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Abstract 

Background: Abnormal expression of RNA-binding proteins (RBPs) is closely related to tumorigenesis, 
progression, and prognosis. This study performed systematic bioinformatic analysis of RBPs abnormally 
expressed in colon adenocarcinoma (COAD) using the Cancer Genome Atlas (TCGA) database to 
screen prognostic markers and potential therapeutic targets. 
Methods: First, the gene expression data from COAD samples were used to screen out differentially 
expressed RBPs for functional enrichment analysis and to visualize interaction relationships. Second, 
RBPs that were significantly related to prognosis were screened through univariate and multivariate Cox 
regression analysis to construct a prognostic model. The prediction performance of the prognostic 
model was evaluated by survival analysis and receiver operating characteristic (ROC) curve analysis. It 
addition, it was verified in the test cohort. The Human Protein Atlas (HPA) online database was used to 
verify the expression levels of RBPs in the prognostic model. 
Results: The study identified 181 differentially expressed RBPs and analyzed their interaction and 
functional enrichment, which were mainly related to non-coding RNA processing, ribosome biogenesis, 
RNA metabolic processes, RNA phosphodiester bond hydrolysis, and alternative mRNA splicing. Five 
RBPs related to prognosis were used to construct a prognostic model, and its predictive ability was 
verified by the test cohort. ROC curve analysis showed that the prognostic model had good sensitivity 
and specificity. Independent prognostic analysis showed that risk scores could be used as independent 
prognostic factors for COAD. 
Conclusion: This study constructed a reliable prognostic model by analyzing COAD differentially 
expressed RBPs, facilitating the screening of COAD prognostic markers and therapeutic targets. 
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Introduction 
Colon cancer is one of the most common and 

deadly malignant tumors, presenting a serious threat 
to human life [1]. The incidence and morality of colon 
cancer have been increasing rapidly in recent years 
[2]. Colon adenocarcinoma (COAD) is the most 
common pathological type of colon cancer [3], with 
approximately 1.2 million new cases worldwide every 
year, causing 600,000 deaths [4]. Surgical resection is 
currently the primary treatment for localized COAD. 
After tumor resection, COAD is prone to relapse and 

metastasis. The proportion of poor prognosis in 
COAD patients is 25% to 40% [5, 6]. In addition, 
because the onset of COAD may be occult with no 
specific symptoms and signs, some patients are 
usually diagnosed at an advanced stage, which has 
limited therapeutic outcomes. Despite some progress 
in COAD diagnosis and treatment in recent years, low 
survival rates, high recurrence rates, and poor 
prognoses remain challenging [7]. Therefore, actively 
looking for molecular markers and therapeutic targets 
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to predict the prognosis of COAD patients is of great 
significance for COAD treatment and improving 
patient prognoses. 

RNA-binding protein (RBP) is an important 
component in post-transcriptional modification, 
playing an important role in tumorigenesis and tumor 
progression [8]. Thus far, 1,542 human genes 
encoding RBPs have been confirmed by experiments, 
accounting for approximately 7.5% of all protein 
coding genes [9]. RBPs interact with other proteins or 
RNAs to form ribonucleoprotein complexes, which 
regulate RNA processing, translation, exportation, 
and localization, thereby maintaining the stability of 
the intracellular environment [10]. The abnormal 
function of RBPs in a tumor primarily manifests in 
two aspects: abnormal RBP expression level, and 
changes in RBP activities. Related studies have shown 
that RBP expression in cancer tissues is significantly 
different from that of adjacent tissues, and is closely 
related to cancer patient prognosis [11-14]. Hence, 
systematic RBP studies enable further understanding 
of tumor pathogenesis and therapeutic targets, and 
thus are important for the identification of therapeutic 
targets and prognoses. Recently, there have been 
studies to construct cancer survival models based on 
RBP expression, as well as to assess the prognosis and 
screen therapeutic targets [15-17], but no relevant 
research is available for COAD. 

In this study, RPBs related to COAD were 
obtained from the Cancer Genome Atlas (TCGA) 
database, and their potential functions were analyzed 
by identifying RBPs that were differentially expressed 
between tumor tissues and normal tissues. 
Subsequently, a prognostic prediction model was 
constructed to evaluate the prognosis of COAD 
patients, aiming to find independent prognostic 
biomarkers, which may better guide clinical COAD 
treatment. 

