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Abstract 

Objective: We aimed to explore the prognostic implication for non-small cell lung cancer (NSCLC) based on 
the expression profiles of circadian clock-related genes (CCRGs), and describe the changes of immune 
infiltration and cell functions of related to the circadian rhythm. 
Methods: Univariate and multivariate Cox proportional hazard regression were performed to determine a 
CCRGs risk-score significantly correlated with overall survival (OS) of the training set and validation set. GO, 
KEGG, and GSVA indicated discrepant changes in cellular processes and signaling pathways associated with 
these CCRGs. Immune cell infiltration and mutation rates were investigated by the online analysis platform and 
the algorithm provided by works of literature. 
Results: The signature-based on ten-gene signatures could independently predict the OS both in TCGA lung 
adenocarcinoma (p < 0.001, HR: 1.228, 95% CI: 1.158 to 1.302) and lung squamous cell carcinoma (p < 0.001, 
HR: 2.501, 95% CI: 2.010 to 3.117), respectively. The circadian oscillations driven by CCRGs could disturb the 
metabolism and cellular functions of cancer cells. The infiltration level of critical cells in specific anti-tumor 
immunity process was suppressed apparently. In contrast, the infiltrating of inflammatory cells and immune cells 
with negative regulatory effects were promoted in the high-risk group. CCRGs were evolutionarily conserved 
with low mutation rates, which brought difficulties to explore therapeutic targets. 
Conclusion: We identified and validated a circadian rhythm signature to described clinical relevance and 
tumor microenvironment of NSCLC, which revealed that circadian rhythms might play an influential role in the 
NSCLC. 

Key words: circadian rhythm, non-small cell lung cancer, signature, prognosis, cellular function, immune 
infiltration 

Introduction 
The expression of circadian clock genes drives 

oscillatory changes in innumerable behavioral and 
physiological processes, including tumorigenesis and 
development [1,2]. According to the organism and cell 
type, the circadian clock promotes the rhythmic 
expression of 1% to over 60% of the genome, serving 
as the molecular basis for rhythmic control at the 
system’s level [3]. In recent years, it is becoming an 
increasing focus of the role of the circadian clock in 
tumorigenesis, cancer hallmarks, therapeutic options, 

and discussions of how circadian clock genes can lead 
a new dimension in future medicine [4,5]. 
Accumulating evidence identified that there was a 
tight association between cancer and disruption of 
circadian in curative effect and prognosis, and the 
core circadian transcripts are generally altered in 
many kinds of cancers [6-8]. Nevertheless, the 
regulatory mechanism of circadian clock genes and 
their effects on clinical prognosis is not precise yet. 
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Lung cancer is the most leading cause of cancer 
death (18.4% of the total cancer deaths) with the 
highest incidence (11.6% of the total cases) around the 
world [9]. Non-small cell lung cancer (NSCLC) is the 
most common type and accounts for about 85% of 
total cases [10]. Previous studies have shown that the 
dysregulation of the circadian rhythms can influence 
cancer development by regulating tumor cell 
apoptosis, immune infiltration, and tumor cell-host 
interactions via related genes oscillatory and 
differential expression, which has been studied in 
many kinds of cancers including breast, colorectal 
cancer, and head and neck squamous cell carcinoma 
[11-13]. However, clinical relevance of differentially 
expressed circadian clock-related genes (CCRGs) in 
lung cancer have remained poorly defined. Studies 
have demonstrated that both physiologic perturbation 
and genetic mutation of the central circadian clock 
components decreased survival and promoted lung 
cancer growth and progression. Such as the core 
circadian genes Per2 and Bmal1 were shown to have 
cell-autonomous tumor-suppressive roles in 
transformation and lung tumor progression [14]. 
However, there is still a lack of a multi gene set to 
describe the prognosis changes caused by the 
physiologic perturbation and genetic mutation of 
CCRGs. 

In this present study, we purposed to explore a 
risk-score as a “Classifier” to predict the prognosis of 
patients based on the genomic expression profiles 
from public databases. Comprehensively, a total of 
1,382 CCRGs with oscillatory transcripts with 
experimentally validated by techniques including 
RT-PCR, Northern blot, in situ hybridization, and 
Microarray or RNA-seq were analyzed [15]. Among 
them, we identified 290 and 447 differentially 
expressed CCRGs in lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) tissues, 
respectively based on the Cancer Genome of Atlas 
(TCGA) cohort. Then, a combination of univariate and 
Cox regression hazard regression analysis was used to 
screen the differential expression of CCRGs, which 
associated with overall survival. Subsequently, we 
established two optimal risk-score models to divide 
LUAD and LUSC patients into the high or low 
risk-score group, followed by verification in 
combined Gene Expression Omnibus (GEO) 
validation sets, respectively. 

Further, we assessed the prognosis value and 
complementary value of molecular and clinical 
characteristics by survival, receiver operating 
characteristic (ROC) curve, and correlation analysis. 
We also identified the differences in the critical 
signaling pathways among these differential 
expression CCRGs using Gene Ontology (GO), the 

Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and Gene Set Variation Analysis (GSVA) methods. 
Finally, the correlative immune infiltrates and genetic 
alteration of CCRGs in risk-score models were 
explored to provide novel ideas for the clinical 
translation of circadian genes. 

