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Abstract 

Background: Though various hub genes for HCC have been identified in decades, the limited sample 
size, inconsistent bioinformatic analysis methods and lacking evaluation in validation cohorts would make 
the results less reliable, novel biomarkers and risk model for HCC prognosis are still urgently desired. 
Methods: The Robust Rank Aggression method was applied to integrate 12 HCC microarray datasets to 
screen for robustly and stably differentially expressed candidates. The Least Absolute Shrinkage and 
Selection Operator regression and multivariate Cox regression analysis were performed to construct a 
six hub genes-based prognostic model, which was further verified in matched tumor and non-tumor 
hepatic samples and two independent validation cohorts. 
Results: Six hub genes for HCC were identified including CD163, EHHADH, KIAA0101, SLC16A2, SPP1 
and THBS4. The risk score according to hub genes-based prognostic model could be an independent 
predictive factor for HCC. Quantitative real-time polymerase chain reaction results showed significant 
difference in expression level between tumor and non-tumor hepatic tissues. Prognostic value of risk 
model has been verified in TCGA-HCC and GSE76240 datasets. Biological function analysis revealed 
these hub genes were closely associated with tumorigenesis processes. 
Conclusion: A novel six hub genes predictive risk model for HCC has been established based on 
multiple datasets analyses, providing novel features for the prediction of HCC patients’ outcome. 

Key words: hepatocellular carcinoma; bioinformatic analysis; regression analysis; hub gene; prognostic risk 
model; validation dataset  

Introduction 
Hepatocellular carcinoma (HCC), ranking the 

sixth in incidence among malignancies, is a 
widespread disease that causes over 800,000 deaths 
per year [1]. Although alpha fetoprotein (AFP) value 
has been widely utilized for the diagnosis and 
prediction of HCC, however, the AFP levels might 
also be elevated in benign liver disease [2-4] and the 
different AFP cut-off values would possibly result in 
high false-positive or negative rates [5]. 

Recently, with the rapid development and 
popularization of high-throughput microarrays and 
sequencing technologies, more and more novel 
biomarkers and therapeutic targets for HCC have 

been reported. However, the limited sample size, 
inconsistent microarray platforms and different 
bioinformatic analyzing methods generate 
heterogeneity, making results greatly varied in each 
individual study. Therefore, predictive biomarkers or 
functional genes should be screened in discovery 
datasets with enlarged sample size by applying 
modified analyzing methods to generate more reliable 
and accurate results. 

In the present study, 12 HCC microarray 
datasets from Gene Expression Omnibus (GEO) were 
analyzed using the Robust Rank Aggregation (RRA) 
method to identify the most stably differentially 
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expressed genes (DEGs) between HCC samples and 
normal hepatic samples. These DEGs were then 
sequentially analyzed by the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
method and multivariate Cox regression method to 
identify the hub genes with the best prognostic value 
in HCC. Six functional genes including CD163, 
EHHADH, KIAA0101, SLC16A2, SPP1 and THBS4 
were filtered out. Tumor and paired non-tumor 
samples of 12 patients were applied to confirm the six 
genes’ expression value. Gene Set Enrichment 
Analysis (GSEA) and weighted gene co-expression 
network analysis (WGCNA) were further conducted 
to investigate their potential biological functions. In 
addition, two HCC datasets with survival statistics, 
TCGA-HCC dataset and GSE76427, were used to 
validate the prognostic value of the hub genes-based 
model. The primary objective of the current research 
was to construct a prognostic model based on the 
robustly and stably expressed hub genes in HCC 
which could be used for predicting patients’ outcome 
and providing potential therapeutic targets. 

Materials and methods 
Selection of HCC gene expression datasets 

All microarray datasets were downloaded from 
GEO, the selection criteria of which were listed as 
follows: 1) Samples contained in datasets were 
diagnosed with HCC, other benign hepatic 
hyperplasia or non-HCC malignancies were excluded. 
2) Inclusion of datasets containing HCC and normal 
hepatic samples. 3) Microarray platform contained 
more than 5000 genes. According to the 
above-mentioned screening criteria, 11 datasets were 
finally included in the current research for further 
analyzation, including GSE25097, GSE39791, 
GSE46408, GSE57957, GSE62232, GSE64041, 
GSE75271, GSE76427, GSE84005, GSE84402, 
GSE14520. For GSE14520, the dataset contained two 
groups measured by different platforms, GPL571 and 
GPL3921. Therefore, datasets analyzed by GPL571 
platform and GPL3921 platform were processed 
independently and listed as two individual cohorts in 
RRA analysis. 