Materials and methods 
Data collection and differential expression 
analysis 

In this study, the gene expression data and 
clinical information from COAD samples were 
obtained from the TCGA database [18] (https:// 
portal.gdc.cancer.gov; until May 7, 2020). RNA-Seq- 
FPKM data were downloaded and analyzed from 398 
COAD cases and 39 non-tumor tissues. Because the 
publishing guidelines provided by TCGA were 
strictly abided by, no ethical approval was required. 
The Limma package [19] of R software was used for 
differential expression analysis. The Wilcoxon signed- 
rank test was used to screen differentially expressed 
RBPs [9] in the tumor and normal tissues. The cut-off 

values were < 0.05 for false discovery rate (FDR), and 
|log2 FC| > 1. Heat maps were generated using 
pheatmap software. 

Gene ontology and pathway enrichment 
analysis 

To comprehensively analyze the biological 
functions of these differentially expressed RBPs, the 
ClusterProfiler package [20] of R software was used 
for gene ontology (GO) [21] and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [22] pathway 
enrichment analysis. The GO terms included three 
categories: biological process, cellular component, 
and molecular function. P < 0.05 and q < 0.05 were 
used as statistically significant standards. 

Protein-protein interaction network 
construction and module selection 

To obtain the correlation of differentially 
expressed RBPs, these differentially expressed 
proteins were mapped using the Search Tool from the 
Retrieval of Interacting Genes/Proteins (STRING) [23] 
(https://string-db.org/) database, followed by 
utilizing Cytoscape [24] (version 3.6.1) for network 
visualization. The key modules of the protein-protein 
interaction (PPI) network were identified by the 
Molecular Complex Detection (MCODE) plug-in, 
with both MCODE score and node count number 
more than five [25]. P < 0.05 was the threshold for 
significant difference. 

Prognosis model construction and verification 
Univariate Cox regression analysis was 

performed of RBPs in PPI, and the log-rank test was 
used to select RBPs related to survival. Subsequently, 
the entire cohort was divided into training and test 
cohorts. The survival-related RBPs in the training 
cohort were analyzed by multivariate Cox regression 
to construct a prognostic model and calculate a risk 
score in order to evaluate the prognosis of COAD 
patients. The formula for calculating the risk score of 
each sample is as follows: 

Risk score = ∑ (𝐸𝑥𝑝𝑖 ∗ 𝛽𝑖)𝑛
𝑖=1 , 

where β represents the regression coefficient, 
and Exp represents the gene expression value. 

To evaluate and verify the predictive ability of 
this prognostic model, the patients in the training and 
test cohorts were divided into low-risk and high-risk 
groups according to the training cohort’s median risk, 
after which Kaplan-Meier survival analysis was 
performed to compare the overall survival rates of the 
two groups of patients. The calculation of P-value was 
performed using the log-rank test. The receiver 
operating characteristic (ROC) curve was prepared to 
evaluate the prediction accuracy of the prognosis 
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model. Area under the curve (AUC) >0.6 was 
considered to be an acceptable model. 

Risk score and other clinical variables (e.g., age, 
gender, stage, and TNM classification) together were 
subjected to univariate and multivariate Cox 
regression analyses to determine whether the risk 
score could be used as an independent prognostic 
factor. A nomogram was also prepared according to 
the RBPs in the prognosis model. 

Genetic alteration analysis and verification of 
expression levels 

The cBioPortal [26] (https://www.cbioportal. 
org/) was used to perform genetic alternation 
analysis on RBPs in the risk model. The Human 
Protein Atlas (HPA) [27] online database (http:// 
www.proteinatlas.org/) was used to detect the 
expression levels of RBPs in the prognostic model. 