Materials and Methods 
Patient information and databases in training 
and validation sets 

Thoroughly, a list of 1,382 homo sapiens 
(human) CCRGs validated by experiments including 
RT-PCR, Northern blot, and in situ hybridization were 
obtained from the Circadian Gene Database (The 
CGDB: http://cgdb.biocuckoo.org/index.php/) [15]. 
In the training set, both the gene expression profiles 
(HTSeq - FPKM) and patient clinical information of 
594 LUAD samples (normal count: 59; tumor count: 
535) and 551 LUSC samples (normal count: 49; tumor 
count: 502) were downloaded from the TCGA 
database (https://portal.gdc.cancer.gov/). Patients 
who lacked follow-up information were excluded in 
the survival analysis. In the testing set, Microarray 
expression profiles and clinical information were 
obtained from the GEO database (ncbi.nlm.nih.gov/ 
geo/) using the accession number GSE30219, 
GSE31210, GES3141, GSE37745, GSE50081, GSE68465, 
which contained more than a thousand samples of 
patients with lung cancer[16-19]. Then, all samples 
were classified into the LUAD or LUSC type due to 
histological criteria to verify the signature, 
respectively. 

Data processing 
To avoid the heterogeneity among different 

datasets and ensure a unified standard, the RNA-seq 
profiles were transformed using the formula 
log2(x+1) and normalized. R version 3.6.1 (https:// 
www.r-project.org/) software was used to normalize 
and process the data. Also, all data processing, 
analysis, and mapping were done using the R version 
3.6.1 software and the Perl Programming Language 
version 5.28.1 (https://www.perl.org/) in the present 
study. 

Functional enrichment analysis 
To explore the pathways and interactions that 

are affected among these differential expression 
CCRGs, the statistical and visualize analysis of 
functional annotation (GO), including biological 
process, cellular component, and molecular function, 
and the KEGG pathway enrichment analysis and 
visualization were performed by using the R package 
“clusterProfiler” (http://www.bioconductor.org/). 
Finally, we also introduce the GSVA, a gene set 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2584 

enrichment method, to estimate the variation of 
pathway activity between the high risk-score and low 
risk-score groups in an unsupervised manner [20]. 

Risk-score model construction 
We performed the univariate analysis and Cox 

proportional hazard regression to conduct to screen 
the differential expression CCRGs significantly 
associated with prognosis in the training cohort. Then, 
a risk score for each patient of prognostic risk was 
calculated respectively in LUAD and LUSC sets, 
according to the regression coefficients of the 
individual CCRGs screened from the multivariate 
Cox regression model and the expression value of 
each of the selected CCRGs. The computational 
formula used for this analysis was risk-score = 
h0(t)*exp(β1X1+β1X1+…+βnXn). β refers to the 
regression coefficient, and a hazard ratio (HR) value 
can be obtained after taking the natural logarithm exp 
(β). H0(t) is the function of a benchmark risk, and h (t, 
X) is a risk function associated with X (covariant 
quantity) at time t. X (covariant quantity) represented 
the relative expression profiles of every CCRGs, 
which standardized by z-score. After modeling by 
multivariate Cox regression, the value of the risk score 
calculated by function “predict ()” is h (t, X). Then, all 
patients were into a high or low-risk group according 
to the median value as a cutoff to separately 
dichotomize the training sets in LUAD and LUSC, 
and a low-risk score indicates a superior prognosis for 
patients. This similar approach has been identified 
from previous studies [21,22]. Finally, the risk-score 
signature of prognosis was verified in the testing sets, 
which integrated from the GEO cohorts (GSE30219, 
GSE31210, GSE3141, GSE37745, GSE50081, 
GSE68465). 

Immune infiltration analysis 
We compared the difference of immune cell 

infiltration between the high-risk group and low-risk 
group by using the CIBERSORTx (https://cibersortx. 
stanford.edu/). CIBERSORTx is an extension of the 
CIBERSORT, which provides an analytical method to 
infer cell-type-specific gene expression profiles 
without digital cytometry [23]. By the transcriptome 
profiling of single cells or sorted cell subpopulations 
based on a machine learning method, CIBERSORTx 
provides new possibilities for applying the signature 
matrix to bulk tissue expression profiles to infer 
cell-type proportions and represent cell type 
expression signatures. Based on this, we provided an 
analytical estimation of the abundances and 
distribution difference of 22 immune cell types in a 
mixed cell population of high-risk and low-risk group 
samples, using CCGRs expression data in LUAD and 

LUSC respectively. During the analysis, gene 
expression was corrected by the normalization using 
the R package “limma”, and samples after the 
abundance estimation were filtered with the p-valve 
(<0.05). When within-group data were merged, we 
combined the data by global averages. 

