might provide new 
treatment strategies. Nevertheless, the divergences in 
expression levels, genetic alterations, biological 
functions and process, molecular mechanisms, and 
prognostic value of CENPF in HCC have not been 
fully expounded.  

The advancement and development of gene 
microarray and RNA-sequencing technology has 
innovated the research of RNA and DNA, which has 
become an important method for biological and 
medical research [33-35]. Based on the GEO, 

Oncomine and TCGA databases, this study expanded 
the relevant knowledge of HCC and comprehensively 
analyzed the relationship between CENPF and the 
pathogenesis and progression of HCC, in order to 
provide useful enlightenment for the occurrence and 
aggressiveness of HCC. 

Materials and Methods 
Data resource and description 

As a publicly available genomics database, Gene 
Expression Omnibus (GEO) of NCBI was systematic 
and complete queried for all datasets related to 
studies of HCC, which collects submitted 
high-throughput gene expression data worldwide. 
Following criteria were considered qualified for our 
analysis: (1) The research objects included human 
HCC and its adjacent or normal liver tissue. (2) The 
information of technology and platform used for 
studies was detailed. (3) The number of samples was 
>10. Based on these criteria, eight gene expression 
microarray datasets for HCC, including GSE14520, 
GSE60502, GSE40367, GSE84005, GSE112791, 
GSE76297, GSE25097, and GSE87630, were 
downloaded from the repository.  

HCC mRNA normalized counts data of TCGA, 
derived from RNA-seq Htseq platform, were 
downloaded from Genomic Data Commons (GDC) 
Data Portal. TCGA RNA-seq data contains 424 
samples, including 374 primary HCC tumor and 50 
normal liver samples. RTCGA Toolbox [36] and 
edgeR [37] packages were applied to detect the 
expression of CENPF in HCC and normal tissues.  

Identification CENPF expression by 
Bioinformatics strategy 

As the currently world's largest oncogene chip 
database and integrated data mining platform, 
Oncomine is widely used to excavate cancer gene 
information. So far, the database has included gene 
expression data from 715 datasets and about 90,000 
cancer and normal tissue samples, which can be used 
to explore the expression of CENPF in HCC and its 
related normal tissues. [38]. Studies of CENPF 
expression in HCC and normal liver samples were 
selected with the thresholds as follows: P-value＜ 0.05 
and the data type was restricted to mRNA expression 
levels in Oncomine database and visualized by 
GraphPad Prism. Moreover, protein expression of 
CENPF in HCC tissues and their associated normal 
tissues was screened in The Human Protein Atlas, 
which is a human proteomics online service database 
and designed to map human proteomics information 
in cells, tissues, and organs by using various omics 
technologies, including antibody-based imaging, 
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mass spectrometry-based proteomics, 
transcriptomics, and systems biology. 

Gene Expression Profiling Interactive Analysis 
(GEPIA, http://gepia.cancer-pku.cn/) is an 
interactive online database for detecting the mRNA 
expression of 9736 tumors and 8587 normal samples 
from the TCGA and Genotype-tissue Expression 
dataset (GTEx) projects [39]. GEPIA can be performed 
for gene differential expression analysis, profiling 
plotting according to cancer types or pathological 
stages, correlation analysis, patient survival analysis, 
and similar gene analysis. The mRNA expression of 
CENPF in different stages or grades was compared 
between HCC and normal tissues by using the GEPIA 
dataset and TCGA RNA-seq data. 

Correlation between CENPF and 
clinicopathological characteristics in HCC 

Based on HCC information from TCGA datasets, 
correlation between CENPF and clinic-pathological 
characteristics was investigated. The expression 
matrix from TCGA datasets contains 374 HCC tissues 
divided to two groups, including187 HCC samples 
with CENPF low expression (CENPFlow) and 187 HCC 
samples with CENPF high expression (CENPFhigh) 
based on the median expression level of CENPF 
(median cutoffs). Grouping of risk types was 
conducted via 'ggrisk' package of R software (version 
4.0.3) [40, 41]. Sanguini diagram, which can be used to 
show the distribution trend of survival and 
expression of a gene in different stages, ages and other 
clinical characteristics for tumors, was built based on 
the 'ggalluval' package of R software [42].  

Further, the univariate (uni-cox) and 
multivariate cox (mult-cox) regression analysis was 
performed to identify the proper terms to build the 
nomogram. The forest was used to show the P-values, 
HR and 95% confidence interval (CI) of each variable 
through ‘forestplot’ R package. A nomogram was 
developed based on the results of multivariate Cox 
proportional hazards analysis to predict the 1-year, 
2-year, and 3-year overall recurrence [43]. The 
nomogram provided a graphical representation of the 
factors, which can be used to calculate the risk of 
recurrence for an individual patient by the points 
associated with each risk factor through ‘rms’ R 
package [44]. 

Survival analysis 
Kaplan–Meier plotter is an online data service 

platform that contains microarray gene expression 
data and survival information from GEO, TCGA, and 
the Cancer Biomedical informatics Grid, which 
provides survival information of 374 HCC patients 
[45]. In this study, the Kaplan-Meier plotter was 

conducted to evaluate the prognostic value of CENPF 
mRNA expression. The overall survival (OS), 
progression-free survival (PFS), 1-year, 3-year and 
5-year OS of HCC patients were tested by dividing 
samples into two groups based on median expression 
(high expression and low expression) and assessed by 
using Kaplan–Meier survival plots, with a hazard 
ratio with 95% confidence intervals and log rank 
P-value. Further, subgroup survival analyses were 
conducted by dividing patients based on different 
population, pathological and histological subtypes. 

Gene-set enrichment analysis (GSEA) in HCC 
samples 

In order to interpret the gene expression data 
between CENPF and other genes, and to identify the 
underlying pathways that correlate to HCC with 
CENPFlow or CENPFhigh, GSEA software (version 
4.0.3, Broad Institute, USA) was performed, to probe 
the biological mechanisms based on TCGA datasets 
[46, 47]. The predefined gene sets, including 
'c2.cp.kegg.v7.2.symbols.gmt', 'c2.cp.biocarta.v7.2. 
symbols.gmt', and 'h.all. v7.2.symbols.gmt', from the 
Molecular Signatures Database were employed, 
respectively. A normalized enrichment score (NES) 
was calculated as the primary GSEA statistic. For the 
analysis results, the threshold values of statistical 
significance were set as |NES|> 1, normalized 
P-values (NOM P-values) < 0.05, and FDR < 0.25. 
Lastly, the results of the GSEA analysis were 
visualized via Sangerbox tools, a free online platform 
for data analysis (http://www.sangerbox.com/tool).  

