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Abstract 

Background: Ovarian cancer (OC) has the highest mortality among gynecological malignancies, and 
resistance to chemotherapy drugs is common. We aim to develop a machine learning approach based on 
gut microbiota to predict the chemotherapy resistance of OC. 
Methods: The study included patients diagnosed with OC by pathology and treated with platinum and 
paclitaxel in Shengjing Hospital of China Medical University between 2017 and 2018. Fecal samples were 
collected from patients, and 16S rRNA sequencing was used to analyze the differences in gut microbiota 
between OC patients with and without chemotherapy resistance. Nine machine learning classifiers were 
used to derive the chemotherapy resistance of OC from gut microbiota. 
Results: A total of 77 chemoresistant OC patients and 97 chemosensitive OC patients were enrolled. 
The gut microbiota diversity was higher in OC patients with chemotherapy resistance. There were 
statistically significant differences between the two groups in Shannon indexes (P <0.05) and Simpson 
indexes (P <0.05). Machine learning techniques can predict the chemoresistance of OC, and the random 
forest showed the best performance among all models. The area under the ROC curve for RF model was 
0.909. 
Conclusions: The diversity of gut microbiota was higher in OC patients with chemotherapy resistance. 
Further studies are warranted to validate our findings based on machine learning techniques. 
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Introduction 
Ovarian cancer (OC) is the leading cause of 

mortality among gynecologic malignancies 
worldwide, although the burden estimates (e.g. 
incidence, prevalence, and mortality) of this disease 
show a decrease in recent decades [1,2]. Because of the 
lack of specific symptoms, most OC patients are 
diagnosed at late stages [3]. Platinum and paclitaxel 
are currently the first-line chemotherapy regimens for 
OC. However, despite advances in treatment 
modalities, the prognosis of patients with OC remains 
poor. Approximately 20% to 30% of OC patients show 
recurrence or disease progression within 6 months 
after chemotherapy, and the median overall survival 

is approximately 12–18 months, requiring repeated 
systemic treatment [1]. Additionally, intrinsic 
resistance occurs in approximately 15-25% of patients 
with OC, and almost all patients with recurrent 
disease ultimately develop platinum resistance, which 
can result in death [5,6]. Chemotherapy resistance is 
related to multiple mechanisms such as alterations in 
the transport and cellular turnover of the drug and 
nonspecific cytoplasmic defense systems and DNA 
repair molecular systems [7]. Many studies have 
looked into resistance mechanisms in the past and 
have provided insight into platinum resistance. 
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The intestinal microbiome plays a crucial role in 
modulating the risk of several chronic diseases, 
including obesity [8,9], cardiovascular disease [10], 
metabolic abnormalities [11], and cancer [12]. The 
delicate balance of the intestinal microbiome 
composition is essential for maintaining intestinal 
immunity and whole-body homeostasis [13]. Gut 
microbiota imbalance is closely related to the 
occurrence of cancers [14,15]. Imbalance of the 
intestinal microbiota can be transferred to adjoining 
organs or even to distant organs through the blood 
[13]. For example, the gut microbiota can affect the 
liver, activating the immune system and causing 
necrosis and apoptosis of liver cells, which can lead to 
the formation of severe fibrosis and even liver cancer 
[16]. A recent report showed that Fusobacterium 
nucleatum promotes chemoresistance in colorectal 
cancer by inducing autophagy and selective loss of 
miR-18a* and miR-4802 in cancer cells [17]. 

In OC, Chase et al. published a review and 
demonstrated that the microbiota is linked to OC 
initiation and progression through effects on 
intestinal inflammation and tumor-related signaling 
pathways [18]. A recent study showed that the 
microbial composition and its alterations are 
associated with OC, as the diversity and richness 
indexes were significantly decreased in OC tissues 
[19]. The ratio of the two phyla for Proteobacteria/ 
Firmicutes is increased in OC, and a set of genes 
named human antibacterial-response genes that 
include inflammation-associated or immune- 
associated genes are involved in OC initiation and 
progression [19]. However, the relationship between 
the gut microbiota and chemotherapy resistance in 
OC patients has not been investigated to date. 