Identification of robustly DEGs from multiple 
GEO datasets 

The R package “limma” was utilized for data 
normalization and DEGs identification in HCC. Then 
RRA algorithm was used to integrate the results from 
those 12 datasets and arrange the genes in descending 
order according to the adjusted P value and log2fold 
change value to screen for the most significantly 
upregulated and downregulated genes. DEGs with 

adjusted P < 0.05 and log2|fold change| > 1 were 
considered as the potential candidates for following 
analyses. 

Functional enrichment analyses 
Gene Ontology (GO) enrichment and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were conducted using the 
comprehensive and simple R package 
“clusterprofiler” [6]. GO terms and KEGG pathways 
with P < 0.05 or adjusted P < 0.05 were considered 
statistically significant and selected for visualization. 

Construction of hub genes-based predictive 
model in HCC 

The GEO dataset GSE14520 which also provided 
relevant clinical information was chosen as the 
training dataset. After combining the two groups 
contained in GSE14520 into one single dataset, batch 
normalization using R package “limma” and “SVA” 
were performed to normalize the integrated data. 
LASSO regression using R package “glmnet” was 
performed on the candidates generated from RRA 
analysis. The results from LASSO regression analysis 
were further analyzed by stepwise multivariate Cox 
regression analysis using R package “survminer” to 
establish the final hub genes-based prognostic model 
for HCC. Risk score of each HCC patient was 
calculated according to multivariate Cox regression 
analysis. 

Validation of the hub genes and prognostic 
model 

The expression levels of the screened hub genes 
were evaluated by quantitative real-time polymerase 
chain reaction (PCR) assay in tumor and paired 
non-tumor tissues from 12 HCC patients. To assess 
the hub genes’ prognostic value, receiver operating 
characteristic (ROC) curves and calculated area under 
the ROC curve (AUC) were plotted with R package 
“pROC”, survival analysis was performed using R 
packages “survival” and “survminer”. HCC patients 
were divided into high- and low-risk groups using the 
median risk score as the cut-off value. Chi-square test 
was performed to compare the distribution of each 
clinical characteristic between two risk groups. 
Univariate and multivariate Cox regression analyses 
were performed to evaluate the prognostic value of 
the risk score and other clinical pathological 
characteristics. Similar analyses based on the six hub 
genes risk model were also performed in two 
validation cohorts including TCGA-HCC dataset and 
GSE76427 to determine the hub genes’ prognostic 
value. 
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Gene set enrichment analysis 
The expression matrix of GSE14520 was divided 

into high- and low-expression groups according to 
each single hub gene’s expression level, using median 
expression value as the cut-off point. Then gene set 
enrichment analysis was performed between the two 
groups by GSEA software (Version 4.0.3). P<0.05 was 
regarded as statistically significant. “h.all.v7.0. 
symbols.gmt” which was download from the 
Molecular Signature Database was selected as the 
reference gene set. 

Weighted gene co-expression network analysis 
The R package “WGCNA” was applied to 

perform WGCNA in GSE14520 to generate clinical 
traits-related modules. After transforming the 
adjacency matrix into topological overlap matrix 
(TOM), genes were classified into different modules 
according to the TOM-based dissimilarity measure. 
Here, we set soft-thresholding power as 4 (scale free 
R2 = 0.85), 0.25 as cutting height and minimal module 
size as 30 to identify key modules. Modules 
containing the screened hub genes were further 
analyzed through GO and KEGG analyses to explore 
potential biological functions. 