Analysis of immune cell infiltration profile  
Immune cell infiltration is an important index to 

predict immunotherapy [48]. Based on TCGA dataset, 
analysis of immune cell infiltration was performed by 
CIBERSORTx, an analytical tool that provides an 
estimation of the abundances of member cell types in 
a mixed cell population by inputting normalized gene 
expression matrix [49]. The results of the analysis 
present the abundance of 22 kinds of immune cells, 
including 7 types of T cells, 3 types of B cells, 2 types 
of natural killer (NK) cells, monocytes, 3 types of 
macrophages (Mφ), 2 types of dendritic cells (DC), 4 
types of granulocytes (mast cells, eosinophils, and 
neutrophils). The expression matrix from TCGA 
dataset was normalized via ‘Limma’ package of R 
software, and all the results were visualized by 
applying the packages of R software. Moreover, the 
expression of five genes closely related to tumor 
immunotherapy, including LAG3, CTLA4, HAVCR2, 
PD-1, and PD-L1 were further investigated in HCC by 
GEPIA [50].  
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Analysis of the correlation between CENPF 
expression and MSI or TMB in HCC  

As independent factors of immune response to 
PD-1 / PD-L1 mono-antibody, the microsatellite 
instability (MSI) and tumor mutation burden (TMB) 
have been clinically proven to play an outstanding 
role in predicting the anti-tumor effect of PD-1 / 
PD-L1 inhibitors [51, 52]. The analysis of the 
correlation between CENPF expression and TMB/MSI 
in HCC based on TCGA were performed via 
'ggstatsplot' package of R software. Spearman’s 
correlation analysis was used to describe the 
correlation between quantitative variables without a 
normal distribution. P-value <0.05 was considered 
statistically significant. The range of correlation 
coefficient is (- 1, 1). A negative number represents a 
negative correlation between the two gene 
expressions, and a positive value represents a positive 
correlation. The closer the value is to 1 or - 1, the 
stronger the correlation between the two variables; 
the closer the value is to 0, the weaker the correlation 
between the two variables. 

Human HCC samples and immunohisto-
chemistry 

Screening criteria for PPFE (Formalin-fixed and 
paraffin embedded) samples of HCC patients were as 
follows: (1) All samples were stored at room 
temperature (20~25℃) and collected from patients 
who had been diagnosed as HCC from May 2019 to 
May 2020 at Taihe Hospital of Hubei University of 
Medicine, China. All HCC patients were diagnosed 
and graded according to the pathological 
characteristics by at least two pathologists in the 
Department of Pathology, Taihe Hospital, with a total 
of 81 cases. (2) Samples containing cancerous tissues 
and paired adjacent non-cancerous samples were 
screened out. Finally, 5 HCC tissues and 5 paired 
adjacent non-cancerous samples of PPFE were 
included. All human samples were obtained by 
informed consent (IFC) from patients or family 
members, and this study was supported and 
approved by the Ethics Committee of Taihe Hospital. 
Details of 5 enrolled patients with HCC were listed in 
Table S1. 

Immunohistochemistry of paraffin embedded 
samples (IHC-P) was performed according to the 
manufacturer's recommended procedure. 3 μm of 
HCC tissue and para-cancerous tissue were taken 
from the PPFE. All sections were deparaffinized with 
xylene and rehydrated through a graded ethanol 
series. Endogenous peroxidase activity was blocked 
with 3% hydrogen peroxide in methanol for 10 min. 
Antigen retrieval was performed by EDTA at pH 9.0 

in a pressure cooker for 4 min. After PBS washing 
(three times, 3 min each), slides were incubated with 
the rabbit anti-human CENPF polyclonal antibody 
(ab5, Abcam, 1/100 dilution) at 37℃ for 1 hour. After 
incubation with HRP labeled second antibody at 37℃ 
for 0.5 hour, nuclei were stained by hematoxylin for 
30 seconds. 

Cell line and siRNA 
Small interfering RNAs of CENPF (siCENPF) 

was designed to explore the role of CENPF in cell 
proliferation and migration of HCC in the hepatoma 
cell line, human HepG2. The qRT-PCR primers and 
small interfering RNAs of CENPF and reference gene 
were synthesized by Sangon Biotech (Shanghai, 
China), and the information of their sequences was 
listed in Table 1. 

The small interfering RNA transfection was 
performed according to instructions of the 
manufacturer. Each group had at least 3 replicates. 

RNA isolation and quantitative real-time PCR 
HepG2 cells after cells were transfected with 50 

nmol of CENPF siRNA (siCENPF) or contorl siRNA 
(siNC) for 48 hours respectively. Total RNA was 
extracted from the HepG2 cells using TRIzol reagent 
(Invitrogen, USA). First-strand cDNA was generated 
from total RNA using oligo-dT primers and reverse 
transcriptase (Invitrogen, USA). Quantitative 
real-time PCR (qRT-PCR) was conducted using 
QuantiTect SYBR Green PCR Master Mix (Qiagen, 
Germany) and specific primers in an ABI Prism 7000 
analyzer (Applied Biosystems, USA). GAPDH was 
detected in each experimental sample as an 
endogenous control. All the reactions were run in 
triplicate. The relative RNA levels of CENPF in HCC 
samples were calculated by using the 2−ΔΔCt method. 

Western blotting 
For western blotting, human HepG2 cells were 

transfected with 50 nmol of siCENPF) and siNC for 48 
hours respectively, and then cells were collected. Cell 
lysates were denatured and subjected to SDS-PAGE, 
then were transferred to PVDF membranes (Millipore, 
USA). The membranes were incubated with primary 
antibody (CENPF antibody: ab5, Abcam, UK) 
overnight at 4℃. Membranes were washed for 4 times 
with washing buffer (three times TBST and at last one 
time TBS, 10 minutes each), and then incubated with 
the secondary HRP-conjugated antibody for 1.5 hour 
at room temperature. After washed by washing buffer 
for 4 times, the membranes were detected using an 
enhanced chemiluminescence assay with Lumi-Glo 
reagents (Millipore, USA).  
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Table 1. The sequences information of qRT-PCR primers and siRNAs.  

Gene name  Primers (5'-3') 
CENPF Forward: AGCACTGATCACCTGTTAGC Reverse: ACCCACATACAAACAGAGATTG 
GAPDH Forward: CGGAGTCAACGGATTTGGTCGTAT Reverse: AGCCTTCTCCATGGTGGTGAAGAC  
siCENPF Forward: GACCCAGAAACUAGCUUAUTT Reverse: AUAAGCUAGUUUCUGGGUCTT  
siNC Forward: UUCUCCGAACGUGUCACGUTT Reverse: ACGUGACACGUUCGGAGAATT 
siCENPF: CENPF siRNA, siNC: negative control siRNA. 