Unlike traditional prediction models (e.g., 
logistic regression), modern machine learning can 
automatically learn the underlying patterns of data 
without any implicit assumptions. It has become an 
alternative method for developing prediction models 
[20]. In this study, we firstly use 16S rRNA sequencing 
technology to characterize the overall structure of gut 
microbiota in chemoresistant and chemosensitive OC 
patients. Furthermore, machine learning is used to 
find the key microbiota that can predict the 
chemotherapy response of OC. 

Materials and methods 
Patient enrollment and sample collection 

This study was a case-control study conducted at 
Shengjing Hospital of China Medical University 
(Shenyang, China) between 2017 and 2018. The 
inclusion criteria were patients aged 18-75 years who 
were diagnosed with OC by pathology and who had 

complete medical records. All enrolled patients 
received optimally and maximally cytoreduced 
surgery. And all patients took carboplatin and taxol as 
the primary chemotherapy regimens, no other 
chemotherapy drugs such as bevacizumab were used. 
According to the 2016 clinical practice guidelines in 
OC published by the National Comprehensive Cancer 
Network, chemotherapy resistant was defined as an 
initial response to chemotherapy followed by relapse 
within 6 months of the completion of chemotherapy 
[21]. Chemotherapy sensitive was defined as a clear 
response to chemotherapy treatment and relapsed 
after more than 6 months of the completion of 
chemotherapy treatment. Subjects who had taken 
antibiotics or probiotics in the past 1 month were 
excluded. Subjects who receiving neoadjuvant 
chemotherapy were also excluded. The above 
information was obtained from medical records. 
Chemoresistant OC patients were selected as the case 
group, and chemosensitive patients matched by age, 
International Federation of Gynecology and 
Obstetrics (FIGO) stage, and pathological 
classification were selected as the control group. This 
study was approved by the Ethics Committee of 
Shengjing Hospital of China Medical University 
(2015PS38K). The clinical information of this study 
was extracted from the electronic medical record 
system of Shengjing Hospital of China Medical 
University, fully protect the privacy of patients. Stool 
samples were collected after routine diagnosis and 
treatment in clinic, which did no harm to patients. 

Sample collection, DNA extraction, and 16S 
rRNA gene amplification sequencing 

Fecal samples were collected at the hospital 
before each chemotherapy. Fresh fecal samples were 
collected from enrolled patients after natural 
defection in the clean toilet, using the scoop in the 
collection tube take 3-5 g fecal and place in the 
collection tube. Then used sterilized 2.5 mL tubes 
containing pure ethanol and frozen at -80 °C until 
DNA extraction [22]. Total DNA from fecal samples 
was extracted using the Cetyltrimethylammonium 
bromide method [23]. DNA concentration and purity 
were monitored on 1% agarose gels. According to the 
concentration, DNA was diluted to 1 ng/μL using 
sterile water. Amplification and sequencing of the V4 
hypervariable region of the 16S rRNA gene was 
performed using the validated, region-specific 
bacterial primers 515F (5′-GTGCCAGCMGCCGCGG 
TAA-3′) and 806R (5′-GGACTACHVGGGTWTCT 
AAT-3′) [24]. 16S rRNA genes were amplified used 
the specific primer with the barcode. All PCR 
reactions were carried out in 30 μL reactions with 15 
μL of Phusion® High-Fidelity PCR Master Mix (New 
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England Biolabs), 0.2 μM of forward and reverse 
primers, and 10 ng template DNA. Thermal cycling 
consisted of initial denaturation at 98 °C for 1 min, 
followed by 30 cycles of denaturation at 98 °C for 10 s, 
annealing at 50 °C for 30 s, and elongation at 72 °C for 
30 s, with a final step at 72 °C for 5 min. Amplified 
products from fecal samples were verified by gel 
electrophoresis using 5 mL of the PCR reaction 
mixture in a 2% agarose gel. The PCR products were 
purified using the GeneJET Gel Extraction Kit 
(Thermo Scientific). Sequencing libraries were 
generated using NEB Next® Ultra™ DNA Library 
Prep Kit for Illumina (NEB, USA) following the 
manufacturer’s recommendations, and index codes 
were added. The library quality was assessed on the 
Qubit@ 2.0 Fluorometer (Thermo Scientific) and 
Agilent Bioanalyzer 2100 system. The library was 
sequenced on an Illumina HiSeq platform and 250 bp 
paired-end reads were generated. 