Mutation analysis of CCRGs in risk-score 
model 

The cBioPortal for Cancer Genomics (http:// 
cbioportal.org) provides a visualized Web resource 
for exploring and analyzing multidimensional cancer 
genomics data, which is now developed and 
maintained by a multi-institutional team, such as the 
Memorial Sloan Kettering Cancer Center, the Dana 
Farber Cancer Institute, Princess Margaret Cancer 
Centre of Toronto, Children’s Hospital of 
Philadelphia. In this portal, molecular profiling data 
of cancer tissues and cell lines were reduced into 
readily visual and understandable genetic, epigenetic, 
gene expression, proteomic events, and clinically 
relevant events. According to the cBioPortal, we 
investigate mutations and expressions of CCRGs in 
the risk-score model in lung adenocarcinoma (TCGA 
PanCancer Atlas) (566 samples) and lung squamous 
Cell Carcinoma (TCGA PanCancer Atlas) (487 
samples) respectively. 

Statistical analysis 
All statistical analyzes in the present study were 

performed using the R version 3.6.1 software 
(https://www.r-project.org/), and p-value < 0.05 was 
regarded as statistically significant for all the analyses. 
The Kruskal-Wallis test and one-way ANOVA were 
used to check the expression differences among the 
genes and the association of the risk-score with 
clinical signatures. OS was analyzed by the 
Kaplan-Meier survival curve and the log-rank test to 
check the significant difference between the high-risk 
and low-risk groups. The univariate analysis and 
multivariate Cox proportional hazards regression 
model were used to analyze the key CCRGs that affect 
the prognosis of NSCLC patients. The ROC curve 
analysis was used to evaluate the sensitivity and 
specificity of prognostic prediction of the CCRGs 
signature risk-score model. The prognostic accuracy 
was presented by the area under the ROC curve 
(AUC). All tests were two-sided. 

Results 
Identification and screening of differential 
expression genes 

We analyzed the differential expression profile 
of a total of 1,382 homo sapiens (human) CCRGs in 
594 LUAD samples (normal count: 59; tumor count: 
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535) and 551 LUSC samples (normal count: 49; tumor 
count: 502) by the Wilcoxon signed-rank test 
respectively. Finally, we identified 290 CCRGs 
(downregulated CCRGs: 126; upregulated CCRGs: 
164), and 447 CCRGs (downregulated CCRGs: 226; 

upregulated CCRGs: 221) differentially expressed in 
LUAD and LUSC samples respectively. Results of 
expression analyses are illustrated as volcano plots 
(Fig. 1). 

 

 
Figure 1. Differential expression profiles of 1,382 human CCRGs in the TCGA database. (A) Volcano plot of 1,382 human CCRGs in LUAD samples. (B) Volcano plot of 1,382 
human CCRGs in LUSC samples. Totally, we identified 290 CCRGs (downregulated CCRGs: 126; upregulated CCRGs: 164), and 447 CCRGs (downregulated CCRGs: 226; 
upregulated CCRGs: 221) differentially expressed in LUAD and LUSC samples respectively. 
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Figure 2. GO analysis of differentially expressed CCRGs. (A) Bar plot of GO analysis of differentially expressed CCRGs in LUAD. (B) Bubble chart of GO analysis of differentially 
expressed CCRGs in LUAD. (C) Circle diagram of GO analysis of differentially expressed CCRGs in LUAD. (D) Bar plot of GO analysis of differentially expressed CCRGs in 
LUSC. (E) Bubble chart of GO analysis of differentially expressed CCRGs in LUAD. (F) Circle diagram of GO analysis of differentially expressed CCRGs in LUSC. The results 
revealed distinct enriched CCRGs sets between different biological functions. 

 

Functional enrichment analysis of differential 
expression genes 

Firstly, we analyzed the association of these 
differentially expressed CCRGs with the GO terms of 
the biological process (BP) and cellular component 
(CC) categories. For LUAD samples, the top five 
enriched BP terms were ‘regulation of hemopoiesis,’ 
'neutrophil degranulation,’ ‘neutrophil activation 
involved in immune response’, ‘neutrophil-mediated 
immunity’, and ‘neutrophil activation’ (Fig. 2A-C). 
The top two enriched CC terms were ‘chromatin’ and 
‘secretory granule membrane’ (Fig. 2A-C). For LUSC 
samples, the top five enriched BP terms were 
‘neutrophil activation involved in immune response’, 
‘neutrophil activation’, ‘neutrophil degranulation’, 
‘neutrophil-mediated immunity’, and ‘negative 
regulation of immune system process’, which was like 
the results of the former, while more inclined towards 
the immunomodulation (Fig. 2D-F). For the results of 
CC, the top two enriched terms were precisely the 
same as the former (Fig. 2D-F). Then, results of KEGG 
analysis indicated that altered CCRGs were mainly 
involved in the systemic lupus erythematosus and 
osteoclast differentiation of LUAD samples, 
meanwhile in the systemic lupus erythematosus, 
apoptosis, and B cell receptor signaling pathway of 