 

Table 2. Details of HCC studies and associated microarray datasets from GEO database. 

GEO 
Series 

Contributor(s) Sample Platform Country 
Tumor Normal 

GSE14520 Roessler S et al, 2009 225 220 GPL3921 [HT_HG-U133A] Affymetrix HT Human Genome U133A Array USA 
GSE60502 Kao KJ, 2014 18 18 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array China (Taiwan) 
GSE40367 Roessler S, 2012 10 5 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array USA 
GSE84005 Tu X et al, 2016 38 38 GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array  China 
GSE112791 Kaoru Mogushi et al, 2018 183 15 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array  Japan 
GSE76297 Xin Wei W, 2015 61 151 GPL17586 [HTA-2_0] Affymetrix Human Transcriptome Array 2.0  USA 
GSE25097 Zhang C, 2010 268 243 GPL10687 Rosetta/Merck Human RSTA Affymetrix 1.0 microarray, Custom CDF USA 
GSE87630 Woo HG, 2016 64 30 GPL6947 Illumina HumanHT-12 V3.0 expression  South Korea 

 

CCK-8 cell proliferation experiment 
Human HepG2 cells were plated in 96-well 

plates at 100 μL (total 2×103 cells), then transfected 
with 50 nmol of siCENPF and siNC respectively. 10 
μL CCK-8 solution (Beyotime, China) was added to 
each well. The cells were incubated in the cell 
incubator for 0.5 hour and 1 hour. The absorbance 
(optical density, OD) representing cell density was 
measured at 450 nm.  

Wound healing assay  
Cell migration was analyzed in wound healing 

assay. Human HepG2 cells were seeded in 12-well 
plates in DMEM with 10% fetal bovine serum (FBS), 
then cells were transfected with 50 nmol of siCENPF 
or siNC for 24 hours. Wounds were scratched by 20μl 
pipette tips. Each well was then rinsed 5 times with 
PBS to clear floating cells from scratches, and 3 mL of 
10% FBS, 1% antibiotic-antimycotic DMEM was 
added to each well. Scratch regions were 
photographed at 0 and 24 hour.  

Transwell assay 
Transwell assays were performed to analysis 

metastatic ability and invasion of the HepG2 cells. The 
metastatic ability of the cells was investigated by 
Transwell plates (Corning, USA). Cells were 
transfected with 50 nmol of siRNAs for 24 hours. Then 
Serum-free single cell suspensions were placed in the 
upper chamber per well. The lower chamber was 
filled with 500 uL 1640 medium with 20% FBS as a 
chemoattractant for 24 hours. For invasion assays, the 
membrane inserts were pre-coated with Matrigel. The 
cells were cultured for 24h. Cells in the lower surface 
of the membrane was fixed with 4% PFA and then 
stained with 0.5% crystal violet. Cells in ten random 

fields per chamber were counted and analyzed using 
Image J software. The percentage of migration was 
calculated and compared to the mock group. 

Flow cytometric analysis 
Cells were transfected with 50 nmol of siRNAs 

for 24 hours. Then cells were analyzed using the 
Annexin V-FITC apoptosis detection kit (Vazyme 
Biotech, USA) as instrument. 1 ×104 cells of each 
sample were counted in the flow cytometer (BD, 
Bangladesh).  

Statistical analysis  
Statistical analysis was performed via GraphPad 

Prism (version 8.2.1, San Diego, CA) and SPSS 22.0 
(IBM SPSS Inc. Chicago, IL) software. Student's t-test 
(two-tailed) were utilized for the comparison of two 
sample groups. Differences were considered as 
statistically significant when P < 0.05 (*P < 0.05, ** P < 
0.01, *** P < 0.001, **** P < 0.0001).  

Results 
CENPF is overexpressed in HCC compared 
with normal liver tissues  

The details of GEO series involved in this study 
were presented in Table 2. As illustrated in Figure 1, 
CENPF mRNA was significantly overexpressed in 
GSE14520, GSE60502, GSE40367, GSE84005, 
GSE112791, GSE76297, GSE25097, and GSE87630 (all 
P < 0.01). For further validation, we performed 
meta-analysis of CENPF expression in Oncomine 
database. Compared with that in normal livers, 
CENPF was evidently upregulated in HCC tumors (P 
< 0.001, Figures 2A–D), but not in cirrhosis, and liver 
cell dysplasia (P > 0.05, Figure 2D). Moreover, study 
from The Human Protein Atlas declared that protein 
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of CENPF is mainly expressed in the region of 
nucleoplasm by immunofluorescence (IFC) staining in 
MCF7 cells (Figure 2E). And CENPF was also high 
expressed in HCC patients (Figure 2F) or cell line, 
human HepG2 cells (Figure 2G), compared to normal 
ones in terms of protein or mRNA. The relationship 
between the transcription levels of CENPF and the 
tumor stage/grade in HCC patients were also 
analyzed by the GEPIA (Figure 3A) and TCGA 
(Figures 3B-C) dataset. As results, the mRNA 
expression level of CENPF was significantly and 
positively correlated with the tumor stage and grade 
for HCC.  

Correlation between CENPF and 
clinicopathological characteristics in patients 
with HCC 

In order to explore the correlation between 
CENPF and clinicopathological characteristics in 
patients with HCC, all 374 HCC tissues were divided 
into two groups, including187 CENPFlow HCC 
samples and 187 CENPFhigh HCC samples according 
to the median cutoffs of CENPF expression (Figure 
4A). As listed in Table 3, BMI of all HCC patients were 
over 18.5 kg/m2, and more HCC cases had higher 
BMI in CENPF high group than those in CENPF low 
group (P = 0.025). Less HCC cases had family history 
of cancer in CENPF high group than those cases in 
CENPF low group (27.8% vs. 37.4%, P = 0.036). 