Analysis of 16S rRNA gene sequences 
Sequences were analyzed using the Quantitative 

Insights Into Microbial Ecology (QIIME) software 
package [25], and in-house Perl scripts were used to 
analyze alpha-(within samples) and beta-(among 
samples) diversity. First, reads were filtered by QIIME 
quality filters. Then, pick_de_novo_otus.py was used 
to pick operational taxonomic units (OTUs) by 
generating an OTU table. Sequences with ≥ 97% 
similarity were assigned to the same OTUs. 
Representative sequences for each OTU were selected, 
and the RDP classifier was used to annotate 
taxonomic information for each representative 
sequence [26]. The OTUs that reached a 97-nucleotide 
similarity level were used for alpha diversity 
(Shannon, Simpson index) and richness analysis (ACE 
and Chao1, respectively). Rarefaction curves and 
Rank-Abundance curve were generated based on 
these three metrics. 

Construction of gut bacterial database and 
data preprocessing 

The main purpose of this study was to develop a 
machine learning approach based on gut microbiota. 
The relative abundance of gut microbiota was used to 
construct the database. Those unclear gut microbiota 
were eliminated. Since the relative abundance value 
of all data is too small, -log10 is used for processing, 
and the missing value is treated as -log10 (1e-10). 

Supervised machine learning classifiers 
In this study, nine types of supervised machine 

learning classifiers, including Naive Bayes (NB), 
Generalized Linear Model (GLM), Logistic Regression 
(LR), Fast Large Margin (FLM), Deep Learn (DL), 
Decision Tree (DT), Random Forest (RF), Gradient 

Boosted Trees (GBT), and Support Vector Machine 
(SVM) were assessed [27]. All machine learning 
classifiers were implemented using RapidMiner 
(9.5.001) with the default parameters. 

Random Forest model classifier 
The random forest (RF) was implemented using 

the randomforest package in R (http://cran.r- 
project.org//). RF classification is an ensemble 
learning method widely used for classification of 
large data [28]. Random forest classification algorithm 
is based on the constructing multiple decision trees 
according to the bagging method: each tree is 
constructed independently from a bootstrap sample 
of the entire dataset [29]. To avoid overfitting, each 
decision point, is split using the best abundance 
threshold in the randomly selected prediction subset, 
which based on the Gini criterion [29]. At RF model, 
parameters such as mtry, nodes, trees, and node size 
have a significant impact on the performance of the 
model. The optimum parameters were carried out 
using the tuneRF fuction present in the RF package of 
R [30]. Using the method of random sampling, 70% of 
the samples were used as training set to build the 
model, and the remaining 30% were used as test set to 
evaluate the model performance. Classifiers were 
trained using repeated 5-fold cross-validation of 
training dataset, and predictive performance was 
evaluated in the test dataset [31]. Workflow for 
prediction of chemotherapy resistance in OC using 
machine learning methods and detailed RF model are 
presented in Fig. 1. 

Results 
Study population 

A total of 174 OC patients were enrolled, of 
which 77 were resistance to chemotherapy and 97 
were not. The characteristics of the participants are 
shown in Table 1. The baseline characteristics of the 
two groups showed no differences in age, FIGO stage, 
and pathological typing (P > 0.05). 

 

Table 1. Characteristics of ovarian cancer patients with or 
without chemotherapy resistance 

 Total Chemoresistant Chemosensitive P value 
No. of case 174 77 97  
Age (Mean ± SD) 55.87±9.65 56.77±9.45 55.16±9.79 0.278 
FIGO stage (%)    0.072 
I 36 (20.7) 12 (15.6) 24 (24.7)  
II 8 (4.6) 1 (1.3) 7 (7.2)  
III 111 (63.8) 53 (68.8) 58 (59.8)  
IV 19 (10.9) 11 (14.3) 8 (8.2)  
Pathological type (%)   0.941 
Serous 109 (62.6) 48 (62.3) 61 (62.9)  
Non-serous 65 (37.4) 29 (37.7) 36 (37.1)  
FIGO, International Federation of Gynecology and Obstetrics; SD, standard 
deviation. 
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Gut microbiota structure in OC patients 
Based on sequencing platform, single-end 