RNA isolation and quantitative real-time PCR 
RNA was isolated from tissues using RNeasy 

Mini Kit (Qiagen, Valencia, Canada) according to the 
manufacturer’s protocol. One microgram of total 
RNA was reverse-transcribed to cDNA by Hifair® III 
1st Strand cDNA Synthesis Kit (Yeason, Shanghai, 
China). The experimental protocol was gDNA 
removal (42 °C for 2 minutes), followed by reverse 
transcription (25 °C for 5 minutes, 42 °C for 30 
minutes, 85 °C for 5 minutes). Quantitative real-time 
PCR by a 20 µL reaction volume was performed using 
LightCycler® 480 Real-Time PCR system. The 
amplification program was repeated for 40 cycles. The 
expression of each gene was calculated using 2-ΔΔCT 
method. Results were normalized against the level of 
β-actin. Primers were designed online and purchased 
from Tsingke (Hangzhou, China). All primers were 
listed in Table 2. All the assays were performed in 
triplicates and results were plotted as mean ± SD. 

Clinical samples collection 
Tumor and matched non-tumor samples used in 

the present research were obtained from 12 cases of 
HCC patients with completely informed consent who 
underwent surgical resection at Sir Run-Run Shaw 
Hospital. The samples derived from patients who 
underwent preoperative chemotherapy or radio-
therapy was excluded. The study was approved by 
the Clinical Research Ethics Committee of Sir 

Run-Run Shaw Hospital of Zhejiang University. 

Statistical analysis 
The Chi-square test or Student’s t test 

(two-tailed) was used as required to analyze the 
statistical differences between groups using R 
software (Version 3.7). Figures were generated by 
using R software or GraphPad Prism (Version 7). 
Network was constructed by Cytoscape software 
(Version 3.7.2). P value or adjusted P value less than 
0.05 was considered statistically significant. * denotes 
a statistical significance (* P < 0.05, ** P < 0.01, *** P < 
0.001). 

Results 
Identification of robustly and stably DEGs by 
RRA method 

A workflow of the present research for 
identification, validation and functional analyses of 
hub genes in HCC was presented in Figure 1. 11 HCC 
datasets met the inclusion criteria were selected for 
further investigation, including GSE25097, GSE39791, 
GSE46408, GSE57957, GSE62232, GSE64041, 
GSE75271, GSE76427, GSE84005, GSE84402, 
GSE14520. The two cohorts contained in GSE14520 
which were respectively measured by platform 
GPL571 and GPL3921 were independently listed as 
GSE145201 and GSE145202. Therefore, a total of 12 
HCC datasets were enrolled for the following DEGs 
screening. Brief introductions for each dataset, 
including GEO accession number, contactor, 
platform, research city, sample size, submission time 
were presented in Table S1. Data normalization was 
performed for each included cohort. Based on the 
results of RRA analysis, 133 up- and 426 
down-regulated significant DEGs were identified. 
GPC3 was the most significantly up-regulated gene 
(adjusted P = 1.21E-32, log2fold change = 4.38), 
followed by SPINK1 (adjusted P = 1.19E-25, log2fold 
change = 3.94) and AKR1B10 (adjusted P = 3.04E-23, 
log2fold change = 2.82). Meanwhile, SLC22A1 
(adjusted P = 1.44E-30, log2fold change = -3.83), 
HAMP (adjusted P = 6.08E-27, log2fold change = -5.18) 
and CYP1A2 (adjusted P = 1.54E-26, log2fold change = 
-4.41) were the top three significantly down-regulated 
genes. The top 40 DEGs including 20 up-regulated 
and 20 down-regulated genes were shown in the 
heatmap (Figure 2A). The heatmap for these 40 DEGs 
was also drawn based on TCGA-HCC dataset (Figure 
S1A), demonstrating a similar expression variation 
tendency. 
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Figure 1. Flow chart of overall design of the present study. 

 

The mRNA expression of six hub genes in 
HCC and normal tissues 

Expression value of CD163, EHHADH, 
KIAA0101, SLC16A2, SPP1, THBS4 were determined 
using quantitative real-time PCR between HCC and 
normal hepatic tissue samples. As shown in Figure S2, 
KIAA0101, SPP1 and THBS4 were significantly 
upregulated while EHHADH, CD163, SLC16A2 were 
significantly downregulated in HCC tissues 
compared to matched normal tissues, which were in 
consistent with results from microarrays or 
sequencing method. 