Incidence of new tumor events after initial treatment 
was higher in CENPF high group than those in 
CENPF low group (P = 0.038). However, HCC 
patients in CENPF low group suffered from less 
hepatic inflammation (39.6% vs 29.4, P = 0.029). Just as 
we expected, HCC patients with CENPFhigh group 
experienced manifestly advanced neoplasm histologic 
grade (especially grade III, P<0.01) and advanced 
pathological stage (especially stage II and III, P = 
0.032). Meanwhile, the distribution of CENPF 
expression in gender, pTNM stage and grade was 
shown in Figure 4B. Furthermore, the uni-cox and 
mult-cox regression analysis was performed to 
identify the effects of CENPF and clinical factors 
including age, gender, grade, pTNM stage, and new 
tumor events on the prognosis of HCC patients. 
According to the uni-cox analysis in Figure 4C, the 
CENPF expression and pTNM stage were correlated 
with the prognosis of HCC patients (all P<0.05). And 
according to the mult-cox analysis in Figure 4D, the 
CENPF expression and pTNM stage might be 
independent prognostic factors in HCC patients (all 
P<0.05). Based on uni-cox and mult-cox analysis, 
nomogram was constructed to predict 1-year, 2- year, 
and 3- year survival rate in one HCC patients 
associated with CENPF expression and pTNM stage 
(Figure 4E).  

 

 
Figure 1. The expression of CENPF in HCC patients from GEO datasets. Relative mRNA expression levels of CENPF from (A) GSE14520, (B) GSE60502, (C) GSE40367, (D) 
GSE84005, (E) GSE112791, (F) GSE76297, (G) GSE25097, and (H) GSE87630 in normal livers and HCC samples. Pre-processed expression levels are Log2 normalized and median 
centered. Data were analyzed using un-paired student's t-test. Differences were viewed as statistically significant when P < 0.05. HCC: hepatocellular carcinoma. HCC with 
Adrenal Gland: HCC with adrenal gland metastasis. HCC with Lung: HCC with lung metastasis. 
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Figure 2. Comparison of CENPF expression in Oncomine and The Human Protein Atlas database. (A) The mRNA levels of CENPF in different types of cancers from Oncomine 
database. The graph shows the numbers of datasets with statistically significant mRNA over-expression (red) or down-regulated expression (blue) of CENPF. The threshold was 
designed as following parameters: P-value ＜0.05 and fold change ≥1.5; (B) Meta-analysis of CENPF expression in 3 analyses; (C) CENPF levels in normal, and HCC tissues in Chen 
Liver; (D) CENPF levels in normal, cirrhosis, liver cell dysplasia and HCC tissues in Wurmbach Liver; (E) Protein expression and localization of CENPF in MCF7 cell line by IFC; 
IFC: immunofluorescence. Green represents the protein CENPF, red represents microtubules, and blue represents nucleus. After merging, the protein CENPF is expressed in 
the nuclear region. (F) Protein expression of CENPF in normal, and HCC human tissues by IHC. The expression of CENPF was shown by the red arrow. IHC: 
immunohistochemistry. (G) The mRNA expression profile of CENPF in different human cell line, including HepG2 (shown by the red arrow). 

 
Figure 3. Correlation between the transcription levels of CENPF and the tumor stage/grade of patients with HCC. (A) The mRNA levels of CENPF in normal(n=160) and HCC 
tissues(n=369) from GEPIA. (B-C) The mRNA levels of CENPF in HCC in pTNM stage I-IV and grade 1-4 from TCGA database. 
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Figure 4. Correlation between the expression of CENPF and the prognosis in HCC based on TCGA datasets. (A) CENPF expression and survival status of HCC patients from 
TCGA datasets, in which the top represents the scatter plot of the gene expression from low to high, and is divided into two groups according to the median cutoffs; the middle 
represents the scatter plot distribution of survival time and survival status corresponding to gene expression of different samples; the bottom represents the heat map of the gene 
expression in the corresponding samples; the abscissa of the upper, middle and lower graphs in the graph represent the samples, and the sample order is consistent. (B) Sanguini 
diagram for outlining the distribution of CENPF expression in gender, pTNM stage and grade. Each column represents a characteristic variable, different colors represent 
different types or stages, and lines represent the distribution of the same sample in different characteristic variables. Hazard ratio and P-value of constituents involved in uni-cox 
(C) and mult-cox (D) regression and relevant clinical parameters of the CENPF. (E) Nomogram to predict 1-year, 2- year, and 3- year survival rate in HCC patients associated with 
CENPF expression and pTNM stage. 

 

Overexpression of CENPF predicts worse 
prognosis in HCC patients 

As validated in Kapan-Meier Plotter, 
overexpression of CENPF predicted worse OS (overall 
survival; HR = 1.54, log rank P = 0.013) and PFS 
(progression-free survival; HR = 1.77, log rank P = 
0.00013) in HCC (Figures 5A-B). Meanwhile, 
subgroup analyses indicated that CENPF 
upregulation in tumors was a risk factor for 1-year, 
3-year and 5-year OS in patients with HCC (HR = 2.29, 
log rank P = 0.0028; HR = 1.99, log rank P = 0.00058 
and HR = 1.68, log rank P = 0.0044, respectively, 
Figures 5C-E).  

For subgroup survival analyses, upregulation of 
CENPF was significantly associated with poor OS in 
HCC patients with neoplasm histologic grade I and 
grade III (HR = 5.84, log rank P = 0.00064 and HR = 
2.46, log rank P = 0.0041, respectively, Figures 6A and 
C), while no significant difference was found in HCC 
cases with grade II (HR = 1.49, log rank P > 0.05, 
Figure 6B). In addition, the overexpression of CENPF 
was closely related to poor OS in HCC patients with 
stage I-II (HR = 1.83, log rank P = 0.021, Figure 6D), 
stage II-III (HR = 2.37, log rank P = 3E-04, Figure 6E), 
and stage III-IV (HR = 2.36, log rank P = 0.0027, Figure 
6F).  
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Table 3. Characteristics of HCC patients between CENPFhigh and CENPFlow groups (median cutoffs). 

Variables CENPF expression 
level 

P 
value 

Variables CENPF expression 
level 

P 
value 

Low  
(n = 187) 

High  
(n =187) 

Low  
(n = 187) 

High  
(n = 187) 