Results 
Identification of differentially expressed RBPs 
in COAD patients 

A flowchart of our study design is shown in 

Figure 1. Clinical information and gene expression 
data of 398 COAD samples and 39 non-tumor tissue 
samples were obtained from the TCGA database, and 
a total of 1,375 RBPs were collected. After differential 
expression analysis using the Limma package of R 
software, 181 differentially expressed RBPs were 
identified (FDR < 0.05 and |log2 FC| > 1), including 
121 upregulated RBPs and 60 downregulated RBPs. 
The expression distribution of these differentially 
expressed RBPs is shown in Figure 2. For example, 
compared to non-tumor tissue, TRIM71 is 
upregulated and RBFOX3 is downregulated in tumor 
tissue. Studies have shown that TRIM71 can inhibit 
the expression of tumor suppressor CDKN1A/p21 
and promote the proliferation of tumor cells. TRIM71 
is up-regulated in hepatocellular carcinoma patients 
and is associated with tumor progression and poor 
prognosis [28]. 

Functional enrichment analysis of the 
differentially expressed RBPs 

To analyze the biological functions and related 
signaling pathways of the differentially expressed 
RBPs, GO and KEGG pathway enrichment analyses 

were performed. The results of GO 
enrichment analysis showed that the 
upregulated differentially expressed 
RBPs were significantly enriched in 
non-coding RNA (ncRNA) processing, 
phosphodiester bond hydrolysis, and 
ribosome biogenesis. The down-
regulated differentially expressed RBPs 
were enriched in the defense response to 
virus, regulation of mRNA processing, 
regulation of translation, and regulation 
of mRNA metabolic processes. In terms 
of molecular function, the upregulated 
differentially expressed RBPs showing 
significant enrichment were involved 
primarily in catalytic activity acting on 
RNA, ribonuclease activity, and 
nuclease activity. The downregulated 
differentially expressed RBPs were 
significantly enriched in mRNA 3'-UTR 
AU-rich region binding, double- 
stranded RNA binding, and translation 
repressor activity. The results of the 
cellular component analysis showed that 
the upregulated differentially expressed 
RBPs were mainly enriched in 
cytoplasmic ribonucleoprotein granules, 
nucleolar components, and 
preribosomes, while the downregulated 
differentially expressed RBPs were 
mainly enriched in the endolysosomal 

 

 
Figure 1. A flow chart of the study design. 
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membrane, cytoplasmic ribonucleoprotein granule, 
and ribonucleoprotein granule (Figure 3A and 3B). 

In addition, the results of the KEGG pathway 
enrichment analysis showed that the upregulated 
differentially expressed RBPs were significantly 
enriched in ribosome biogenesis in eukaryotes, RNA 
transport, mRNA surveillance pathways, and RNA 
degradation. The downregulated differentially 
expressed RBPs were significantly enriched in 
hepatitis C, progesterone-mediated oocyte 
maturation, and the toll-like receptor signaling 
pathway (Figure 3C and 3D). 

PPI network construction and module 
selection 

To further examine the interaction between these 
differentially expressed RBPs, the study utilized a PPI 
network using the STRING database, which contained 

171 nodes and 573 edges, and was visualized using 
Cytoscape (Figure 4A). The medians of two 
topological features, degree and betweenness, were 
selected as the criteria, and seven pivot proteins, 
namely NOP56, DKC1, DDX31, DDX47, RRS1, 
METTL1, and PIWIL1 were obtained. Using the 
MCODE plug-in to process the PPI network, three key 
modules were selected, including module 1, which 
contained 19 nodes and 161 edges(Figure 4C); module 
2, which contained 8 nodes and 25 edges(Figure 4D); 
and module 3, which contained 11 nodes and 28 edges 
(Figure 4D). The results of functional enrichment 
analysis showed that module 1 was mainly enriched 
in ncRNA processing, ribosome biogenesis, and rRNA 
processing; module 2 was mainly enriched in 
regulation of alternative mRNA splicing, alternative 
mRNA splicing, and regulation of mRNA splicing; 
and module 3 was mainly enriched in defense 

 

 
Figure 2, 181 differentially expressed RBPs in COAD, including 121 upregulated RBPs and 60 downregulated RBPs. (A) Heat map; (B) Volcano plot. 
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response to virus, response to virus, and type I 
interferon biosynthetic process. 

