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Abstract

Objective: We aimed to explore the prognostic implication for non-small cell lung cancer (NSCLC) based on
the expression profiles of circadian clock-related genes (CCRGs), and describe the changes of immune
infiltration and cell functions of related to the circadian rhythm.

Methods: Univariate and multivariate Cox proportional hazard regression were performed to determine a
CCRGs risk-score significantly correlated with overall survival (OS) of the training set and validation set. GO,
KEGG, and GSVA indicated discrepant changes in cellular processes and signaling pathways associated with
these CCRGs. Immune cell infiltration and mutation rates were investigated by the online analysis platform and
the algorithm provided by works of literature.

Results: The signature-based on ten-gene signatures could independently predict the OS both in TCGA lung
adenocarcinoma (p < 0.001, HR: 1.228, 95% ClI: 1.158 to 1.302) and lung squamous cell carcinoma (p < 0.001,
HR: 2.501, 95% CI: 2.010 to 3.117), respectively. The circadian oscillations driven by CCRGs could disturb the
metabolism and cellular functions of cancer cells. The infiltration level of critical cells in specific anti-tumor
immunity process was suppressed apparently. In contrast, the infiltrating of inflammatory cells and immune cells
with negative regulatory effects were promoted in the high-risk group. CCRGs were evolutionarily conserved
with low mutation rates, which brought difficulties to explore therapeutic targets.

Conclusion: We identified and validated a circadian rhythm signature to described clinical relevance and
tumor microenvironment of NSCLC, which revealed that circadian rhythms might play an influential role in the
NSCLC.

Key words: circadian rhythm, non-small cell lung cancer, signature, prognosis, cellular function, immune
infiltration

Introduction

The expression of circadian clock genes drives
oscillatory changes in innumerable behavioral and
physiological processes, including tumorigenesis and
development [1,2]. According to the organism and cell
type, the circadian clock promotes the rhythmic
expression of 1% to over 60% of the genome, serving
as the molecular basis for rhythmic control at the
system’s level [3]. In recent years, it is becoming an
increasing focus of the role of the circadian clock in
tumorigenesis, cancer hallmarks, therapeutic options,

and discussions of how circadian clock genes can lead
a new dimension in future medicine [4,5].
Accumulating evidence identified that there was a
tight association between cancer and disruption of
circadian in curative effect and prognosis, and the
core circadian transcripts are generally altered in
many kinds of cancers [6-8]. Nevertheless, the
regulatory mechanism of circadian clock genes and
their effects on clinical prognosis is not precise yet.
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Lung cancer is the most leading cause of cancer
death (18.4% of the total cancer deaths) with the
highest incidence (11.6% of the total cases) around the
world [9]. Non-small cell lung cancer (NSCLC) is the
most common type and accounts for about 85% of
total cases [10]. Previous studies have shown that the
dysregulation of the circadian rhythms can influence
cancer development by regulating tumor cell
apoptosis, immune infiltration, and tumor cell-host
interactions via related genes oscillatory and
differential expression, which has been studied in
many kinds of cancers including breast, colorectal
cancer, and head and neck squamous cell carcinoma
[11-13]. However, clinical relevance of differentially
expressed circadian clock-related genes (CCRGs) in
lung cancer have remained poorly defined. Studies
have demonstrated that both physiologic perturbation
and genetic mutation of the central circadian clock
components decreased survival and promoted lung
cancer growth and progression. Such as the core
circadian genes Per2 and Bmall were shown to have
cell-autonomous  tumor-suppressive  roles in
transformation and lung tumor progression [14].
However, there is still a lack of a multi gene set to
describe the prognosis changes caused by the
physiologic perturbation and genetic mutation of
CCRGs.

In this present study, we purposed to explore a
risk-score as a “Classifier” to predict the prognosis of
patients based on the genomic expression profiles
from public databases. Comprehensively, a total of
1,382 CCRGs with oscillatory transcripts with
experimentally validated by techniques including
RT-PCR, Northern blot, in situ hybridization, and
Microarray or RNA-seq were analyzed [15]. Among
them, we identified 290 and 447 differentially
expressed CCRGs in lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC) tissues,
respectively based on the Cancer Genome of Atlas
(TCGA) cohort. Then, a combination of univariate and
Cox regression hazard regression analysis was used to
screen the differential expression of CCRGs, which
associated with overall survival. Subsequently, we
established two optimal risk-score models to divide
LUAD and LUSC patients into the high or low
risk-score group, followed by verification in
combined Gene Expression Omnibus (GEO)
validation sets, respectively.

Further, we assessed the prognosis value and
complementary value of molecular and clinical
characteristics by survival, receiver operating
characteristic (ROC) curve, and correlation analysis.
We also identified the differences in the critical
signaling pathways among these differential
expression CCRGs using Gene Ontology (GO), the

Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Gene Set Variation Analysis (GSVA) methods.
Finally, the correlative immune infiltrates and genetic
alteration of CCRGs in risk-score models were
explored to provide novel ideas for the clinical
translation of circadian genes.