Gender, male (%) 145 (77.5) 131 (70.1) 0.106 Pathological stage, n (%)   0.032 
Age, median (IQR), years 64 (15) 59 (17) 0.196 I 107 (57.2) 84 (44.9) 
BMI, kg/m2, n (%)  0.025 II 42 (22.5) 53 (28.3) 
<18.5  0 0 III 35 (18.7) 55 (29.4) 
18.5~24.99 36 (19.3) 18 (9.6) IV 4 (2.1 1 (0.5) 
25~29.99 106 (56.7) 109 (58.2) NA 16 (8.6) 13 (7.0) 
>30 46 (24.6) 58 (31.0) Vascular invasion, n (%)   0.072 
NA 17 (9.1) 20 (10.7) Macro 7 (3.7) 11 (5.9) 
Tumor status, n (%) 0.059 Micro 54 (28.9) 51 (27.3) 
With tumor 54 (29.9) 69 (36.9) None 122 (65.2) 106 (56.7) 
Tumor free 139 (74.3) 118 (63.1) NA 21 (11.2) 38 (20.3) 
NA 11 (5.9) 19 (10.2) Child-pugh classification, n (%)   0.082 
Family history of cancer, n (%) 0.036 A 129 (68.9) 112 (59.8) 
No 100 (53.5) 127 (67.9) B 13 (6.9) 9 (4.8) 
Yes 70 (37.4) 52 (27.8) C 1 (0.5) 0 (0) 
NA 34 (18.2) 27 (9.7) NA 61 (32.6) 85 (45.5) 
Hepatocarcinoma risk factors*, n (%)   0.63 New tumor event after initial treatment, n (%) 90 (48.1) 112 (59.8) 0.038 
Hepatitis virus infection 57 (30.9) 65 (34.8) Ishak fibrosis status, n (%)   0.084 
Alcohol consumption 75 (40.1) 60 (32.1) No fibrosis 52 (27.8) 31 (16.6) 
Non-alcoholic fatty liver disease 8 (4.3) 8 (4.3) Portal fibrosis 14 (6.8) 18 (8.8) 
No risk factors 46 (24.6) 52 (27.8) Fibrous speta 15 (8.0) 15 (8.0) 
Other 9 (4.8) 12 (6.4) Nodular Formation/Incomplete Cirrhosis 7 (3.7) 3 (1.6) 
NA 9 (4.8) 11 (5.9) Cirrhosis 40 (21.4) 44 (23.5) 
Neoplasm histologic grade, n (%)   <0.01 NA 76 (40.6) 95 (50.8) 
Grade 1 44 (23.5) 18 (9.6) Hepatic inflammation, n (%)   0.029 
Grade 2 113 (60.4) 86 (45.9) None 74 (39.6) 55 (29.4) 
Grade 3 40 (21.4) 90 (48.1) Mild 53 (28.3) 54 (28.8) 
Grade 4 4 (2.1) 8 (4.1) Severe  13 (6.9) 7 (3.7 
NA 3 (1.6) 4 (2.1) NA 64 (34.2) 90 (48.1) 
Years to last follow up, median (IQR), years 0.9 (1.81) 0.73 (2.29) 0.06     
IQR, interquartile range; BMI, body mass index; AFP, alpha-fetoprotein; NA, not available. * Sum of all risk factors compared with no risk factors.  

 
 

 
Figure 5. Overexpression of CENPF predicted worse prognosis in HCC patients (Kaplan–Meier plotter). The OS (A), PFS (B), 1-year (C), 3-year (D) and 5-year (E) survival 
curves comparing patients with high (red) and low (black) CENPF expression in HCC were plotted using Kaplan–Meier plotter database at the threshold of P-value < 0.05. 
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Figure 6. Overall survival of HCC patients grouped by CENPF median in different grades (A, B, C) and stages (D, E, F). 

 
Besides, we conducted subgroup survival 

analysis in different population. As shown in Figure 
S1, high expression of CENPF was significantly 
associated with worse OS in HCC patients without 
hepatitis virus infection (HR =1.87, log rank P = 
0.0073, Figure S1B). Overexpression of CENPF was 
significantly and negatively associated with OS both 
in men and women of HCC (HR = 1.93, log rank P = 
0.0038 and HR = 2, log rank P = 0.017, respectively, 
Figures S1C and S1D). CENPF was a risk factor for OS 
in Asian patients with HCC (HR = 4.26, log rank 
P=7E-06, Figure S1F) and in HCC cases with alcohol 
consumption (HR = 1.97, log rank P = 0.0036, Figure 
S1G).  

Inhibition of CENPF expression affects the 
proliferation, migration, and apoptosis of HCC 

Firstly, human HCC samples were used to 
confirm the expression of CENPF. According to the 
screening criteria for PPFE samples of HCC patients, 5 
HCC tissues and 5 paired adjacent non-cancerous 
samples of PPFE were selected for IHC. As result, 
CENPF protein is over-expressed in human HCC 
tissues, compared with paired adjacent non-cancerous 
samples. (Figure 7A) According to The Human 
Protein Atlas database, CENPF was also high 
expressed in HepG2 cells. (Figure 2G) Thus, CENPF 
siRNAs (siCENPF) was constructed to investigate the 
role of CENPF in human HepG2 cells. The inhibition 

efficiency of siCENPF was more than 60% at RNA and 
protein levels for CENPF, compared with siNC. 
(Figures 7B-C) In CCK-8 cell proliferation experiment, 
down-regulation of CENPF significantly inhibited cell 
proliferation in human HepG2 cells at 1 hour (Figure 
7D) and cell mobility at 24 hour (Figure 7E). 
Down-regulation of CENPF significantly inhibited cell 
migration (Figures 7F-G) and cell invasion (Figures 
7H-I) in human HepG2 cells. Additionally, flow 
cytometry analysis showed that down-regulation of 
CENPF slightly promoted cell apoptosis in human 
HepG2 cells (27.2% vs 31.8%, Figure 7J). 

GSEA outlines underlying roles of CENPF in 
oncogenic signaling pathway  

To explore the potential molecular mechanisms 
by which CENPF alters tumor development and 
progress, GSEA enrichment analysis based on TCGA 
was utilized to analysis the gene expression profiles of 
CENPFlow and CENPFhigh expression in HCC 
specimens. According to GSEA analysis of KEGG 
pathways, HCC with CENPFhigh was mainly involved 
in cell cycle, ubiquitin mediated proteolysis, and 
oocyte meiosis, etc. (Figure 8A, and Table S2) The top 
6 enrichment pathways and related genes were 
circular visualization and listed as Figure 8A. The 
normalized enrichment scores and P-values of GSEA 
analysis were figured out in Figure 8B. 
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Figure 7. The expression of CENPF is involved in the cell proliferation and migration of HCC. (A) Immunohistochemistry of CENPF in human HCC samples; Blue represents 
hematoxylin (nucleus) and dark brown represents CENPF protein. The red arrows denote the expression of CENPF protein. (B) qRT-PCR and (C) Western blotting for CENPF 
expression in HepG2 cells after cells were transfected with homo-CENPF siRNA (siCENPF) or contorl siRNA (siNC) for 48 hours. β-actin molecular weight: 42 kDa, CENPF 
molecular weight: 330 kDa. (D) Cell Counting Kit-8 experiment for cell proliferation assay. (E) Wound healing assay for cell mobility investigation; The white line reflects the 
migration ability of HepG2 cells transfected with siCENPF or siNC for 24 hours. (F) Cell metastatic ability assay of HepG2 cells transfected with siCENPF or siNC for 24 hours. 
(G) Percentage of migratory cells compared to mock group. (H) Cell invasion assay of HepG2 cells transfected with siCENPF or siNC for 24 hours. (I) Percentage of invasive cells 
compared to mock group. (J) Flow cytometry analysis of apoptosis of cells using Annexin-V/PI kit. 