 

Table 1. 15 RBPs identified by univariate Cox regression analysis 

RBP name Hazard ratio Lower 95% CI Upper 95% CI P-value 
PNLDC1 1.5865 1.0941 2.3007 0.0149 
TDRD5 1.5915 1.0526 2.4063 0.0275 
PTRH1 8.2750 1.2506 54.7549 0.0284 
RBM47 0.5290 0.3271 0.8556 0.0094 
KHDC1L 3.1476 1.6515 5.9989 0.0005 
LUZP4 433.7976 18.7845 10017.8796 0.0002 
PPARGC1A 0.5544 0.3653 0.8414 0.0056 
PPARGC1B 0.5061 0.2719 0.9421 0.0317 
CELF4 8.4467 2.4421 29.2156 0.0008 
TERT 1.5662 1.0489 2.3388 0.0283 
POP1 0.5661 0.3232 0.9914 0.0466 
LRRFIP2 0.2851 0.1347 0.6038 0.0010 
EIF4E3 0.6406 0.4133 0.9930 0.0465 
LIN28B 2.4368 1.3230 4.4882 0.0043 
TDRD7 0.4891 0.2767 0.8646 0.0139 

 

Table 2. Five prognosis-related RBPs identified by multivariate 
Cox regression analysis 

RBP name Coef Hazard ratio Lower 95% CI Upper 95% CI P-value 
TDRD5 0.9266 2.5260 1.2790 4.9888 0.0076 
LUZP4 4.6049 99.9749 3.6527 2736.3292 0.0064 

RBP name Coef Hazard ratio Lower 95% CI Upper 95% CI P-value 
LRRFIP2 -1.3517 0.2588 0.0807 0.8294 0.0229 
TDRD7 -0.6481 0.5230 0.2226 1.2290 0.1370 
KHDC1L 0.8040 2.2345 0.9579 5.2124 0.0628 

 

Prognosis-related RBP selection 
A total of 171 differentially expressed RBPs were 

identified in PPI. To evaluate the prognostic 
significance of these RBPs, univariate Cox regression 
analysis was performed to obtain 15 RBPs related to 
prognosis: PNLDC1, TDRD5, PTRH1, RBM47, 
KHDC1L, LUZP4, PPARGC1A, PPARGC1B, CELF4, 
TERT, POP1, LRRFIP2, EIF4E3, LIN28B, and TDRD7 
(Table 1). 

Prognostic model construction and 
verification 

Multivariate Cox regression analysis was 
performed on the candidate RBPs in the training 
cohorts to obtain the following five RBPs for the 
construction of the prognostic model: TDRD5, LUZP4, 
LRRFIP2, TDRD7, and KHDC1L (Table 2). 

 
 
 
 

 
Figure 3. Functional enrichment analysis of the differentially expressed RBPs. GO enrichment analysis (BP/CC/MF) results of (A) downregulated RBPs and (B) upregulated RBPs; 
KEGG pathway analysis results of (C) downregulated RBPs and (D) upregulated RBPs. 
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Figure 4. Protein-protein interaction (PPI) network and modules analysis. (A) PPI network of 181 differentially expressed RBPs; (B) critical module from PPI network; (C)critical 
module 1, (D) critical module 2 and (E)critical module 3 from PPI network. Red nodes: upregulated RBPs; green nodes: downregulated RBPs. 

 
To evaluate the prognostic model’s predicative 

power, 191 patients in the training cohort were 
divided into high-risk and low-risk groups for 
survival analysis based on the median risk score. The 
results showed that patients in the high-risk group 
had poorer survival rates than those in the low-risk 
group (Figure 5A). ROC analysis was used to test the 
predictive accuracy of our model, and the results 
showed that our model predicted the prognosis of 
COAD patients very well. The AUC values under the 
ROC curves for the one-, three-, and five-year survival 
rates were0.730, 0.737, and 0.810, respectively (Figure 
5C). Figure 5 shows the risk score curves, survival 
status distributions, and RBPs gene expression heat 
map of patients in the high and low-risk groups. To 

further verify the accuracy of this prognostic model, 
survival analysis and ROC analysis were performed 
on a test cohort consisting of 188 patients, and the 
results showed that the survival rates of the high and 
low-risk groups were significantly different. The AUC 
values under the ROC curves for the one-, three-, and 
five-year survival rate were 0.680, 0.682, and 0.661, 
respectively, suggesting that our prognostic model 
had good sensitivity and specificity (Figure 5). 