Materials and Methods

Patient information and databases in training
and validation sets

Thoroughly, a list of 1,382 homo sapiens
(human) CCRGs validated by experiments including
RT-PCR, Northern blot, and in situ hybridization were
obtained from the Circadian Gene Database (The
CGDB: http:/ /cgdb.biocuckoo.org/index.php/) [15].
In the training set, both the gene expression profiles
(HTSeq - FPKM) and patient clinical information of
594 LUAD samples (normal count: 59; tumor count:
535) and 551 LUSC samples (normal count: 49; tumor
count: 502) were downloaded from the TCGA
database (https://portal.gdc.cancer.gov/). Patients
who lacked follow-up information were excluded in
the survival analysis. In the testing set, Microarray
expression profiles and clinical information were
obtained from the GEO database (ncbi.nlm.nih.gov/
geo/) wusing the accession number GSE30219,
GSE31210, GES3141, GSE37745, GSE50081, GSE68465,
which contained more than a thousand samples of
patients with lung cancer[16-19]. Then, all samples
were classified into the LUAD or LUSC type due to
histological criteria to verify the signature,
respectively.

Data processing

To avoid the heterogeneity among different
datasets and ensure a unified standard, the RNA-seq
profiles were transformed using the formula
log2(x+1) and normalized. R version 3.6.1 (https://
www.r-project.org/) software was used to normalize
and process the data. Also, all data processing,
analysis, and mapping were done using the R version
3.6.1 software and the Perl Programming Language
version 5.28.1 (https:/ /www.perl.org/) in the present
study.

Functional enrichment analysis

To explore the pathways and interactions that
are affected among these differential expression
CCRGs, the statistical and visualize analysis of
functional annotation (GO), including biological
process, cellular component, and molecular function,
and the KEGG pathway enrichment analysis and
visualization were performed by using the R package
“clusterProfiler”  (http://www.bioconductor.orgy).
Finally, we also introduce the GSVA, a gene set
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enrichment method, to estimate the wvariation of
pathway activity between the high risk-score and low
risk-score groups in an unsupervised manner [20].

Risk-score model construction

We performed the univariate analysis and Cox
proportional hazard regression to conduct to screen
the differential expression CCRGs significantly
associated with prognosis in the training cohort. Then,
a risk score for each patient of prognostic risk was
calculated respectively in LUAD and LUSC sets,
according to the regression -coefficients of the
individual CCRGs screened from the multivariate
Cox regression model and the expression value of
each of the selected CCRGs. The computational
formula used for this analysis was risk-score =
ho(t)*exp(B1X1+P1Xa+...#PuXn). P refers to the
regression coefficient, and a hazard ratio (HR) value
can be obtained after taking the natural logarithm exp
(B). Ho(t) is the function of a benchmark risk, and h (t,
X) is a risk function associated with X (covariant
quantity) at time t. X (covariant quantity) represented
the relative expression profiles of every CCRGs,
which standardized by z-score. After modeling by
multivariate Cox regression, the value of the risk score
calculated by function “predict ()” is h (t, X). Then, all
patients were into a high or low-risk group according
to the median value as a cutoff to separately
dichotomize the training sets in LUAD and LUSC,
and a low-risk score indicates a superior prognosis for
patients. This similar approach has been identified
from previous studies [21,22]. Finally, the risk-score
signature of prognosis was verified in the testing sets,
which integrated from the GEO cohorts (GSE30219,
GSE31210,  GSE3141,  GSE37745,  GSE50081,
GSE68465).

Immune infiltration analysis

We compared the difference of immune cell
infiltration between the high-risk group and low-risk
group by using the CIBERSORTx (https:/ /cibersortx.
stanford.edu/). CIBERSORTx is an extension of the
CIBERSORT, which provides an analytical method to
infer cell-type-specific gene expression profiles
without digital cytometry [23]. By the transcriptome
profiling of single cells or sorted cell subpopulations
based on a machine learning method, CIBERSORTx
provides new possibilities for applying the signature
matrix to bulk tissue expression profiles to infer
cell-type proportions and represent cell type
expression signatures. Based on this, we provided an
analytical estimation of the abundances and
distribution difference of 22 immune cell types in a
mixed cell population of high-risk and low-risk group
samples, using CCGRs expression data in LUAD and

LUSC respectively. During the analysis, gene
expression was corrected by the normalization using
the R package “limma”, and samples after the
abundance estimation were filtered with the p-valve
(<0.05). When within-group data were merged, we
combined the data by global averages.