 

The CENPF may participate in cell cycle 
regulation and MAPK pathway in HCC 

Furthermore, integrated GSEA enrichment 
analyses of KEGG pathway and Hallmark description 
were carried out to declare that cell cycle, G2/M 
checkpoint, mitotic spindle, and E2F targets were 
identified as the significant signatures affected by 
CENPF, indicating that CENPF might affect cell cycle 
by interacting with G2/M checkpoint, E2F targets, 
and mitotic process. (Figure 9A, and Tables S2-S3) It 

was reported that E2F1, a member of E2Fs family, was 
an pivotal transcription factor of CENPF in NCI-60 
cell line [53], and E2F1 played an important role in 
G2/M transition and cell cycle regulation[54, 55]. 
Thus, we focused on E2F1 in HCC. Venn graph 
analysis demonstrated that 9 genes (BUB1, CDK1, 
TTK, CCNB2, PLK1, CDC27, SMC1A, ESPL1, and 
ABL1) were co-expressed in these three groups. 
(Figure 9B) By screening the correlation, expression 
data and prognosis information of these nine genes 
and E2F1, we found that CDK1 and E2F1 were 
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evidently upregulated in HCC (Figure 9D, all P<0.05) 
compared with normal tissues, and significantly 
positively correlated with the expression of CENPF 
(Figure 9C, all P<0.01). The overexpression of CDK1 
and E2F1 also led to poor survival prognosis of HCC 
patients (Figure 9E, all P<0.01). Thus, 
CENPF-E2F1/CDK1 pathway mediating abnormal 

cell division in cell cycle might be a indispensable 
process in hepatocellular carcinoma. As listed in 
Figure 9F and Table S4, GSEA enrichment analysis of 
Biocarta description revealed that overexpression of 
CENPF was mostly involved in MAPK mediated 
inflammatory signaling pathway in the development 
and progress of HCC. 

 
 

 
Figure 8. GSEA enrichment analysis of KEGG pathways in HCC samples with CENPFhigh versus CENPFlow. (A) Top 6 enrichment KEGG pathways and related genes; (B) 
Normalized enrichment scores and P-values of top 6 enrichment KEGG pathways. 
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Figure 9. The CENPF may be involved in cell cycle and MAPK signaling pathway in HCC. (A) GSEA revealed that high CENPF expression was positively correlated with cell cycle 
pathway, G2/M checkpoint, mitotic spindle, and E2F targets. (B) Venn graph showed that BUB1, CDK1, TTK, CCNB2, PLK1, CDC27, SMC1A, ESPL1, and ABL1 were overlapped 
in the three groups. (C) Correlation of CDK1, E2F1 and CENPF expression in hepatocellular carcinoma. (D) Expression of CDK1 and E2F1 in hepatocellular carcinoma and 
normal liver tissues. (E) Prognostic analysis of CDK1 and E2F1 in hepatocellular carcinoma by GEPIA. (F) Top 10 GSEA enrichment analysis of Biocarta description. 

 

Signature analysis of immune infiltration in 
HCC by CIBERSORTx  

The expression matrix from TCGA datasets 
contains 424 HCC tissues divided to three groups, 
including 50 normal liver samples, 187 CENPFlow, and 
187 CENPFhigh HCC samples by median cutoffs, and 
normalized by ‘Limma’ packages. CIBERSORTx was 
applied to screen the 22 cell types potentially involved 
in the occurrence and development of HCC with low 
and high expression of CENPF. P<0.05 was 
considered as statistically significant. Then, the 
filtered information including 12 normal liver 
samples, 42 HCC samples with CENPF low 
expression and 66 HCC samples with CENPF high 
expression was considered for further analysis. The 

immune cell types of each sample in forms of relative 
percentage (Figure 10A), and expression level (Figure 
10B) were shown as heatmaps. The correlation 
between the 22 immune cell populations in HCC 
samples was shown in the Figure 10C. The principal 
component analysis (PCA) revealed that there was 
significantly different in immune infiltration between 
normal liver and HCC samples, but not obvious 
difference was found between the HCC with low 
CENPF expression group and the HCC with high 
CENPF expression group. (Figure 10D) It might 
suggest that the immune heterogeneity of the 
CENPFlow and CENPFhigh was not significant. Lastly, 
the immune enrichment fraction was significantly 
different in normal, 187 CENPFlow, and 187 CENPFhigh 
samples. (Figure 10E) As results in B cell population, 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2946 

the immune enrichment fraction of naïve B cells and 
plasma cells in HCC with CENPFhigh group were 
much lower than that in HCC with CENPFlow group 
or normal tissues. Otherwise, the immune enrichment 
index of memory B cells in HCC and normal group 
were all very low, even could not be detected. In T cell 
population, T regulatory cells (Treg), and follicular 
helper T cells were manifestly enriched in HCC with 
CENPFhigh, compared with HCC with CENPFlow or 
normal ones. However, there was no difference for 
CD8 and CD4 T cells. In NK cell population, the 
immune enrichment score of activated NK cells in 
HCC with CENPFhigh was slightly higher than that in 

HCC with CENPFlow, but the difference was not 
significant compared with normal tissues. Moreover, 
the immune enrichment score of monocytes, 
macrophages M2 in HCC with CENPFhigh than that in 
HCC with CENPFlow or normal tissues. But for 
macrophages M0, the immune enrichment score 
gradually increased in the normal, CENPFlow, and 
CENPFhigh groups. In granulocytes group, the 
immune enrichment score of resting mast cells in 
HCC with CENPFhigh or CENPFlow were higher than 
that in normal tissues. But for activated mast cells and 
eosinophils, the scores were all very low, even could 
not be detected.  