In addition, univariate and multivariate Cox 
regression analyses were used to evaluate the risk 
scores of our prognostic model and prognostic values 
of other clinical features. The univariate Cox 
regression analysis suggested that stage, TNM 
classification, and risk score were associated with 
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COAD prognosis (Figure 6A). The multivariate Cox 
regression analysis suggested that risk score may be 
an independent risk factor (Figure 6B). 

Construction of a nomogram based on RBPs in 
the prognostic model 

To better predict the survival time of COAD 
patients, a nomogram based on the gene expression of 
RBPs in the prognosis model was constructed (Figure 

7). The expression of each RBP in the prognostic 
model corresponded to a point. All points were added 
to calculate the total points of each patient. The one-, 
two-, and three-year survival rates of the patients 
were predicted by drawing perpendicular lines 
between the axis of total points and each prognostic 
axis. 

 
 
 

 
Figure 5. Risk score analysis of prognostic model in TCGA cohort. (A) Kaplan-Meier curves and (C) ROC analysis of the prognostic model in TCGA training cohort; (B) 
Kaplan-Meier curves and (D) ROC analysis of the prognostic model in TCGA test cohort; (E) risk score curves, (G) survival status and (I) heat map of COAD patients in TCGA 
training cohort and training cohort.; (F) risk score curves, (H) survival status and (J) heat map of COAD patients in TCGA test cohort. 
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Figure 6. The Cox regression analysis for evaluating the independent prognostic value of the risk score of the prediction model. The (A) univariate and (B) multivariate Cox 
regression analysis of age, gender, stage, TNM classification and risk score. 

 
Figure 7. Nomogram of predicting 1-, 2-, and 3-years OS of COAD patients in the TCGA cohort. 

 
Figure 8. Genetic alteration analysis of 5 prognosis-related RBPs in COAD patients. 

 
Figure 9. Verification of 4 prognosis-related RBPs expression in COAD and normal colon tissue using the HPA database. (A) LRRFIP2, (B) TDRD7, (C) TDRD5, (D) LUZP4. 
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Genetic alteration analysis and expression 
level verification 

The cBioPortal was used to perform genetic 
alteration analysis on five genes related to prognosis, 
TDRD5, LUZP4, LRRFIP2, TDRD7, and KHDC1, and 
the results showed that 130 of 524 COAD samples 
(25%) had undergone alternation among the listed 
genes. The alteration was dominated by mRNA 
upregulation (Figure 8). To verify the differences 
expression for these five genes, the immunohisto-
chemical results of the five genes expressed in COAD 
were obtained from the HPA database. LRRFIP2 and 
TDRD7 expression in COAD tissues were 
significantly higher than those in the normal colon 
tissues. In addition, TDRD5 expression was weakly 
positive in COAD tissues and was negative in normal 
colon tissues. LUZP4 expression was negative in both 
normal colon and COAD tissues (Figure 9). 

Discussion 
RBPs are an important component of gene 

expression pathways in eukaryotes and are key 
regulators of post-transcriptional processes that 
mediate RNA maturation, transport, localization, and 
translation [29]. The different functions of RBPs in 
post-transcriptional gene regulation are crucial for cell 
differentiation and proliferation. Therefore, abnormal 
expression of RBPs leads to the occurrence of various 
human diseases, including cancer. RBPs are well 
recognized to play a key role in tumorigenesis and 
tumor progression. However, many of their specific 
roles in cancer biology have not been discovered. 
Therefore, analysis of the differentially expressed RBP 
network and related functions is helpful to promote 
in-depth understanding of their role of tumor biology, 
possibly revealing new targets for cancer treatment 
[30]. COAD is one of the most common gastro-
intestinal malignancies, with a low survival rate, high 
recurrence rate, and poor prognosis. Therefore, 
screening of prognostic biomarkers and new 
therapeutic targets has great significance for early 
therapeutic intervention and prognosis for COAD. 