Mutation analysis of CCRGs in risk-score
model

The cBioPortal for Cancer Genomics (http://
cbioportal.org) provides a visualized Web resource
for exploring and analyzing multidimensional cancer
genomics data, which is now developed and
maintained by a multi-institutional team, such as the
Memorial Sloan Kettering Cancer Center, the Dana
Farber Cancer Institute, Princess Margaret Cancer
Centre of Toronto, Children’'s Hospital of
Philadelphia. In this portal, molecular profiling data
of cancer tissues and cell lines were reduced into
readily visual and understandable genetic, epigenetic,
gene expression, proteomic events, and clinically
relevant events. According to the cBioPortal, we
investigate mutations and expressions of CCRGs in
the risk-score model in lung adenocarcinoma (TCGA
PanCancer Atlas) (566 samples) and lung squamous
Cell Carcinoma (TCGA PanCancer Atlas) (487
samples) respectively.

Statistical analysis

All statistical analyzes in the present study were
performed using the R version 3.6.1 software
(https:/ /www.r-project.org/), and p-value < 0.05 was
regarded as statistically significant for all the analyses.
The Kruskal-Wallis test and one-way ANOVA were
used to check the expression differences among the
genes and the association of the risk-score with
clinical signatures. OS was analyzed by the
Kaplan-Meier survival curve and the log-rank test to
check the significant difference between the high-risk
and low-risk groups. The univariate analysis and
multivariate Cox proportional hazards regression
model were used to analyze the key CCRGs that affect
the prognosis of NSCLC patients. The ROC curve
analysis was used to evaluate the sensitivity and
specificity of prognostic prediction of the CCRGs
signature risk-score model. The prognostic accuracy
was presented by the area under the ROC curve
(AUCQC). All tests were two-sided.

Results

Identification and screening of differential
expression genes

We analyzed the differential expression profile
of a total of 1,382 homo sapiens (human) CCRGs in
594 LUAD samples (normal count: 59; tumor count:
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535) and 551 LUSC samples (normal count: 49; tumor
count: 502) by the Wilcoxon signed-rank test
respectively. Finally, we identified 290 CCRGs
(downregulated CCRGs: 126; upregulated CCRGs:
164), and 447 CCRGs (downregulated CCRGs: 226;

A

upregulated CCRGs: 221) differentially expressed in
LUAD and LUSC samples respectively. Results of
expression analyses are illustrated as volcano plots

(Fig. 1).
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Figure 1. Differential expression profiles of 1,382 human CCRGs in the TCGA database. (A) Volcano plot of 1,382 human CCRGs in LUAD samples. (B) Volcano plot of 1,382
human CCRGs in LUSC samples. Totally, we identified 290 CCRGs (downregulated CCRGs: 126; upregulated CCRGs: 164), and 447 CCRGs (downregulated CCRGs: 226;

upregulated CCRGs: 221) differentially expressed in LUAD and

LUSC samples respectively.
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Figure 2. GO analysis of differentially expressed CCRGs. (A) Bar plot of GO analysis of differentially expressed CCRGs in LUAD. (B) Bubble chart of GO analysis of differentially
expressed CCRGs in LUAD. (C) Circle diagram of GO analysis of differentially expressed CCRGs in LUAD. (D) Bar plot of GO analysis of differentially expressed CCRGs in
LUSC. (E) Bubble chart of GO analysis of differentially expressed CCRGs in LUAD. (F) Circle diagram of GO analysis of differentially expressed CCRGs in LUSC. The results

revealed distinct enriched CCRGs sets between different biological functions.

Functional enrichment analysis of differential
expression genes

Firstly, we analyzed the association of these
differentially expressed CCRGs with the GO terms of
the biological process (BP) and cellular component
(CC) categories. For LUAD samples, the top five
enriched BP terms were ‘regulation of hemopoiesis,’
‘neutrophil degranulation,” ‘neutrophil activation
involved in immune response’, ‘neutrophil-mediated
immunity’, and ‘neutrophil activation” (Fig. 2A-C).
The top two enriched CC terms were ‘chromatin” and
‘secretory granule membrane” (Fig. 2A-C). For LUSC
samples, the top five enriched BP terms were
‘neutrophil activation involved in immune response’,
‘neutrophil activation’, ‘neutrophil degranulation’,
‘neutrophil-mediated immunity’, and ‘negative
regulation of immune system process’, which was like
the results of the former, while more inclined towards
the immunomodulation (Fig. 2D-F). For the results of
CC, the top two enriched terms were precisely the
same as the former (Fig. 2D-F). Then, results of KEGG
analysis indicated that altered CCRGs were mainly
involved in the systemic lupus erythematosus and
osteoclast differentiation of LUAD samples,
meanwhile in the systemic lupus erythematosus,
apoptosis, and B cell receptor signaling pathway of

LUSC samples (Fig. 3).