 

 
Figure 10. Immune cells infiltration analysis of three sub- groups including normal liver (n=12), CENPFlow (n=42) and CENPFhigh (n=66) samples in HCC. (A) The relative percent 
of 22 types of immune cells in each sample. (B) The difference of immune cells infiltration for three groups visualized by heatmap. The correlation between the 22 immune cell 
populations(C) and PCA analysis (D), and immune fraction (E) in HCC samples. 
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Figure 11. Objective to screen the expression, correlation and prognosis of CENPF with these five genes (LAG3, CTLA4, HAVCR2, PD-1, and PD-L1), MSI and TMB in 
hepatocellular carcinoma. (A) The expression of these five genes in CENPFhigh, CENPFlow , and normal liver tissues. (B) The correlation between CENPF and five genes in HCC. 
(C) Survival analysis of the five genes in HCC. Correlation analysis of CENPF expression and MSI(D) and TMB(E) in HCC. The horizontal axis in the figure represents the 
expression distribution of the gene, and the ordinate is the expression distribution of the TMB/MSI score. The density curve on the right represents the distribution trend of the 
TMB/MSI score; the upper density curve represents the distribution trend of the gene; the top side. The value represents the correlation p value, correlation coefficient and 
correlation calculation method. 

 
In addition, the mRNA levels of LAG3, CTLA4, 

HAVCR2, PD-1, and PD-L1 in HCC samples, which 
were closely related to tumor immunosuppression or 
tolerance, were shown in Figure 11. The expression of 
LAG3, CTLA4, PD-1, and PD-L1 were upregulated in 
HCC with CENPFhigh, compared to HCC with 
CENPFlow. (Figure 11A) Moreover, the correlation 

between the expression of these five genes and 
CENPF were further explored in HCC patients. The 
expression of LAG3, CTLA4, HAVCR2, PD-1, and 
PD-L1 were not markedly positive correlated with 
CENPF (Figure 11B, all R<0.75), and there was no 
significant correlation between the expression of these 
five genes and the overall survival rate in HCC 
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patients (Figure 11C, all P>0.05). Lastly, the 
correlation between CENPF expression and MSI or 
TMB were also screened. It showed that the 
expression of CENPF was not significantly related to 
MSI or TMB in HCC (Figures 11D-E, all the value of 
Spearman's correlation coefficient, |ρ Spearman |, is 
close to 0). 

Discussion 
Numerous studies have manifested that CENPF 

is not only involved in cell proliferation but also in 
tumorigenesis [26-28]. In the past few years, evidence 
has accumulated that abnormal expression or 
activation of CENPF is a common phenomenon in 
malignant tumors, and there is a significant 
correlation between CENPF and tumorigenesis or 
progression in cancer patients, including HCC [27, 
28], prostate cancer, breast cancer [29], and other 
tumors [30], which has been partially confirmed. 
Aytes A, et al. reported that CENPF has been 
identified as a major co-regulator of prostate cancer 
and a poor prognostic indicator of survival and 
metastasis [31]. However, the patterns of expression 
and the exact roles of CENPF in HCC patients are not 
yet well known, and the molecular mechanism and 
the functions of CENPF remain undefined. The 
purpose of this study was to systematically 
investigate the expression alteration, prognostic 
values, correlation, and potential functions of CENPF 
in HCC.  

Integration of multiple arrays has been viewed 
as a more reasonable method to improve detection 
capabilities and enhancing the reliability of results 
than single array analysis [56]. In present study, we 
have gained insight into gene expression of CENPF 
through analyzing HCC datasets from GEO, TCGA 
and Oncomine. Moreover, protein expression of 
CENPF in HCC tissues and their associated normal 
tissues were also screened in The Human Protein 
Atlas by IHC staining. The staining intensity of 
CENPF antibody was mainly in HCC tissues and 
weakly positive in normal adjacent tissues. The 
information from GEO datasets indicated that CENPF 
was upregulated in HCC, including primary and 
metastasis with lung or adrenal gland tissue, 
compared with normal ones. But no significant 
difference was found between primary HCC and 
HCC with lung or adrenal gland metastasis tissues. 
Consistent with the results, CENPF was found to be 
significantly upregulated in cirrhosis, liver cell 
dysplasia and HCC tumors compared with normal 
livers. Additionally, Sung WK et al. reported that the 
expression of CENPF is significantly higher in HCC 
tissues than that in cirrhosis [57]. Wurmbach E et al. 
reported that mRNA level of CENPF is significantly 

upregulated in HCC tissues than that in cirrhosis, in 
liver cell dysplasia and in normal livers. But no 
significant difference was found between cirrhosis or 
liver cell dysplasia and normal livers. [58] Based on 
TCGA datasets, uni-cox and mult-cox analysis was 
performed to figure out that the CENPF expression 
and pTNM stage might be independent prognostic 
factors in HCC patients. Hence, we assumed that 
CENPF may be emerging as a biomarker to 
distinguish HCC from normal livers, but further 
studies should be conducted to discriminate benign 
liver lesions from normal livers.  

Then, Kaplan–Meier analyses of CENPF were 
performed to show that high expression levels of 
CENPF in tumor were significantly associated with 
the deterioration of OS and PFS in HCC patients. 
Overexpression of CENPF were associated with poor 
1-year, 3-year and 5-year OS, and it seemed that 
hazard ratio (HR) of CENPF overexpression 
associated with OS was more obvious in the early 
years of HCC. In subgroup analyses, overall survival 
comparison in population of Asian, both male and 
female and without hepatitis virus infection were 
significantly associated with worse OS in HCC 
patients with CENPF overexpression (Figure S1). It 
indicated that this may provide a clue to the prognosis 
or treatment of HCC patients with high expression of 
CENPF and non-hepatitis virus infection. A series of 
publication reinforced our results. Dai Y et al. showed 
that upregulation of CENPF in HCC is positively 
associated with serum AFP, venous invasion, 
advanced differentiation stage and a shorter overall 
survival, and overexpression of CENPF was a risk 
factor for the prognosis of HCC. Inhibition of CENPF 
expression could reduce the ability of cell 
proliferation, migration, and tumor formation in nude 
mice, and block the cell cycle at G2/M checkpoint. 
[27] Kim H E et al. reported that gene amplification of 
CENPF is closely related to tumor formation and 
development, and it plays a role as a cancer-driver 
gene in human cancers [59]. A recent study identified 
that overexpression of CENPF and/or Lymphoid- 
specific helicase (LSH) are correlated with shorter 
overall survival and higher cumulative recurrence 
rates in HCC patients. LSH may promote the 
development of HCC by transcriptional regulation of 
CENPF expression [28]. Generally, our findings 
suggested that CENPF was overexpressed in HCC 
and might play a critical role in driving HCC 
tumorigenesis. Functionally, as a member of 
centromere protein family, CENPF might exert a 
pivotal role through regulating chromosome 
segregation during mitosis cell cycle at G2/M 
checkpoint.  
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For the purpose of verifying the above results, 
immunohistochemistry for the human samples was 
performed to confirm that the expression of CENPF 
was upregulated in HCC patients, compared with 
paired adjacent tissues. Furthermore, a 
down-regulation system of CENPF, siRNA, was 
constructed to probe the effect of CENPF on the 
function of hepatoma cells in the cell line of human 
HepG2 cells. The results asserted that 
down-regulation of CENPF inhibited the 
proliferation, migration, and invasion of HCC cells, 
and slight promoted the apoptosis of HCC cells 
(27.2% vs 31.8%, Figure 7J). It suggested that CENPF 
might play a crucial role in promoting the 
proliferation, migration, invasion, and inhibiting 
apoptosis of HCC cells during the progression or 
deterioration of HCC. 