sequencing method was used to construct small 
fragment library for single-end sequencing. Through 
Reads shearing and filtering, 73,170 Reads were 
measured on average per sample, and 69,440 effective 
data were obtained on average after quality control, 
with the quality control effective rate reaching 94.96%. 
To characterize the gut microbiota structure in OC 
patients with or without chemotherapy resistance, the 
estimators of OTU number, coverage percentage, 
community richness index (Chao1 and ACE), and 
diversity index (Shannon and Simpsons) were 
compared between the two groups (Table 2). With 
97% Identity, sequence clustering is transformed into 
Operational Taxonomic Units, and a total of 3,049 
OTUs are obtained. And 2049 of 3,049 OTUs were 
shared between the two groups, accounting for 67.2% 
of the total richness. There were 273 OC patients with 
chemotherapy resistance specific-species and 727 
patients without chemotherapy resistance 
specific-species. Good’s coverage approached 99.8%, 
indicating that the sequencing depth of intestinal 
microbiomes was reasonable. Adonis testing showed 

that the evenness of the groups was significantly 
different (R2 = 0.01002, P < 0.05). There were 
statistically significant differences between the two 
groups in Shannon indexes (P < 0.05, Fig. 2A) and 
Simpson indexes (P < 0.05, Fig. 2B), demonstrating 
that the microbiota diversity was significantly 
higher in the chemoresistant group than in the 
chemosensitive group. The richness of the 
chemoresistant group was slightly lower than that 
of the no chemotherapy resistance group, whereas 
the richness of the two groups did not differ 
significantly in the ACE indexes (P = 0.0809) and 
Chao1 indexes (P = 0.0709). Consistently, 
rarefaction curve analysis showed that the richness 
of chemoresistant OC patients tended to be lower 
than that of the control group (Fig. 2C). The rank 
abundance curve showed that the right tail of 
chemosensitive OC patients was longer, 
demonstrating a higher abundance and more 
uniform distribution than that of chemotherapy 
resistant patients (Fig. 2D). At the phylum level, we 
found that Firmicutes, Proteobacteria and Bacteroidetes 
are the main ones that occupy the dominant 
position. The dominant class are Gammaproteo-
bacteria, Bacteroidia and Clostridia. The dominant 
species at the order level are Enterobacteriales, 
Bacteroidales and Clostridiales. The dominant species 
in the family level are Enterobacteriaceae, 
Bacteroidaceae and Lachnospiraceae. The dominant 

species in genus level were unidentified_ 
Enterobacteriaceae, Bacteroides and Faecalibacterium. 

 

Table 2. Comparison of phylotype coverage, richness, and 
diversity estimation of two groups according to 16S rRNA 
sequencing analysis 

Group No. of 
OUTs* 

Good’s 
(%) 

Richness Diversity 
ACE Chao1 Shannon Simpson 

Chemoresistant 2322 99.76 521 501 5.42 0.939 
Chemosensitive 2776 99.75 547 522 5.19 0.925 
*The operational taxonomic units (OTUs) were defined at the 97% similarity level. 

 
 
According to the results of 16S rRNA, the 

phylogenetic tree was constructed to represent the 
evolutionary relationship among various species. As 
shown in Fig. 3, Firmicutes, Proteobacteria, and 
Bacteroidetes phylum had higher abundance in both 
chemosensitive and chemoresistant OC patients. 
Among them, Firmicutes was the highest abundant 
phylum, which contains nearly half of all constructed 
evolutionary trees, fully demonstrating the richness 
and diversity of intestinal microbial community 
species. Roseburia also appears in the phylogenetic 
tree and belongs to Firmicutes phylum. 

 
Figure 1. The working process of machine learning and random forest model. 
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Figure 2. Comparison of the gut microbiota structures between chemoresistant and chemosensitive ovarian cancer patients. (A) Shannon index (B) Simpson index (C) 
Rarefaction curves (D) Rank-Abundance Curve. 

 

Table 3. Performance comparison of different machine learning 
methods using RapidMiner 

Model Accuracy Standard Deviation Gains 
Naive Bayes 0.56 0.1 0.0 
Generalized Linear Model 0.58 0.1 4.0 
Logistic Regression 0.56 0.1 0.0 
Fast Large Margin 0.50 0.1 -6.0 
Deep Learning 0.56 0.1 0.0 
Decision Tree 0.50 0.1 -4.0 
Random Forest    0.60 0.1 4.0 
Gradient Boosted Trees 0.54 0.1 -4.0 
Support Vector Machine 0.58 0.1 2.0 

 

Selection and implementation of machine 
learning methods 

To select the best performing model for 
classification, we used RapidMiner to compare the 
performances of different machine learning 
approaches. The comparison results are as follows 
(Table 3). All models were implemented with the 
default parameters. The random forest model has the 
highest stability, and its prediction accuracy is 0.60, 

which is better than any single regression. 