Finally, we further investigated the differential
distribution of signal pathway enrichment of
differentially expressed CCRGs set between the high
risk-score and low risk-score groups using the GSVA
method. In LUAD samples, compared with the
low-risk group, CCRGs of the high-risk group mainly
enriched in the G2M_CHECKPOINT,
COAGULATION, MYC_TARGETS_V2, and
MITOTIC_SPINDLE. Meanwhile, CCRGs of the
low-risk group mainly enriched in the MYOGENESIS
and NOTCH_SIGNALING. However, the results of
the LUSC samples are quite different. CCRGs of the
high-risk group mainly enriched in the UV_
RESPONSE_DN, KRAS_SIGNALING_UP, TNFA_
SIGNALING_VIA_NFKB, INFLAMMATORY_
RESPONSE, and INTERFERON_GAMMA _
RESPONSE, while CCRGs were mainly involved in
the E2F_TARGETS, UNFOLDED_PROTEIN_
RESPONSE, MYC_TARGETS_V1, G2M_
CHECKPOINT, and DNA_REPAIR in the low-risk
group (Fig. 4). It indicated the differential expression
and regulation of CCRGs in LUAD and LUSC. This
difference may lead to different biological processes
related to the circadian rhythm in cancer cells.
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Figure 3. KEGG analysis of differentially expressed CCRGs. (A) Bar plot of KEGG analysis of differentially expressed CCRGs in LUAD. (B) Bubble chart of KEGG analysis of
differentially expressed CCRGs in LUAD. (C) Circle diagram of KEGG analysis of differentially expressed CCRGs in LUAD. (D) Heatmap of KEGG analysis of differentially
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between the high risk-score and low risk-score groups in LUSC samples.

Construction of the prognostic risk-score
model in the training set

To explore the prognostic signatures of these

differentially expressed CCRGs, we preliminarily
performed a univariate analysis of the standardized
expression of the 290 CCRGs of LUAD and 447
CCRGs of LUSC in the training sets to identify the
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prognostic CCRGs respectively. The results showed
that the expression of 31 CCRGs and 70 CCRGs each
significantly correlated with the OS (p < 0.05) of
LUAD patients and LUSC, respectively (Fig. 5A-B).
Further, we performed Cox proportional hazard
regression to screen the ultimate CCRGs of risk-score
models. Subsequently, results indicated that the
expression of 10 CCRGs correlated with the OS of
LUAD and LUSC patients, respectively (Table 1).
According to this, we constructed a risk-score model
for predicting the prognosis of LUAD and LUSC
patients using the calculation formula mentioned in
the method part, respectively. Finally, CDA,
POU2AF1, TUBB6, SPAGS, NT5E, ARRB1, DDIT4,
HAL, PHLDB2, and AGMAT as risk genes in the
risk-score model of LUAD and ALOX5AP,
RALGAPA2, TIGD3, PNPLA6, ALPL, TREM1, VSIG4,
CD300C, HIST1H2BH, and WNT10A as risk genes in
the LUSC risk-score model (Fig. 5C-F). Survival
analysis revealed that there was a significant
difference between the high-risk group and the
low-risk group in OS, and patients in the high-risk
group significantly correlated with an inferior
prognosis (LUAD: p <0.0001, HR: 2.117, 95% CI: 1.546
to 2.900; LUSC: p < 0.0001, HR: 2.066, 95% CI: 1.552 to
2.751) (Fig. 6A-B). Finally, we also ranked the risk
scores of LUAD and LUSC patients for OS and
explored the distribution features (Fig. 6C-D). The dot
plots revealed the status of each patient in the training
sets (Fig. 6E-F). The heat maps showed the differential
expression of the feature CCRGs in the high-risk and
low-risk groups (Fig. 6G-H). As results show, there
was an upregulation of HAL, PHLDB2, AGMAT,
DDIT4, CDA, NT5E, and TUBB6 as high-risk genes

and downregulation of POU2AF1, SPAGS, and
ARRBI as protective genes of LUAD patients in the
high-risk score group comparing the low-risk score
group. Moreover, samples with high-risk scores of
LUSC patients suggested upregulation of TREMI,
WNT10A, CD300C, ALPL, ALOX5AP, VSIG4,
RALGAPA2 and PNPLA6 as high-risk genes and
downregulation of TIGD3 and HISTIH2BH as
protective genes.

Validation of the prognostic risk-score model
in the testing set

We next validated the stability and accuracy of
the prognostic risk-score model in the testing sets,
which included LUAD and LUSC cohorts from the
GEO database. The OS was selected as the key
indicator to compare the groups and samples were
divided into low and high risk-score groups based on
the calculated risk score. The formula is as mentioned
before. For the testing set of LUAD type, 519 and 544
samples were separated into low and high risk-score
groups, respectively. Survival analysis showed that
there was a significant difference between the high
and low risk-score groups (p < 0.0001, HR: 1.493, 95%
CI: 1.248 to 1.787) (Fig. 7A). Similarly, 88 samples of
the low-risk group and 89 samples of the high-risk
group were included in the survival analysis of the
LUSC testing set. Results also suggested a significant
difference between the high and low risk-score
groups (p = 0.0486, HR: 1.453, 95% CI: 1.002 to 2.105)
(Fig. 7B). To summarize, our results confirmed that
these two risk-score models based on CCRGs
signatures were all stable and accurate in predicting
the prognosis of patients.