Functional enrichment analyses of DEGs in 
HCC 

The 559 DEGs obtained from RRA analysis were 
chosen to perform KEGG analysis and construct 
protein association network. For KEGG pathway 
analysis, several crucial signaling pathways involved 
in tumorigenesis such as “chemical carcinogenesis”, 
“PPAR signaling pathway”, “drug 
metabolism-cytochrome P450” and “cell cycle” were 
found significantly associated with these screen DEGs 
(Figure 2B). The functional protein association 
networks for the DEGs were established by an online 

tool “String”. The number of interactions for each 
gene was calculated (Figure 2C). DEGs with 
interactions ranking in top 100 were selected to 
establish a protein-protein interaction network 
(Figure 2D). 

Construction of a hub genes-based prognostic 
model 

GSE14520 was chosen as the training dataset. By 
performing LASSO regression analysis, 15 candidate 
genes were left, including AQP9, CAT, CD163, CLIC1, 
EHHADH, F12, FETUB, KIAA0101, NDRG1, 
SLC16A2, SLC27A5, SLC6A12, SPP1, SPP2 and 
THBS4. The LASSO coefficient of each gene was also 
calculated and presented (Figure 3A-B). After 
applying univariate Cox regression and stepwise 
multivariate Cox regression analyses on the 15 seed 
genes, six hub genes were identified to be 
significantly related to HCC prognosis, which were 
CD163, EHHADH, KIAA0101, SLC16A2, SPP1, 
THBS4 (Figure 3C-D). The log2 fold change value of 
each gene according to RRA result and TCGA-HCC 
dataset were present in Figure 3E and Figure S1B. The 
predictive risk model based on the six hub genes 
expression value and multivariate Cox coefficients 
was constructed as follow: risk score = (-2.17× the 
expression value of CD163) + (-1.37× the expression 
value of EHHADH) + (1.28× the expression value of 
KIAA0101) + (-0.96× the expression value of 
SLC16A2) + (1.46× the expression value of SPP1) + 
(1.57× the expression value of THBS4). The detailed 
analyzing results for the six hub genes were listed in 
Table 1. 

 

Table 1. Prognostic risk model based on six hub genes in 
GSE14520 

Hub gene LASSO coefficient Multivariate Cox regression 
HR 95% CI P value 

CD163 -0.053869857 0.11 0.035-0.38 < 0.001 
EHHADH -0.031966924 0.26 0.089-0.73 0.011 
KIAA0101 0.018794088 3.6 0.919-14.14 0.066 
SLC16A2 -0.017229864 0.38 0.124-1.17 0.093 
SPP1 0.030270674 4.32 2.16-8.63 < 0.001 
THBS4 0.11223438 4.78 2.37-9.64 < 0.001 

 

Prognostic value of six hub genes 
The training dataset GSE14520 was divided into 

high-risk group (n=120) and low-risk group (n=121) 
using the median risk score (1.025) as cut-off value. 
Kaplan-Meier analysis showed that the patients in 
high-risk group exhibited a significantly poorer 
outcome than that in low-risk group (P=5.81e-8) 
(Figure 4A). The risk scores of HCC patients in 
GSE14520 were ranked, and the survival status for 
each HCC patient was also plotted, showing patient 
mortality in high-risk group was much higher than 
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that in the low-risk group (Figure 4B-C). 
Time-dependent ROC analyses were performed and 
1-, 2-, 3-year AUC were calculated as 0.779, 0.802 and 
0.773 (Figure 4E). A heatmap showed the expression 
profiles of the six hub genes in high- and low-risk 
HCC patients in GSE14520 (Figure 4D). The 
prognostic value of the six hub genes were further 
evaluated in two validation cohorts: TCGA-HCC 

dataset and GSE76427, showing significant 
differences in survival outcome between the high-risk 
and low-risk groups (P=3.34e-4, P=5.94e-3, 
respectively) (Figure 4F-G). ROC cure and AUC 
analyses, risk score ranking, survival state plotting 
and heatmap presentation were also performed and 
showed in supplemental files (Figure S3A-H). 