This study analyzed RBPs in 398 COAD and 39 
non-tumor tissue samples using TCGA to identify 181 
differentially expressed RBPs, including 121 
upregulated and 60 downregulated RBPs. The 
biological functions related to the differentially 
expressed RBPs were subsequently and systematically 
analyzed to construct a PPI network. Univariate and 
multivariate Cox regression analyses, survival 
analysis, and ROC analysis were used to further 
explore the biological functions and clinical 
significance of the differentially expressed RBPs. This 
study built a prognostic risk model based on five 

RBPs that were significantly associated with 
prognosis, and performed cohort verification using 
the TCGA database. This model can be used to 
facilitate prognostic analysis and treatment for COAD 
patients and to develop new biomarkers. 

The results of our enrichment analyses of the 
biological functions of differentially expressed RBPs 
and related signaling pathways showed that 
differentially expressed RBPs were enriched on 
multiple GO terms. In terms of biological process, 
upregulated differentially expressed RBPs are 
significant enriched in ncRNA processing, RNA 
phosphodiester bond hydrolysis, and ribosome 
biogenesis. Downregulated differentially expressed 
RBPs are significantly enriched in defense response to 
virus, regulation of mRNA processing, regulation of 
translation and regulation of mRNA metabolic 
process. The ncRNA has been the focus of cancer 
research [31]. The abnormal regulation of lncRNA is 
related to metastasis and recurrence of many cancers 
[32]. Studies have reported that the expression of 
ZEB1-AS1 in COAD is significantly upregulated and 
is related to poor prognosis. The miR-455-3p/PAK2 
axis can promote the malignant progression of COAD 
[33]. Ribosomal biogenesis plays an important role in 
tumorigenesis and tumor progression. Both the 
upregulation of ribosomal biogenesis and internal 
dysfunction lead to increased genomic stability and 
decreased activity of tumor suppressor gene p53, 
increasing the risk of cancer [34]. In terms of 
molecular function, upregulated differentially 
expressed RBPs are mainly enriched in scatalytic 
activity acting on RNA, ribonuclease activity, and 
nuclease activity. Downregulated differentially 
expressed RBPs are mainly enriched in mRNA 3'-UTR 
AU-rich region binding, double-stranded RNA 
binding, and translation repressor activity. RBPs can 
bind to various types of RNA and regulate the activity 
of various enzymes. Ribonuclease can inhibit the 
proliferation of tumor cells by catalyzing the cleavage 
of phosphodiester bonds in various single-stranded 
RNAs [35]. In terms of cellular component, 
upregulated differentially expressed RBPs are mainly 
enriched in cytoplasmic ribonucleoprotein granule, 
nucleolar part, and preribosome. Downregulated 
differentially expressed RBPs are mainly enriched in 
endolysosome membrane, cytoplasmic ribonucleo-
protein granule, and ribonucleoprotein granule. In 
recent years, mutations in ribosomal protein genes 
have been found in different types of cancer, such as 
ribosomal protein S20 (RPS20) gene mutations in 
colorectal cancer [36]. Studies have also shown that 
ribosomal protein S3 (RPS3) is highly expressed in 
colon cancer. Knockout of RPS3 can significantly 
inhibit the proliferation and migration of colon cancer 
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Caco-2 cells, up-regulate the expression of p53 
protein, and increase tumor cell apoptosis [37]. The 
KEGG pathway enrichment analysis showed that 
abnormally expressed RBPs regulated tumorigenesis 
and COAD progression by affecting ribosome 
biogenesis in eukaryotes, as well as RNA transport, 
mRNA surveillance pathways, and RNA degradation. 
In a previous study that included expression of RBPs 
in 16 different types of cancers [38], the results 
showed that RBPs with functions in RNA splicing, 
translation, transcription termination, RNA 
localization and transport, RNA surveillance and 
degradation, RNA modification, ribosome, transfer 
RNA (tRNA), and other functions were significantly 
upregulated in COAD tissues, which were consistent 
with our findings. 