Table 1. Descriptions of CCRGs of the risk-score model in Cox proportional hazard regression analysis

Type Gene ID Full name or Description Risk coefficient HR HR.95L HR.95H p-value

LUAD CDA Cytidine Deaminase -0.089059134 0.914791 0.822109 1.017923 0.102253
POU2AF1 POU Class 2 Associating Factor 1 -0.295832916 0.743912 0.631686 0.876075 0.000392
TUBB6 Tubulin Beta 6 Class V 0.253501154 1.288529 1.031295 1.609925 0.025669
SPAGS8 Sperm Associated Antigen 8 -0.215285427 0.806311 0.602534 1.079006 0.14751
NTSE 5'-Nucleotidase Ecto 0.165120683 1.179535 1.040611 1.337006 0.009806
ARRB1 Arrestin Beta 1 -0.229636783 0.794822 0.638692 0.989119 0.039588
DDIT4 DNA Damage Inducible Transcript 4 0.128789666 1.137451 0.974568 1.327557 0.102412
HAL Histidine Ammonia-Lyase 0.254600207 1.289946 1.101163 1.511093 0.001613
PHLDB2 Pleckstrin Homology Like Domain Family B Member 2 0.232732475 1.262044 1.006844 1.581927 0.043472
AGMAT Agmatinase 0.276379132 1.318348 1.00177 1.73497 0.048543

LusC ALOX5AP Arachidonate 5-Lipoxygenase Activating Protein -0.204079367 0.815398 0.638768 1.040868 0.10134
RALGAPA2 Ral GTPase Activating Protein Catalytic Subunit Alpha 2 0.209187368 1.232676 0.963034 1577816 0.096734
TIGD3 Tigger Transposable Element Derived 3 -0.338879739 0.712568 0.445497 1.139747 0.157327
PNPLA6 Patatin Like Phospholipase Domain Containing 6 0.262619794 1.300332 0.94122 1.79646 0.11125
ALPL Alkaline Phosphatase, Biomineralization Associated 0.088447658 1.092477 0.977686 1.220746 0.118395
TREM1 Triggering Receptor Expressed on Myeloid Cells 1 0.205116552 1.227668 1.028907 1.464826 0.022834
VSIG4 V-Set and Immunoglobulin Domain Containing 4 0.21911239 1.244971 1.000762 1.548772 0.049206
CD300C CD300 Antigen-Like Family Member C -0.355141335 0.701074 0.440876 1.114837 0.133452
HIST1IH2BH  histone cluster 1, H2bh -0.161357251 0.850988 0.749454 0.966278 0.012805
WNT10A Wnt Family Member 10A 0.127271005 1.135725 1.008189 1.279394 0.036246
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Figure 5. Signatures of ten CCRGs in the risk-score model. (A) The expression of 31 CCRGs each significantly correlated with the OS of LUAD patients in the univariate
analysis. (B) The expression of 70 CCRGs each significantly correlated with the OS of LUSC patients in the univariate analysis. (C) Boxplot of differentially expressed CCRGs of
the risk-score model (LUAD samples). (D) Correlation between ten CCRGs in the risk-score model of LUAD. (E) Boxplot of differentially expressed CCRGs of the risk-score
model (LUSC samples). (F) Correlation between ten CCRGs in the risk-score model of LUSC.
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Figure 6. Survival analysis and characteristics of the prognostic gene signature. (A) Kaplan-Meier analysis of LUAD patients stratified by the risk-score in the training set. (B)
Kaplan-Meier analysis of LUSC patients stratified by the risk-score in the training set. (C) The distribution of risk-score for LUAD patients in the training set. (D) The distribution
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http://lwww.jcancer.org



Journal of Cancer 2021, Vol. 12

2591

A

Survival probability

0 1 2z 3 4 5 6 7 8 © 10 11 12 13 14 15 16 17 18 19 20

Time(years)

fighrisk] 519 449 374 303 235 180 116 76 48 31 21 14 11 8 5 3 2 2 1 0 ©

Risk

Lawrisk]{ 544 501 450 394 333 254 157 106 76 51 40 25 21 17 12 4 4 1 0 0 0

6 1 2z 3 4 5 6 7 B 8 10 11 12 13 14 15 16 17 18 19 20
Time(years)