 

 
Figure 2. Identification of DEGs from multiple GEO datasets and functional analyses. (A) Heatmap showing the top 20 up-regulated and top 20 down-regulated DEGs according 
to P value and log2|fold change|. Each row indicated one gene and each column represents one included dataset. Red represents up-regulation and green represents down- 
regulation. The values in heatmap represent logarithmic fold change between tumor and normal tissues. (B) KEGG pathway enrichment of DEGs obtained from RRA method. (C) 
Protein-protein interaction number of DEGs ranking in top 50. (D) Protein-protein interaction network based on DEGs with interactions ranking in top 100. 
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Figure 3. Identification of hub genes and construction of risk score model in GSE14520. (A) LASSO regression analysis of DEGs acquired by RRA methods. (B) The reserved 15 
candidates from LASSO regression analysis and corresponding coefficients. (C) Univariate Cox regression analysis for 15 candidates from LASSO regression analysis. (D) 
Multivariate Cox regression analysis for selecting final hub genes. The hazard ratios, 95% confidence intervals and P values are shown. (E) Logarithmic fold change of the six hub 
genes between tumor and normal tissues based RRA result. 

 

Table 2. Real-time PCR primers used for six hub genes and 
β-actin 

Gene Sequence 
CD163 F: 5'-ATTCCTCAGAAAATTCCCATGAGTC-3' 
 R: 5'-TCAGAATGGCCTCCTTTTCC-3' 
EHHADH F: 5'-TGCCCTCGGTGATAGAGGAA-3' 
 R: 5'-GTCGTACTGATCGCGTTGAC-3' 
KIAA0101 F: 5'-GGTGCGGACTAAAGCAGACA-3' 
 R: 5'-TTTTTGCCACTTGGGAGTTGG-3' 
SLC16A2 F: 5'-GGTAGGAAGGGGCCCTAGAA-3' 
 R: 5'-CAGAACCACCCTCTGGTGAC-3' 
SPP1 F: 5'-AACGCCGACCAAGGAAAACT-3' 
 R: 5'-TGCCCATTTGTTGTTTGGCT-3' 
THBS4 F: 5'-CGACCGAGGTTCAACGCA-3' 
 R: 5'-ATGTTGGCTCTTCCTGCTCC-3' 
β-actin F: 5'-CTGGAACGGTGAAGGTGACA-3' 
  R: 5'-AAGGGACTTCCTGTAACAATGCA-3' 

 

Prognostic risk score closely associated with 
clinicopathological features in HCC 

A heatmap showed the expression value of the 
six hub genes in high- and low-risk groups in 
GSE14250 (Figure 5B). Significant differences between 
the high- and low-risk groups were observed with 

respect to BCLC staging (P = 0.02), TNM staging (P < 
0.001), cirrhosis (P = 0.04), main tumor size (P = 0.04) 
and survival status (P < 0.001) (Figure 5A). By 
performing univariate Cox regression analysis, main 
tumor size, cirrhosis, TNM staging, BCLC staging and 
risk score were associated with overall survival time. 
When included these factors into multivariate Cox 
regression analysis, risk score remained significantly 
associated with the overall survival time (Figure 5C). 
Similar results by multivariate Cox regression 
analysis were also acquired in validation cohorts 
TCGA-HCC dataset and GSE76427, showing that risk 
scores were significantly associated the overall 
survival time (HR = 2.21, P < 0.001; HR = 2.36, P = 
0.019; respectively) (Figure S4). 

GSEA for HCC patients in different risk groups 
Potential functions of CD163, EHHADH, 

KIAA0101, SLC16A2, SPP1, THBS4 in HCC were 
investigated by performing GSEA based on hallmark 
gene sets, indicating multiple pathways related to 
tumorigenesis were activated. As shown in Figure 6A, 
genes in high groups of SLC16A2, EHHADH and 
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THBS4 were respectively enriched in “fatty acid 
metabolism”, “peroxisome” and “bile acid 
metabolism” gene sets, which were closely associated 
with energy metabolism. Meanwhile, “G2/M 
checkpoint” gene set was enriched in high-expression 
group of KIAA0101, “IL6-JAK-STAT3 signaling” and 
“TNFα signaling via NFκB” pathways were 
respectively enriched in the CD163 high-expression 
and SPP1 low-expression group, all of which were 
crucial signaling pathways while undergoing 
oncogenesis and metastasis. 