LUSC samples (Fig. 3). 
Finally, we further investigated the differential 

distribution of signal pathway enrichment of 
differentially expressed CCRGs set between the high 
risk-score and low risk-score groups using the GSVA 
method. In LUAD samples, compared with the 
low-risk group, CCRGs of the high-risk group mainly 
enriched in the G2M_CHECKPOINT, 
COAGULATION, MYC_TARGETS_V2, and 
MITOTIC_SPINDLE. Meanwhile, CCRGs of the 
low-risk group mainly enriched in the MYOGENESIS 
and NOTCH_SIGNALING. However, the results of 
the LUSC samples are quite different. CCRGs of the 
high-risk group mainly enriched in the UV_ 
RESPONSE_DN, KRAS_SIGNALING_UP, TNFA_ 
SIGNALING_VIA_NFKB, INFLAMMATORY_ 
RESPONSE, and INTERFERON_GAMMA_ 
RESPONSE, while CCRGs were mainly involved in 
the E2F_TARGETS, UNFOLDED_PROTEIN_ 
RESPONSE, MYC_TARGETS_V1, G2M_ 
CHECKPOINT, and DNA_REPAIR in the low-risk 
group (Fig. 4). It indicated the differential expression 
and regulation of CCRGs in LUAD and LUSC. This 
difference may lead to different biological processes 
related to the circadian rhythm in cancer cells. 
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Figure 3. KEGG analysis of differentially expressed CCRGs. (A) Bar plot of KEGG analysis of differentially expressed CCRGs in LUAD. (B) Bubble chart of KEGG analysis of 
differentially expressed CCRGs in LUAD. (C) Circle diagram of KEGG analysis of differentially expressed CCRGs in LUAD. (D) Heatmap of KEGG analysis of differentially 
expressed CCRGs in LUAD. (E) Bar plot of KEGG analysis of differentially expressed CCRGs in LUSC. (F) Bubble chart of KEGG analysis of differentially expressed CCRGs in 
LUAD. (G) Circle diagram of KEGG analysis of differentially expressed CCRGs in LUSC. (H) Heatmap of KEGG analysis of differentially expressed CCRGs in LUSC. 

 
Figure 4. GSVA analysis of differentially expressed CCRGs. (A) Heatmap of GSVA analysis in LUAD samples. (B) Differential distribution of signal pathway enrichment between 
the high risk-score and low risk-score groups in LUAD samples. (C) Heatmap of GSVA analysis in LUSC samples. (D) Differential distribution of signal pathway enrichment 
between the high risk-score and low risk-score groups in LUSC samples. 

 

Construction of the prognostic risk-score 
model in the training set 

To explore the prognostic signatures of these 

differentially expressed CCRGs, we preliminarily 
performed a univariate analysis of the standardized 
expression of the 290 CCRGs of LUAD and 447 
CCRGs of LUSC in the training sets to identify the 
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prognostic CCRGs respectively. The results showed 
that the expression of 31 CCRGs and 70 CCRGs each 
significantly correlated with the OS (p < 0.05) of 
LUAD patients and LUSC, respectively (Fig. 5A-B). 
Further, we performed Cox proportional hazard 
regression to screen the ultimate CCRGs of risk-score 
models. Subsequently, results indicated that the 
expression of 10 CCRGs correlated with the OS of 
LUAD and LUSC patients, respectively (Table 1). 
According to this, we constructed a risk-score model 
for predicting the prognosis of LUAD and LUSC 
patients using the calculation formula mentioned in 
the method part, respectively. Finally, CDA, 
POU2AF1, TUBB6, SPAG8, NT5E, ARRB1, DDIT4, 
HAL, PHLDB2, and AGMAT as risk genes in the 
risk-score model of LUAD and ALOX5AP, 
RALGAPA2, TIGD3, PNPLA6, ALPL, TREM1, VSIG4, 
CD300C, HIST1H2BH, and WNT10A as risk genes in 
the LUSC risk-score model (Fig. 5C-F). Survival 
analysis revealed that there was a significant 
difference between the high-risk group and the 
low-risk group in OS, and patients in the high-risk 
group significantly correlated with an inferior 
prognosis (LUAD: p < 0.0001, HR: 2.117, 95% CI: 1.546 
to 2.900; LUSC: p < 0.0001, HR: 2.066, 95% CI: 1.552 to 
2.751) (Fig. 6A-B). Finally, we also ranked the risk 
scores of LUAD and LUSC patients for OS and 
explored the distribution features (Fig. 6C-D). The dot 
plots revealed the status of each patient in the training 
sets (Fig. 6E-F). The heat maps showed the differential 
expression of the feature CCRGs in the high-risk and 
low-risk groups (Fig. 6G-H). As results show, there 
was an upregulation of HAL, PHLDB2, AGMAT, 
DDIT4, CDA, NT5E, and TUBB6 as high-risk genes 

and downregulation of POU2AF1, SPAG8, and 
ARRB1 as protective genes of LUAD patients in the 
high-risk score group comparing the low-risk score 
group. Moreover, samples with high-risk scores of 
LUSC patients suggested upregulation of TREM1, 
WNT10A, CD300C, ALPL, ALOX5AP, VSIG4, 
RALGAPA2 and PNPLA6 as high-risk genes and 
downregulation of TIGD3 and HIST1H2BH as 
protective genes. 