Number of censoring

UIII|III‘IMHHMWMHHI||IIIII|III| w1

i 2 3 4 5 6 7 8 6 10 11 12 13 14 15 16 17 18 19 20
Time(years)

n.censor

Survival probability

025 Y L

p=4.B646-02 1

0 1 2 3 4 5 ] 7 8 8 10 11 12 13 14 15 16 17 18 19 20
Time(years)

Highrisk] 88 73 55 41 30 24 16 10 & 5 5 4 3 3 3 2 2 2 2 2 O

Risk

Lowrisk] 89 B7 72 58 47 39 34 28 21 16 14 11 10 10 9 5 4 3 2 0 O

06 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 18 20

Time(years)

§ 1 2 3 4 5 6 7 8 6 10 1T 12 13 14 15 16 17 18 18 20
Time(years)

Number of censoring

n.censar

0

Figure 7. Validation of the risk-score in the testing set. (A) Kaplan-Meier analysis of LUAD patients stratified by the risk-score in the validation set. (B) Kaplan-Meier analysis of

LUSC patients stratified by the risk-score in the validation set.

Clinical characteristics correlation analysis

In this section, we further explored the stability
and reliability of the risk score as a clinical indicator.
Seven variables, including age, gender, T stage, N
stage, M stage, pathologic stage, and risk-score, were
analyzed using the univariate analysis and Cox
proportional hazard regression in the training sets of
LUAD and LUSC respectively (LUAD: p < 0.001, HR:
1.228, 95% CI: 1.158 to 1.302; LUSC: p < 0.001, HR:
2.501, 95% CI: 2.010 to 3.117) (Fig. 8A-D). Our analysis
showed that risk-score was found to be an
independent prognostic indicator both in LUAD
patients and LUSC patients. Then, we constructed
ROC curves for different variables to evaluate the
risk-score as classifiers, and the AUC was calculated
and considered as the basis for evaluation (LUAD:
AUC 0.788; LUSC: AUC 0.738) (Fig. 8E-F). Our results
indicated that the risk-score had superior accuracy
and predictability comparing other clinical
characteristics both in LUAD and LUSC samples.

Immune correlation and infiltration analysis

We explored the immune infiltration level of the
diverse immune infiltrating cells between the
high-risk group and the low-risk group by the
CIBERSORTx. We first calculated the abundances of
22 immune cell types in each sample using
standardized CCGRs expression profiles in LUAD
and LUSC, respectively. Then we filtered each sample
according to the p-value to eliminate the bias caused
by inaccurate estimation and grouped the samples
based on the risk-score. Finally, 23 samples of the
low-risk group and ten samples of the high-risk group
were selected in LUAD. Meanwhile, of LUSC

samples, 19 samples of the low-risk group, and 26
samples of the high-risk group were included for
analysis. Our results suggested that immune
infiltration levels in the high-risk group of naive B
cells, plasma cells, naive CD4+ T cells, CD8+ T cells,
dendritic cells, M2 macrophages, and mast cells
decreased significantly in the LUAD compared with
the low-risk group (Fig. 9A-B). Furthermore, there
were significantly increased levels of infiltrates of
activated memory CD4+ T cells, T follicular helper
cells, regulatory T cells (Tregs), natural killer (NK)
cells, monocytes, neutrophils, and M0/1 macrophage
in the high-risk group. Moreover, for LUAC samples,
immune infiltration levels in the high-risk group of
naive B cells, resting memory CD4+ T cells, naive
CD4+ T cells, CD8+ T cells, T cells follicular helper,
NK cells, dendritic cells, and MO0/1 macrophage
decreased significantly comparing the low-risk group
(Fig. 9C-D). Meanwhile, there were significantly
increased levels of infiltrates of plasma cells, activated
memory CD4+ T cells, Tregs, mast cells, monocytes,
M2 macrophages, and neutrophils in the high-risk
group. In summary, we found that there were similar
commonalities in the level of immune cell infiltrations
between the high-risk group and the low-risk group
in LUAD and LUSC. For instance, our results showed
that immune cells, which play a vital role in tumor
immunity, were significantly decreased in the
high-risk group, such as CD8+ T cells, dendritic cells,
B cells, and naive CD4+ T cells. Meanwhile, negative
regulation and inflammation-related cells, such as
Tregs, mast cells, monocytes, and neutrophils, were
significantly increased. These results suggested that
compared with the low-risk group, anti-tumor
immune responses were inhibited while the
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inflammatory process and hyperresponsiveness may
be significantly enhanced in the high-risk group.
However, there were still some differences and
changes in the level of infiltration of some immune
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Figure 8. The risk-score was a significant signature with superior accuracy and predictability related to survival in NSCLC. (A) Univariate analysis of clinical characteristics,
including the risk-score in LUAD patients. (B) Multivariate Cox regression analysis of clinical characteristics in LUAD patients, the risk-score was an independent predictor of
prognosis. (C) Univariate analysis of clinical characteristics, including the risk-score in LUSC patients. (D) Multivariate Cox regression analysis of clinical characteristics in LUSC
patients, the risk-score was an independent predictor of prognosis. (E) ROC and AUC analysis of the sensitivity and specificity for the risk score in LUAD patients. (F) ROC and