In addition, a PPI network of differentially 
expressed RBPs was constructed to obtain seven hub 
proteins, including NOP56, DKC1, DDX31, DDX47, 
RRS1, METTL1, and PIWIL1. Enhanced ribosomal 
biogenesis and increased protein synthesis are 
important features of cancer cell proliferation [39]. 
NOP56 is a core protein member of box C/D small 
nucleolar RNPs (snoRNPs) and plays an important 
role in ribosome biosynthesis [40]. DKC1 encodes 
dyskerin protein and is involved in rRNA processing, 
folding, and modification. Multiple studies have 
shown that DKC1 is upregulated in colorectal cancer, 
prostate cancer, breast cancer, and other cancers, 
indicating that DKC1 upregulation may be a common 
feature of invasive cancer [42, 42]. DDX31 is a 
nucleolar protein, and DDX31 overexpression is 
related to p53 mutation and estimated glomerular 
filtration rate (eGFR), which promotes the invasion 
and migration of bladder cancer [43]. DDX31 interacts 
with and co-localizes with the NPM1 protein in the 
nucleolus of kidney cancer cells, regulating the p53 
pathway and rRNA gene transcription, thereby 
playing a key role in tumorigenesis and progression 
of kidney cancer [44]. DEAD-box RNA helicases also 
play important roles in ribosome biogenesis, RNA 
processing and folding, RNP remodeling, RNA 
nuclear export, the regulation of RNA translation and 
transcription, and other processes that are closely 
related to tumorigenesis. DDX47 is an important 
helicase that is mainly involved in pre-rRNA 
processing [45]. The main function of RRS1 is to 
participate in ribosome biogenesis. A previous study 
has shown that RRS1 expression in colorectal cancer is 
higher than in the tumor-adjacent normal tissues. 
Downregulation of RRS1 induces G2/M cell cycle 
arrest, apoptosis, and angiogenesis, thereby inhibiting 
the proliferation of colorectal cancer cells [46]. In 
addition, RRS1 overexpression is related to the 
tumorigenesis and progression of several tumor 

types, such as gastric cancer, hepatocellular 
carcinoma, and cervical cancer [47-49]. RNA 
modification is related to the tumorigenesis of various 
cancers, and the METTL family is a key modifier of 
tRNA and rRNA. METTL1 mainly regulates the 
modification of N7-methylguanosine (m7G) and plays 
an important role in the progression of tumors, such 
as colon cancer, liver cancer, and lung cancer [50-52]. 
PIWIL1 is an important member of the Argonaute 
protein family that is closely related to the biological 
behaviors of tumor cell proliferation, apoptosis, 
adhesion, metastasis, and chemotherapy resistance 
[53]. Studies have shown that the expression of 
PIWIL1 in colorectal cancer is significantly higher 
than that of the tumor-adjacent tissues, and that its 
expression is closely related to the degree of tumor 
differentiation, depth of tumor invasion, and TNM 
stage, thereby promoting the growth, proliferation, 
and invasion of colorectal cancer [54,55]. By analyzing 
the main modules in the PPI network, we found that 
these modules were primarily related to ncRNA 
processing, ribosome biogenesis, regulation of 
alternative mRNA splicing, and defense response to 
virus. RBPs-mediated post-transcriptional regulation 
is one of the important regulatory mechanisms of 
lncRNA, which mainly regulates lncRNA stability, 
transport and localization, and plays an important 
role in the occurrence and development of cancer [56]. 
For example, heterogeneous nuclear ribonucleo-
protein K (hnRNPK), a RBP that plays a role in the 
nuclear accumulation of lncRNAs, is upregulated in 
colorectal cancer, gastric cancer and other cancers, 
and is associated with poor prognosis[57,58]. RBP can 
participate in the biogenesis of ribosomes, and the 
abnormality of ribosomal biogenesis is closely related 
to the occurrence and development of cancers [59]. 
RBPs regulate gene expression through 
post-transcriptional regulation, such as alternative 
mRNA splicing and microRNA processing. Abnormal 
mRNA splicing is a common driving factor in the 
occurrence and development of cancer, affecting the 
phenotype of cancer cells, including proliferation, 
apoptosis, invasion and transfer [60]. In colorectal 
cancer, SRSF3 interacts with the small 
splice-regulating protein SRSP, mediating selective 
splicing of SP4 to produce cancerous SP4 subtypes, 
which leads to tumor occurrence and metastasis [61]. 