Prediction of gut microbiota for the 
chemoresistant of OC 

Next, we attempted to predict the 
chemoresistant of OC by using gut microbiota and RF 
model. All the bacteria were treated with tSNE 
dimensionality reduction, and the uniformity 
reflected the sample quality control (Fig. 4A). The top 
20 variable importance for RF-based prediction of 
chemoresistant of OC are shown in Fig. 4B. The mean 
decrease in gini index was used as a measure of 
variable importance. We found that Angleakisella, 
Arenimonas, and Roseburia have the top three 
importance in random forest model. The AUC values 
of the ROC curve was 0.909 (Fig. 4C). This proves that 
gut microbiota is related to chemotherapy resistance 
of and makes it possible to predict the effect of 
chemotherapy by gut microbiota. Findings were 
robust in the sensitivity analysis of patients with 
FIGO stage III-IV (data not shown). 
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Figure 3. Phylogenetic tree of top 100 abundant species at genus level of ovarian cancer patients undergoing chemotherapy. 

 

Discussion 
To the best of our knowledge, this is the first 

study to investigate the differences in the gut 
microbiota between OC patients with and without 
chemotherapy resistance via 16S rRNA sequencing 
analysis. Due to the difficulty in identifying the key 
characteristic microbiota of the original relative 
abundance, machine learning methods can be used to 
find more characteristic relationships. Machine 
learning methods such as random forest model were 
used to construct the prediction of chemotherapy 
response of OC based on gut microbiota. 

Analysis of the overall gut microbiota 
distribution showed that the gut microbiota diversity 
was higher in chemoresistant OC patients. 
Proteobacteria was the most abundant phylum in 
chemoresistant OC patients, and Firmicutes was 

found in chemosensitive OC patients. Among the nine 
machine learning methods, RF model had the highest 
prediction accuracy. Through RF model the 
relationship between gut microbiota and 
chemotherapy response of OC can be further 
established. Gut microbiota such as Angelakisella, 
Arenimonas and Roseburia was identified as a potential 
microbial biomarker for discriminating OC patients 
with chemoresistant OC patients from those 
chemosensitive. 

There are few studies analyzing the relationship 
between the gut microbiota and cancer chemotherapy 
resistance. Choi et al. showed that the intestinal 
microbiota was related to chemotherapy resistance in 
colorectal cancer [32]. These authors reported that 
enteropathogenic Escherichia coli induces 
macrophage inhibitory cytokine 1 to mediate the 
rapid growth and spread of intestinal cancers and 
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causes colorectal cancer chemotherapy resistance. 
Zhang [33] and Yu [17] reported that high 
Fusobacterium nucleatum abundance is linked to 
colorectal cancer chemosensitivity. Fusobacterium 
nucleatum decreases the chemosensitivity of 
colorectal cancer to chemotherapy drugs, suggesting 
that the concentration of this bacterium may be an 
indicator of prognosis and an early warning of the 
risk of chemotherapy resistance. A recent study 
suggested that an unhealthy gut microbiota 
contributes to the aggressiveness and invasiveness of 
hormone receptor-positive breast cancer [34]. 
Additionally, mouse experiments showed that the 
Salmonella enterica serotype Typhimurium inhibits 
the expression of P-glycoprotein, thereby increasing 
the chemosensitivity of cancer cells [35]. 

The present study had a similar research design 
by exploring the relationship between intestinal 
microbiota and chemotherapy resistance in OC [35]. 
The involvement of the gut microbiota in the 
development and progression of OC has been 
reported previously. Zhou et al. [19] compared the 
microbiota between ovarian tissues and normal distal 

fallopian tube tissues, and showed that Proteobacteria 
and Firmicutes are bacteria associated with OC. This 
is consistent with the present study, as variations in 
Proteobacteria and Firmicutes were associated with 
OC with chemotherapy resistance. 