AUC analysis of the sensitivity and specificity for the risk score in LUSC patients.
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Figure 9. Immune infiltration level of the diverse immune infiltrating cells between the high-risk group and the low-risk group by the CIBERSORTX. (A) Immune infiltration levels
of 22 immune cell types in the low-risk group (23 samples) and high-risk group (ten samples) (LUAD). (B) The heatmap of abundances of 22 immune cell types in the low-risk
group (23 samples) and high-risk group (ten samples) (LUAD). (C) immune infiltration levels of 22 immune cell types in the low-risk group (19 samples) and high-risk group (26
samples) (LUSC). (D) The heatmap of abundances of 22 immune cell types in the low-risk group (19 samples) and high-risk group (26 samples) (LUSC).
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Genetic alteration analysis

We investigated the genetic alteration of these
CCRGs in the risk-score model to further understand
their contributions to carcinogenesis by the cbioportal.
We found that these risk-associated CCRGs were
relatively conservative, and the mutation rates of
these genes were all lower than 3% (most the percent
of which were around 1%-2%) both in LUAD and
LUSC (Fig. 10). Our results suggested that some of
genes with high mutation rate in our risk model may
have potential roles in tumorigenesis of NSCLC. The
underlying mechanism of those genes with low
mutation rate remains to be further investigated.

Discussion

There is clear evidence for the differential
expression of CCRGs in a variety of diseases, and
cancers are no exception [24]. Also, the process of
differential expression was 24-hour periodicity and
might also be affected by the seasons. Universally
recognized, implications of regulating CCRGs
expression in epigenetic control mechanisms have
been described during the tumor initiation and
progression, which included circadian metabolic
changes and tumor-derived macroenvironment,
which has been reported in studies of breast cancer
and LUAD in mouse models [25]. The implication also
has been indicated by epidemiological studies [26].
Changes and disruptions of circadian rhythms in
humans significantly impinged on the increasing risk
of tumorigenesis [27,28]. Evidently, circadian biology
is becoming a critical involvement in improving the

understanding of molecular mechanisms involved in
cancer cells. Nevertheless, its importance has sparsely
been well recognized in clinical studies and practice,
and even more when translating to the bedside. Based
on this, we attempted to represents a substantial step
toward that direction, which aims first to describe
landscapes and implications of these differentially
expressed CCRGs and investigate the connection
between impingement of circadian rhythms and
prognostic significance, in the most common and
malignant tumor. We finally integrated and analyzed
the expression profiles of 1,382 human CCRGs in
NSCLC wholly and systematically via the CGDB,
TCGA, and GEO database. We pioneering proposed a
CCGRs-based risk-score model better to assess the
effects of circadian rhythm on prognosis accordingly.
In addition, according to the score, we further focused
on the infiltration changes of immune cells, genetic
alteration, and the possibility of being a
pharmacological target in these samples.

Recently, a study based on integration and
analysis of data from the TCGA database has
investigated the association between 14 kinds of clock
genes and prognostic signatures in NSCLC patients,
which also showed that differentially expressed clock
genes constitute their characteristic asynchronous
circadian rhythms [29]. To date, thousands of genes
and proteins are considered to be related to the
circadian rhythms’ oscillation. Given the significance
of circadian rhythms in lung cancer, it is reasonable to
speculate that CCRGs hold excellent promises in
prognostic prediction and that a risk score based on
multiple-gene signatures derived from dependable
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algorithms would be more reliable and superior to
any single molecules in predicting prognosis of
NSCLC. We, therefore, put forward a risk-score
model, in which ten-gene signatures were selected
and calculated for evaluating the prognostic risk of
LUAD and LUSC training sets, and the predictive
validity of the risk-score model was validated in
several GEO NSCLC cohorts, respectively.
Fortunately, the risk scores significantly stratified
patient outcomes and immune cell infiltration levels
between the high-risk and low-risk groups. Further,
the risk-score also showed its excellent stability and
accuracy as a classifier in the Cox proportional hazard
regression, including risk-score and other clinical
variables. It was evident that the high-risk group has
an inferior prognosis and a more reduced anti-tumor
immune response in our analysis. In the risk-score
model containing ten genes of LUAD and LUSC
respectively. Many genes have been shown to be a
potential diagnostic and therapeutic target in lung
cancer. Hui-Er Zhu and his colleagues have indicated
that AGMAT  (Agmatinase) might  drive
tumorigenesis via activating MAPK and PI3K/Akt
cascades [30]. Also, NT5E (CD73) inhibitors are
currently being tested in several clinical trials for the
treatment of cancer. It has been suggested that NT5E
may be linked to both tumorigenesis and EGFR-
related drug resistance in NSCLC [31]. Furthermore,
several genes, such as TREM1 and VSIG4 in our risk
model were also shown to have prognostic
significance and may prove to be a novel, efficacious
strategy for the treatment of NSCLC [32,33].
Certainly, functions and roles of some genes have not
been fully confirmed, which requires further research
to explore in depth.