Validation of the prognostic risk-score model 
in the testing set 

We next validated the stability and accuracy of 
the prognostic risk-score model in the testing sets, 
which included LUAD and LUSC cohorts from the 
GEO database. The OS was selected as the key 
indicator to compare the groups and samples were 
divided into low and high risk-score groups based on 
the calculated risk score. The formula is as mentioned 
before. For the testing set of LUAD type, 519 and 544 
samples were separated into low and high risk-score 
groups, respectively. Survival analysis showed that 
there was a significant difference between the high 
and low risk-score groups (p < 0.0001, HR: 1.493, 95% 
CI: 1.248 to 1.787) (Fig. 7A). Similarly, 88 samples of 
the low-risk group and 89 samples of the high-risk 
group were included in the survival analysis of the 
LUSC testing set. Results also suggested a significant 
difference between the high and low risk-score 
groups (p = 0.0486, HR: 1.453, 95% CI: 1.002 to 2.105) 
(Fig. 7B). To summarize, our results confirmed that 
these two risk-score models based on CCRGs 
signatures were all stable and accurate in predicting 
the prognosis of patients. 

 

Table 1. Descriptions of CCRGs of the risk-score model in Cox proportional hazard regression analysis 

Type Gene ID Full name or Description Risk coefficient HR HR.95L HR.95H p-value 
LUAD CDA Cytidine Deaminase -0.089059134 0.914791 0.822109 1.017923 0.102253 
 POU2AF1 POU Class 2 Associating Factor 1 -0.295832916 0.743912 0.631686 0.876075 0.000392 
 TUBB6 Tubulin Beta 6 Class V 0.253501154 1.288529 1.031295 1.609925 0.025669 
 SPAG8 Sperm Associated Antigen 8 -0.215285427 0.806311 0.602534 1.079006 0.14751 
 NT5E 5'-Nucleotidase Ecto 0.165120683 1.179535 1.040611 1.337006 0.009806 
 ARRB1 Arrestin Beta 1 -0.229636783 0.794822 0.638692 0.989119 0.039588 
 DDIT4 DNA Damage Inducible Transcript 4 0.128789666 1.137451 0.974568 1.327557 0.102412 
 HAL Histidine Ammonia-Lyase 0.254600207 1.289946 1.101163 1.511093 0.001613 
 PHLDB2 Pleckstrin Homology Like Domain Family B Member 2 0.232732475 1.262044 1.006844 1.581927 0.043472 
 AGMAT Agmatinase 0.276379132 1.318348 1.00177 1.73497 0.048543 
LUSC ALOX5AP Arachidonate 5-Lipoxygenase Activating Protein -0.204079367 0.815398 0.638768 1.040868 0.10134 
 RALGAPA2 Ral GTPase Activating Protein Catalytic Subunit Alpha 2 0.209187368 1.232676 0.963034 1.577816 0.096734 
 TIGD3 Tigger Transposable Element Derived 3 -0.338879739 0.712568 0.445497 1.139747 0.157327 
 PNPLA6 Patatin Like Phospholipase Domain Containing 6 0.262619794 1.300332 0.94122 1.79646 0.11125 
 ALPL Alkaline Phosphatase, Biomineralization Associated 0.088447658 1.092477 0.977686 1.220746 0.118395 
 TREM1 Triggering Receptor Expressed on Myeloid Cells 1 0.205116552 1.227668 1.028907 1.464826 0.022834 
 VSIG4 V-Set and Immunoglobulin Domain Containing 4 0.21911239 1.244971 1.000762 1.548772 0.049206 
 CD300C CD300 Antigen-Like Family Member C -0.355141335 0.701074 0.440876 1.114837 0.133452 
 HIST1H2BH histone cluster 1, H2bh -0.161357251 0.850988 0.749454 0.966278 0.012805 
 WNT10A Wnt Family Member 10A 0.127271005 1.135725 1.008189 1.279394 0.036246 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2589 

 
Figure 5. Signatures of ten CCRGs in the risk-score model. (A) The expression of 31 CCRGs each significantly correlated with the OS of LUAD patients in the univariate 
analysis. (B) The expression of 70 CCRGs each significantly correlated with the OS of LUSC patients in the univariate analysis. (C) Boxplot of differentially expressed CCRGs of 
the risk-score model (LUAD samples). (D) Correlation between ten CCRGs in the risk-score model of LUAD. (E) Boxplot of differentially expressed CCRGs of the risk-score 
model (LUSC samples). (F) Correlation between ten CCRGs in the risk-score model of LUSC. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2590 

 
Figure 6. Survival analysis and characteristics of the prognostic gene signature. (A) Kaplan-Meier analysis of LUAD patients stratified by the risk-score in the training set. (B) 
Kaplan-Meier analysis of LUSC patients stratified by the risk-score in the training set. (C) The distribution of risk-score for LUAD patients in the training set. (D) The distribution 
of risk-score for LUSC patients in the training set. (E) Survival time and status for LUAD patients in the training set. (F) Survival time and status for LUSC patients in the training 
set. (G) Heatmap of CCRGs expression profiles in prognostic signature for LUAD patients in the training set. (H) Heatmap of CCRGs expression profiles in prognostic signature 
for LUSC patients in the training set. 
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Figure 7. Validation of the risk-score in the testing set. (A) Kaplan-Meier analysis of LUAD patients stratified by the risk-score in the validation set. (B) Kaplan-Meier analysis of 
LUSC patients stratified by the risk-score in the validation set. 