The exact biological mechanisms linking gut 
microbiota to OC chemotherapeutic response are 
unknown. However, several potential mechanisms 
have been proposed. Cancer gene and epigenetic 
alterations associated with OC chemotherapeutic 
response have been widely reported [19]. Recent 
studies in mice showed that the intestinal microbiota 
modulates immune responses, affecting 
chemotherapy and immunotherapy [38]. Studies in 
humans showed that the adaptive immune system 
can modulate OC chemical sensitivity [39]. Roseburia 
is a typical butyrate producing bacterium that plays a 
role in the treatment and prevention of atherosclerosis 
[40] and obesity-related diseases [41]. Roseburia is 
increased in cervical cancer patients compared with 
healthy controls, indicating that it may serve as a 
novel potential biomarker for cervical cancer [42]. A 
recent study showed that butyric acid, a short-chain 

 

 
Figure 4. Prediction of gut microbiota for the chemoresistant of ovarian cancer patients. (A) tSNE dimensionality reduction analysis (B) top 20 variable importance in random 
forest model (C) receiver operating characteristic curve of random forest model. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2884 

fatty acid produced by dietary fiber fermented by the 
gut microbiota, can induce the expansion of Treg cells 
and the production of inflammatory cytokines, reduce 
tumor resistance, and inhibit the occurrence of 
colorectal cancer [43]. The Roseburia genus and 
Fusobacterium nucleatum genus belong to the 
Clostridiales order. Fusobacterium nucleatum targets 
TLR4 and MYD88 innate immune signaling and 
specific microRNAs to activate the autophagy 
pathway and alter the chemotherapeutic response in 
colorectal cancer [17]. Research on the resistance 
mechanism of Roseburia is limited. Additional basic 
research is warranted to explore the mechanism 
underlying the effect of Roseburia on OC 
chemotherapy resistance in the future. At present, 
there is no study on Angelakisella, and there are few 
studies on Arenimonas. Angelakisella are gram-negative 
bacilli with a very elongated shape [44]. Arenimonas 
are gram-negative bacilli and usually found in natural 
soil and water environments [44]. 

The present study is the first to explore the 
relationship between the gut microbiota and OC 
patients with chemotherapy resistance. Furthermore, 
the sample size of our study was large. Machine 
learning methods such as random forest are powerful 
tools to predict the chemotherapy response of OC 
patients. All enrolled patients received optimally and 
maximally cytoreduced surgery and take the same 
chemotherapy regimens. The consistency in the 
enrolled patients is another strength of the study. The 
two groups were comparable in age, FIGO stage, and 
pathological typing, reducing the impact of 
confounding factors. The present study had some 
limitations. First, exercise and dietary information 
were not collected and analyzed. Exercise and diet can 
modify the gut microbiota, which in turn has a 
profound influence on health [47,48]. However, the 
exercise and diet regimens of OC patients during 
chemotherapy are similar [49] and approximately 81% 
of OC patients do not meet the recommended 
physical activity guidelines. Second, although we 
excluded subjects who had taken antibiotics or 
probiotics in the month prior to the study, subjects 
who took other medicines for OC were not excluded 
for ethical reasons. Third, because of the case-control 
study design, we failed to determine the causal 
relationship between variation in the gut microbiota 
and chemotherapy resistance in OC. Whether changes 
in bacterial abundance are a causative factor for 
chemotherapy resistance or a response to the OC 
microenvironment needs to be further explored. 
Longitudinal studies should also be conducted to 
identify microbial biomarkers contributing to 
chemotherapy resistance in OC. Fourth, although the 
performance of internally validation of the RF model 

was good, this situation is not reality limited by the 
wave of intestinal changes as well as has high false 
positive. Additionally, we failed to carry out the 
external validation in the present study. Therefore, 
our findings should be interpreted with cautious. 
Future studies are warranted to validate our findings. 

In summary, the present study showed that 
there are differences in the gut microbiota between 
OC patients with and without chemotherapy 
resistance. The diversity of the intestinal microbiota 
was higher in the chemoresistant group. RF model can 
predict the chemoresistance of OC based on gut 
microbiota. Further studies with better design and 
more detailed analysis are warranted in the future. 
Findings from these studies may provide the 
possibility of predicting the effect of chemotherapy 
treatment through intestinal flora in clinic, and guides 
doctors to choose different treatment schemes, so as to 
reduce the burden on patients. 
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