In this study, we found that these genes are
involved in many biological processes, such as cell
cycle control, metabolism, immune-modulating,
inflammatory reaction, cytoskeletal reorganization,
chromatin remodeling, apoptosis in response to DNA
damage repair, and protein synthesis and
transportation, through systemic functional analysis.
We concluded that these above processes in tumor
cells might be affected by the circadian rhythm.
Several studies have demonstrated that a wide range
of core circadian clock components is epigenetically
altered, and this perturbation could promote
tumorigenesis, progression, and decreased survival in
lung cancer, which also suggested an essential
position of circadian homeostasis in the
tumor-suppressive role [34,35].

Interestingly, we found that the infiltration level
of critical cells in specific anti-tumor immunity
process, such as CD4+ T cells, CD8+ T cells, and
dendritic cells, were suppressed apparently, while the

activity and infiltrating of inflammatory cells and
Tregs with negative regulatory ability were promoted
in the high-risk group. It established that circadian
rhythms and related genes played a vital role in the
tumor immune and tumor-associated inflammatory
response. The latest studies have confirmed our
results. To date, current notion suggests that CCRGs
express in most immune cells universally and present
a circadian oscillation with a fixed rhythm, which
performs essential roles in a wide range of
immunomodulation process, including the
phagocytosis, apoptosis, the synthesis, and release of
cytokines, chemokines, and cytolytic factors, the
response occurring through pattern recognition
receptors [36]. Differential expression of CCRGs also
plays a vital role in the development and specification
of immune cell lineages [37]. This view also reflected
in our analysis. For instance, immune infiltration level
of resting memory CD4+ T cells and naive CD4+ T
cells were decreased, while the level of activated
memory CD4+ T cells was increased in the high-risk
group. Consequently, it is evidence that alterations in
circadian rhythms due to differential expression of
genes in cancer cells may lead to disturbed the
immune responses, and these changes may be caused
by clock gene mutation, environmental disruption, or
the age and tumor itself. A study of circadian rhythm
reprogramming during the lung inflammation
suggested that the early events in lung injury may
produce a complex reorganization of cellular and
molecular circadian rhythms and further regulate
immune responses of the host [38]. It will be essential
to determine the mechanism and causality of
oscillations driven by CCRGs in cellular function,
metabolism and immunity, and whether the critical
drivers for oscillations are the time of
day/season-dependence. If so, it might strengthen
our fundamental understanding of how the circadian
rhythm disturbs metabolism and immune functions to
anticipate changes in the environment, and provide a
bridge between the circadian rhythms and novel
insights to facilitate the development of
chronotherapies for fighting cancer and other
diseases.

Besides, our genetic alteration analysis also
suggested the low mutation rates of these CCRGs in
the risk-score model, which was also in line with the
current view that CCRGs were evolutionarily
conserved in eukaryotes [39]. Moreover, this
conservatism would affect plenty of critical cell
functions, such as immunomodulatory. Studies over
the last decade indicate that immune responses
related to the circadian oscillators are a consequence
of this Darwinian selection process, and the circadian
rhythm could minimize costs and maximizes benefits
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of immunity to optimize organismal fitness in a given
environment [40]. Thus, the disruption of the normal
circadian rhythmic may result in the appearance of
CCRGs differential expression and metabolic
rhythms, which might function to support host
immunity but also increase the probability of tissue
damage and a catastrophic vulnerability [41].
Meanwhile, we also found the subtle difference
between CCRGs differential expression and immune
cell infiltration in LUAD and LUSC, which might
result from the specific contexts of different types of
cancers. These are still urgent questions needed to be
studied and solved today.

Conclusion

All organisms on Earth are exposed to regular
environmental cycles generated by the rotation and
revolution of the Earth. This, in turn, has led to the
evolution of circadian rhythms driven by CCRGs,
which facilitate lives to anticipate and adapt to the
internal and external changes during their
environment. We preliminary explored a risk-score
based on ten CCRGs signatures based on TCGA and
GEO database in LUAD and LUSC, respectively. This
risk-score was an independent predictor of prognosis.
Further analysis of cell functions and immune
infiltration between the high-risk and low-risk group
and genetic alteration of these GGRGs also
investigated in our study. Differential expression of
CCRGs also regulated the immune cell infiltration
level in NSCLC. These CCRGs were evolutionarily
conserved with low mutation rates and further
studies and experimental confirmations are needed.
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