 

Clinical characteristics correlation analysis 
In this section, we further explored the stability 

and reliability of the risk score as a clinical indicator. 
Seven variables, including age, gender, T stage, N 
stage, M stage, pathologic stage, and risk-score, were 
analyzed using the univariate analysis and Cox 
proportional hazard regression in the training sets of 
LUAD and LUSC respectively (LUAD: p < 0.001, HR: 
1.228, 95% CI: 1.158 to 1.302; LUSC: p < 0.001, HR: 
2.501, 95% CI: 2.010 to 3.117) (Fig. 8A-D). Our analysis 
showed that risk-score was found to be an 
independent prognostic indicator both in LUAD 
patients and LUSC patients. Then, we constructed 
ROC curves for different variables to evaluate the 
risk-score as classifiers, and the AUC was calculated 
and considered as the basis for evaluation (LUAD: 
AUC 0.788; LUSC: AUC 0.738) (Fig. 8E-F). Our results 
indicated that the risk-score had superior accuracy 
and predictability comparing other clinical 
characteristics both in LUAD and LUSC samples. 

Immune correlation and infiltration analysis 
We explored the immune infiltration level of the 

diverse immune infiltrating cells between the 
high-risk group and the low-risk group by the 
CIBERSORTx. We first calculated the abundances of 
22 immune cell types in each sample using 
standardized CCGRs expression profiles in LUAD 
and LUSC, respectively. Then we filtered each sample 
according to the p-value to eliminate the bias caused 
by inaccurate estimation and grouped the samples 
based on the risk-score. Finally, 23 samples of the 
low-risk group and ten samples of the high-risk group 
were selected in LUAD. Meanwhile, of LUSC 

samples, 19 samples of the low-risk group, and 26 
samples of the high-risk group were included for 
analysis. Our results suggested that immune 
infiltration levels in the high-risk group of naive B 
cells, plasma cells, naive CD4+ T cells, CD8+ T cells, 
dendritic cells, M2 macrophages, and mast cells 
decreased significantly in the LUAD compared with 
the low-risk group (Fig. 9A-B). Furthermore, there 
were significantly increased levels of infiltrates of 
activated memory CD4+ T cells, T follicular helper 
cells, regulatory T cells (Tregs), natural killer (NK) 
cells, monocytes, neutrophils, and M0/1 macrophage 
in the high-risk group. Moreover, for LUAC samples, 
immune infiltration levels in the high-risk group of 
naive B cells, resting memory CD4+ T cells, naive 
CD4+ T cells, CD8+ T cells, T cells follicular helper, 
NK cells, dendritic cells, and M0/1 macrophage 
decreased significantly comparing the low-risk group 
(Fig. 9C-D). Meanwhile, there were significantly 
increased levels of infiltrates of plasma cells, activated 
memory CD4+ T cells, Tregs, mast cells, monocytes, 
M2 macrophages, and neutrophils in the high-risk 
group. In summary, we found that there were similar 
commonalities in the level of immune cell infiltrations 
between the high-risk group and the low-risk group 
in LUAD and LUSC. For instance, our results showed 
that immune cells, which play a vital role in tumor 
immunity, were significantly decreased in the 
high-risk group, such as CD8+ T cells, dendritic cells, 
B cells, and naive CD4+ T cells. Meanwhile, negative 
regulation and inflammation-related cells, such as 
Tregs, mast cells, monocytes, and neutrophils, were 
significantly increased. These results suggested that 
compared with the low-risk group, anti-tumor 
immune responses were inhibited while the 
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inflammatory process and hyperresponsiveness may 
be significantly enhanced in the high-risk group. 
However, there were still some differences and 
changes in the level of infiltration of some immune 

cells between the LUAD and LUSC, which might 
illustrate the difference between LUAD and LUSC at 
the level of circadian-rhythm-related immune 
infiltration. 