Subsequently, 15 RBPs related to prognosis were 
obtained based on univariate Cox regression, and five 
RBPs (TDRD5, LUZP4, LRRFIP2, TDRD7, and 
KHDC1L) obtained from the multivariate Cox 
regression analysis using the TCGA training cohort 
were used for the construction of a prognostic risk 
model. TDRD5 could be combined with 
PIWI-interacting RNA (piRNA) precursors, and plays 
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a key role in piRNA biogenesis [62]. A previous study 
has shown that TDRD5 expression is upregulated in 
hepatocellular carcinoma, which has value for 
determining the prognosis of hepatocellular 
carcinoma [63]. LUZP4 is an mRNA export adaptor 
that is highly silent in normal tissues other than testes, 
and is frequently activated in cancers, such as lung 
cancers, ovarian cancer, melanoma, and multiple 
myeloma [64,65]. Another study has shown that 
LRRFIP2 is involved in the selective cleavage of colon 
cancer and prostate cancer [66]. In addition, LRRFIP2 
contains a serin-rich domain that interacts with 
MyD88 protein, which plays a key role in toll-like 
receptor 4-mediated signal transduction, and 
regulates the activity of downstream nuclear factor 
kappa-light-chain-enhancer of activated B cells 
(NF-κB) activity [67]. Chromatin dynamics regulate a 
variety of cell functions, and the destruction of 
chromatin’s homeostasis leads to tumorigenesis and 
tumor progression. A study has shown that TDRD7 
may be used as a histone-binding protein and is 
crucial in regulating chromatin homeostasis [68]. 
Currently, few studies on the role of KHDC1L in 
tumors are available. 

Furthermore, the reliability and stability of our 
model was also analyzed. The results showed that the 
model accurately distinguished between patients with 
different prognoses. The ROC curve analysis also 
showed that our prognostic risk model has good 
diagnostic capability. The survival analysis and ROC 
curve analysis were verified in a TCGA test cohort, 
and the results also support the above conclusion. The 
univariate and multivariate Cox regression analyses 
showed that our model independently predicted the 
prognosis of COAD patients. Subsequently, a 
nomogram based on our model was constructed to 
predict the prognosis of COAD patients more 
intuitively. The HPA database was used to verify the 
expression of five hub RBPs at the immunohisto-
chemical level. The results showed that the expression 
of LRRFIP2 and TDRD7 in COAD tissues was 
significantly higher than in the normal colon tissues, 
suggesting that LRRFIP2 and TDRD7 may have 
potential carcinogenic risk, which was consistent with 
our previous findings. In addition, expression of 
LUZP4 was not detected in normal colon or COAD 
tissues, which may be related to the limitations of data 
included in the databases. In summary, our 
prognostic prediction model was relatively reliable 
and could be used to identify COAD patients with 
poor prognoses, facilitating the early intervention and 
treatment of COAD patients. 

In general, the prognostic model constructed by 
this study based on five prognosis-related RBPs 
predicted the prognosis of COAD patients well and 

helped physicians to make clinical decisions. 
However, this study still has certain limitations. First, 
as our prognostic model used data obtained from the 
TCGA database, our findings will need to be verified 
in a larger clinical patient cohort in the future. And 
since TCGA data are from the United States, the 
conclusions of this study need to be verified in data 
from other countries and regions to determine 
whether the results can reflect the situation in other 
groups. Second, for the specific role of the selected 
RBPs in COAD, in vitro and animal experiments will 
be needed in the future to reveal their internal 
mechanisms. 

Conclusion 
This study systemically analyzed the key role 

and prognostic value of RBPs in COAD by 
performing univariate and multivariate Cox 
regression analyses on RBPs that were differentially 
expressed in tumor and normal tissues. The study 
ultimately screened five RBPs that were significantly 
related to COAD prognosis in order to construct a 
prognostic model. Survival analysis and independent 
prognosis analysis confirmed that our prognostic 
model could be used as independent predictor of 
COAD prognosis. This study helped to further 
explore the mechanisms of COAD tumorigenesis and 
progression, and guide the selection of clinical 
prognostic molecular markers and therapeutic targets 
for COAD patients. 
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