Then, the Gene-set enrichment analysis (GSEA) 
of KEGG pathway from TCGA datasets in current 
study pointed out that CENPFhigh was mostly 
enriched in cell cycle pathway, closely related to the 
occurrence of a variety of tumors. Meanwhile, 
according to Hallmark description and Biocarta 
description, we found that CENPF was closely related 
to E2F1 and CDK1in the regulation of cell cycle, 
especially during G2 / M transition of mitosis. In 
addition, CENPF might also participate in MAPK 
signaling pathway in the development and 
progression of HCC. Therefore, our viewpoint threw 
light on the growing evidence regarding CENPF 
interactive genes and their associated signaling 
pathways, which might provide clues for the 
development of CENPF-mediated targeted therapy. 
However, further molecular mechanism, 
pharmaceutical and clinical studies are needed to 
confirm this prediction. Unfortunately, further 
experimental research for exploring the latent 
carcinogenic mechanism of CENPF in the occurrence 
and development of HCC could not be carried out by 
us. And, we did not have our own follow-up 
information of HCC patients. 

As far as we know, HCC is tumor with primarily 
resistance to chemotherapeutic drugs [18]. Although 
novel biomarkers and multiple molecular 
mechanisms of HCC have been studied, effective 
drugs for the treatment of HCC are still scarce [60]. As 
one of hallmarks of cancer, immune 
microenvironment and immunotherapy has attracted 
much attention in the research of liver cancer in recent 
years. The presence of lymphocytic infiltration in 
tumors has been considered to be one of the 
prerequisites for immunotherapy [61]. In this paper, 
immune cell infiltration analysis of HCC with CENPF 
high and low expression was constructed by 
CIBERSORTx to reveal that the immune cell types 

were significantly different in HCC samples with 
CENPFhigh, compared with normal liver samples, and 
HCC samples with CENPFlow. As results, T regulatory 
cells (Treg), follicular helper T cells, macrophages M0, 
and resting mast cells were manifestly enriched in 
HCC with CENPFhigh, compared with CENPFlow or 
normal ones. While monocytes, macrophages M1 and 
M2, activated NK cells were downregulated in 
CENPFhigh group, compared with CENPFlow group. 
The proportion B cells was low, and most of them 
were in the state of naïve B cells. The result declared 
that immunosuppressive microenvironment has 
played predominant roles in the occurrence and 
development of HCC with CENPF high expression, 
such as high immune infiltration score of Treg, resting 
mast cells, and down-regulation of monocytes and 
neutrophils. 

A variety of immunosuppressive mechanisms 
have been found in tumor microenvironment, 
including PD-1 / PD-L1, CTLA-4, PD-L1, LAG3, etc. 
Thus, five genes closely related to immunotherapy 
were investigated in this study. As reported, LAG-3 
was confirmed to be involved in the proliferation of T 
cells in vitro and in vivo. Costimulatory molecules, 
including LAG3, PD-1, CTLA4, and TIGIT, are 
expressed on dysfunctional or depleted T cells in 
chronic viral infection and tumor [62]. Tumor growth 
was inhibited in LAG3 knockout mice [63]. As results, 
LAG-3, CTLA-4, PD-1, and PD-L1 were enriched in in 
HCC samples with CENPFhigh, compared with 
CENPFlow or normal groups, but no significant 
positive correlation was found between expression of 
LAG3, CTLA4, HAVCR2, PD-1, and PD-L1 and the 
expression of CENPF. The OS of the five gene was not 
statistically significant in HCC patients. Therefore, 
HCC patients with CENPFhigh group may not benefit 
from immunotherapy targeting these five genes.  

The incidence of MSI is high in a variety of 
tumors, such as endometrial carcinoma, intestinal 
adenocarcinoma, gastric adenocarcinoma and so on. 
As a molecular marker of tumor cells, MSI-H plays an 
important role in predicting the antitumor effect of 
PD-1 / PD-L1 inhibitors [64, 65]. Additionally, clinical 
studies have shown that TMB is closely related to the 
efficacy of existing PD-1 / PD-L1 inhibitors. Patients 
with high TMB are more likely to benefit from 
immunotherapy. TMB, as an independent factor of 
immune response to PD-L1, has a positive linear 
correlation with immune response, and its scope of 
application is not limited by pathological types [66]. 
However, the expression of CENPF was not 
significantly related to MSI or TMB in HCC with the 
CENPF expression.  

Collectively, we speculated that immunotherapy 
targeting these five target genes (especially including 
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PD-1 / PD-L1, MSI, and TMB) has no obvious effect in 
patients with HCC with high CENPF expression. 
However, several immunosuppressive regents, 
including Treg, resting mast cells, monocytes, and 
neutrophils, might be viewed as potential therapeutic 
targets for the immunotherapy of HCC patients with 
CENPFhigh. 

Eventually, based on current reports, a 
hypothesis was cautiously drawn that overexpression 
of CENPF contributed to unfavorable prognosis in 
HCC patients. Inhibition of CENPF expression might 
be conducive to alleviate the progression or treatment 
of HCC. 

In summary, our study gave results that the 
mRNA and protein expression levels of CENPF were 
significantly upregulated in HCC. Aberrant 
expression of CENPF was associated with the clinical 
prognosis of HCC patients. The overexpression of 
CENPF was tightly connected to the mitosis of cancer 
cells and the occurrence and development of HCC. 
The results suggested that CENPF may serve as 
potential prognostic biomarkers and targets for HCC 
patients. Meanwhile, these results may be helpful for 
us to better understand the molecular mechanism of 
HCC and useful to develop tools for more accurate 
HCC prognosis and promote the development of 
CENPF-mediated therapeutic drugs for HCC. 
Evidently, further research on the basic molecular 
mechanism and clinical application of CENPF are still 
needed to improve the clinical value of CENPF as a 
prognostic indicator or therapeutic target for HCC. 
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