 

 
Figure 8. The risk-score was a significant signature with superior accuracy and predictability related to survival in NSCLC. (A) Univariate analysis of clinical characteristics, 
including the risk-score in LUAD patients. (B) Multivariate Cox regression analysis of clinical characteristics in LUAD patients, the risk-score was an independent predictor of 
prognosis. (C) Univariate analysis of clinical characteristics, including the risk-score in LUSC patients. (D) Multivariate Cox regression analysis of clinical characteristics in LUSC 
patients, the risk-score was an independent predictor of prognosis. (E) ROC and AUC analysis of the sensitivity and specificity for the risk score in LUAD patients. (F) ROC and 
AUC analysis of the sensitivity and specificity for the risk score in LUSC patients. 
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Figure 9. Immune infiltration level of the diverse immune infiltrating cells between the high-risk group and the low-risk group by the CIBERSORTx. (A) Immune infiltration levels 
of 22 immune cell types in the low-risk group (23 samples) and high-risk group (ten samples) (LUAD). (B) The heatmap of abundances of 22 immune cell types in the low-risk 
group (23 samples) and high-risk group (ten samples) (LUAD). (C) immune infiltration levels of 22 immune cell types in the low-risk group (19 samples) and high-risk group (26 
samples) (LUSC). (D) The heatmap of abundances of 22 immune cell types in the low-risk group (19 samples) and high-risk group (26 samples) (LUSC). 
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Figure 10. Genetic alteration of ten CCRGs in the risk-score model. (A) For ten CCRGs in the risk-score model of LUAD patients. (B) For ten CCRGs in the risk-score model 
of LUSC patients. 

 

Genetic alteration analysis 
We investigated the genetic alteration of these 

CCRGs in the risk-score model to further understand 
their contributions to carcinogenesis by the cbioportal. 
We found that these risk-associated CCRGs were 
relatively conservative, and the mutation rates of 
these genes were all lower than 3% (most the percent 
of which were around 1%-2%) both in LUAD and 
LUSC (Fig. 10). Our results suggested that some of 
genes with high mutation rate in our risk model may 
have potential roles in tumorigenesis of NSCLC. The 
underlying mechanism of those genes with low 
mutation rate remains to be further investigated. 

Discussion 
There is clear evidence for the differential 

expression of CCRGs in a variety of diseases, and 
cancers are no exception [24]. Also, the process of 
differential expression was 24-hour periodicity and 
might also be affected by the seasons. Universally 
recognized, implications of regulating CCRGs 
expression in epigenetic control mechanisms have 
been described during the tumor initiation and 
progression, which included circadian metabolic 
changes and tumor-derived macroenvironment, 
which has been reported in studies of breast cancer 
and LUAD in mouse models [25]. The implication also 
has been indicated by epidemiological studies [26]. 
Changes and disruptions of circadian rhythms in 
humans significantly impinged on the increasing risk 
of tumorigenesis [27,28]. Evidently, circadian biology 
is becoming a critical involvement in improving the 

understanding of molecular mechanisms involved in 
cancer cells. Nevertheless, its importance has sparsely 
been well recognized in clinical studies and practice, 
and even more when translating to the bedside. Based 
on this, we attempted to represents a substantial step 
toward that direction, which aims first to describe 
landscapes and implications of these differentially 
expressed CCRGs and investigate the connection 
between impingement of circadian rhythms and 
prognostic significance, in the most common and 
malignant tumor. We finally integrated and analyzed 
the expression profiles of 1,382 human CCRGs in 
NSCLC wholly and systematically via the CGDB, 
TCGA, and GEO database. We pioneering proposed a 
CCGRs-based risk-score model better to assess the 
effects of circadian rhythm on prognosis accordingly. 
In addition, according to the score, we further focused 
on the infiltration changes of immune cells, genetic 
alteration, and the possibility of being a 
pharmacological target in these samples. 

Recently, a study based on integration and 
analysis of data from the TCGA database has 
investigated the association between 14 kinds of clock 
genes and prognostic signatures in NSCLC patients, 
which also showed that differentially expressed clock 
genes constitute their characteristic asynchronous 
circadian rhythms [29]. To date, thousands of genes 
and proteins are considered to be related to the 
circadian rhythms’ oscillation. Given the significance 
of circadian rhythms in lung cancer, it is reasonable to 
speculate that CCRGs hold excellent promises in 
prognostic prediction and that a risk score based on 
multiple-gene signatures derived from dependable 
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algorithms would be more reliable and superior to 
any single molecules in predicting prognosis of 
NSCLC. We, therefore, put forward a risk-score 
model, in which ten-gene signatures were selected 
and calculated for evaluating the prognostic risk of 
LUAD and LUSC training sets, and the predictive 
validity of the risk-score model was validated in 
several GEO NSCLC cohorts, respectively. 
Fortunately, the risk scores significantly stratified 
patient outcomes and immune cell infiltration levels 
between the high-risk and low-risk groups. Further, 
the risk-score also showed its excellent stability and 
accuracy as a classifier in the Cox proportional hazard 
regression, including risk-score and other clinical 
variables. It was evident that the high-risk group has 
an inferior prognosis and a more reduced anti-tumor 
immune response in our analysis. In the risk-score 
model containing ten genes of LUAD and LUSC 
respectively. Many genes have been shown to be a 
potential diagnostic and therapeutic target in lung 
cancer. Hui-Er Zhu and his colleagues have indicated 
that AGMAT (Agmatinase) might drive 
tumorigenesis via activating MAPK and PI3K/Akt 
cascades [30]. Also, NT5E (CD73) inhibitors are 
currently being tested in several clinical trials for the 
treatment of cancer. It has been suggested that NT5E 
may be linked to both tumorigenesis and EGFR- 
related drug resistance in NSCLC [31]. Furthermore, 
several genes, such as TREM1 and VSIG4 in our risk 
model were also shown to have prognostic 
significance and may prove to be a novel, efficacious 
strategy for the treatment of NSCLC [32,33]. 
Certainly, functions and roles of some genes have not 
been fully confirmed, which requires further research 
to explore in depth. 

In this study, we found that these genes are 
involved in many biological processes, such as cell 
cycle control, metabolism, immune-modulating, 
inflammatory reaction, cytoskeletal reorganization, 
chromatin remodeling, apoptosis in response to DNA 
damage repair, and protein synthesis and 
transportation, through systemic functional analysis. 
We concluded that these above processes in tumor 
cells might be affected by the circadian rhythm. 
Several studies have demonstrated that a wide range 
of core circadian clock components is epigenetically 
altered, and this perturbation could promote 
tumorigenesis, progression, and decreased survival in 
lung cancer, which also suggested an essential 
position of circadian homeostasis in the 
tumor-suppressive role [34,35]. 

Interestingly, we found that the infiltration level 
of critical cells in specific anti-tumor immunity 
process, such as CD4+ T cells, CD8+ T cells, and 
dendritic cells, were suppressed apparently, while the 

activity and infiltrating of inflammatory cells and 
Tregs with negative regulatory ability were promoted 
in the high-risk group. It established that circadian 
rhythms and related genes played a vital role in the 
tumor immune and tumor-associated inflammatory 
response. The latest studies have confirmed our 
results. To date, current notion suggests that CCRGs 
express in most immune cells universally and present 
a circadian oscillation with a fixed rhythm, which 
performs essential roles in a wide range of 
immunomodulation process, including the 
phagocytosis, apoptosis, the synthesis, and release of 
cytokines, chemokines, and cytolytic factors, the 
response occurring through pattern recognition 
receptors [36]. Differential expression of CCRGs also 
plays a vital role in the development and specification 
of immune cell lineages [37]. This view also reflected 
in our analysis. For instance, immune infiltration level 
of resting memory CD4+ T cells and naive CD4+ T 
cells were decreased, while the level of activated 
memory CD4+ T cells was increased in the high-risk 
group. Consequently, it is evidence that alterations in 
circadian rhythms due to differential expression of 
genes in cancer cells may lead to disturbed the 
immune responses, and these changes may be caused 
by clock gene mutation, environmental disruption, or 
the age and tumor itself. A study of circadian rhythm 
reprogramming during the lung inflammation 
suggested that the early events in lung injury may 
produce a complex reorganization of cellular and 
molecular circadian rhythms and further regulate 
immune responses of the host [38]. It will be essential 
to determine the mechanism and causality of 
oscillations driven by CCRGs in cellular function, 
metabolism and immunity, and whether the critical 
drivers for oscillations are the time of 
day/season-dependence. If so, it might strengthen 
our fundamental understanding of how the circadian 
rhythm disturbs metabolism and immune functions to 
anticipate changes in the environment, and provide a 
bridge between the circadian rhythms and novel 
insights to facilitate the development of 
chronotherapies for fighting cancer and other 
diseases. 

Besides, our genetic alteration analysis also 
suggested the low mutation rates of these CCRGs in 
the risk-score model, which was also in line with the 
current view that CCRGs were evolutionarily 
conserved in eukaryotes [39]. Moreover, this 
conservatism would affect plenty of critical cell 
functions, such as immunomodulatory. Studies over 
the last decade indicate that immune responses 
related to the circadian oscillators are a consequence 
of this Darwinian selection process, and the circadian 
rhythm could minimize costs and maximizes benefits 
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of immunity to optimize organismal fitness in a given 
environment [40]. Thus, the disruption of the normal 
circadian rhythmic may result in the appearance of 
CCRGs differential expression and metabolic 
rhythms, which might function to support host 
immunity but also increase the probability of tissue 
damage and a catastrophic vulnerability [41]. 
Meanwhile, we also found the subtle difference 
between CCRGs differential expression and immune 
cell infiltration in LUAD and LUSC, which might 
result from the specific contexts of different types of 
cancers. These are still urgent questions needed to be 
studied and solved today. 

Conclusion 
All organisms on Earth are exposed to regular 

environmental cycles generated by the rotation and 
revolution of the Earth. This, in turn, has led to the 
evolution of circadian rhythms driven by CCRGs, 
which facilitate lives to anticipate and adapt to the 
internal and external changes during their 
environment. We preliminary explored a risk-score 
based on ten CCRGs signatures based on TCGA and 
GEO database in LUAD and LUSC, respectively. This 
risk-score was an independent predictor of prognosis. 
Further analysis of cell functions and immune 
infiltration between the high-risk and low-risk group 
and genetic alteration of these GGRGs also 
investigated in our study. Differential expression of 
CCRGs also regulated the immune cell infiltration 
level in NSCLC. These CCRGs were evolutionarily 
conserved with low mutation rates and further 
studies and experimental confirmations are needed. 
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