WGCNA and functional analyses of key 
modules containing hub genes 

WGCNA was performed on GSE14520 dataset to 

create gene modules associated with clinical traits 
including survival time, survival state, gender, age, 
HBV infection, ALT level, main tumor size, 
multinodular, cirrhosis, TNM staging, BCLC staging, 
CLIP staging and AFP level. By setting 4 as 
soft-thresholding power (scale free R2=0.85) and 0.25 
as cutting height, 36 modules were eventually 
identified (Figure 6B-C). A heatmap showed the 
correlation between module eigengenes and clinical 
traits of HCC (Figure S5A-D). EHHADH, SLC16A2 
and SPP1 were contained in blue module. Meanwhile, 
CD163, KIAA0101 and THBS4 respectively belonged 
to the red, yellow and grey module. GO and KEGG 
analyses were conducted on blue, red and yellow 
gene modules to reveal the potential biological 

 

 
Figure 4. Prognostic assessment of the hub genes-based risk score model. (A) Kaplan-Meier overall survival curve, (B, C) Distribution of risk score, (D) Expression levels of six 
hub genes and (E) 1, 2, 3-year ROC curves for patients assigned to high- and low risk groups in training cohort GSE14520. Kaplan-Meier overall survival curves for patients 
assigned to high- and low risk groups in validation cohorts (F) TCGA-HCC dataset and (G) GSE76427. 
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functions. The most significant GO terms and KEGG 
pathways were shown in Figure 6D, indicating that 
genes in red module were mainly involved in 
immune response, genes in yellow module were 
mainly associated with cell cycle regulation and genes 
in blue module were mainly related to drug or energy 
metabolism. 

Discussion 
HCC is characterized by high heterogeneity and 

mortality with the tumorigenesis mechanism 
remaining to be clarified. The early diagnosis and 
treatment, as well as follow-up for survival are vital 
importance for improving the HCC patients’ 
outcome. Since HCC is a complex disease with 
multiple pathogenic mechanisms caused by various 
risk factors, it is difficult to predict the outcome with 
single biomarker. Recently, the high-throughput 
technology has been rapidly developed and more and 
more novel potential biomarkers are identified for 
HCC prognosis [7-10]. However, the reported DEGs 
varied greatly among different researches due to the 
limited sample size and the inconsistent bioinformatic 
analyzing methods. Reliable biomarkers that could be 
applied to most HCC patients are still lacking. 
Therefore, the sample size of the discovery dataset 
should be enlarged to eliminate the potential selecting 
bias and generate more convincing results. Moreover, 
expression level of the identified hub genes and 

prognostic value of the established risk model should 
be further evaluated in other validation cohorts, 
which could increase the credibility and make the 
results more reliable. 

In the present study, 12 HCC microarray 
datasets were enrolled as the discovery cohorts, which 
contained much more samples than previously 
published works [9-11]. Meanwhile, RRA algorithm 
method was utilized to integrate all the qualified 
datasets for data analysis, therefore, the robustly 
DEGs among multiple HCC datasets could be 
identified for the prognostic model establishment. The 
HCC patients always show the high mortality rate. 
Clinical features including tumor size and 
pathological stage have been used as the indicators to 
predict the patients’ outcome. However, the 
prognostic results could be varied using these 
conventional indicators, even in patients with the 
same tumor size or pathological stage [12]. Therefore, 
we sequentially performed the LASSO regression and 
multivariate cox regression methods among the 
selected DEGs and finally established a prognostic 
model based on six genes (CD163, EHHADH, 
KIAA0101, SLC16A2, SPP1 and THBS4). Moreover, 
the multivariate analysis result indicates that the risk 
score according to the six genes-based model is an 
independent prognostic factor in HCC, which is also 
verified in other two validation cohorts, suggesting 
the potentiality for future clinical application. 

 

 
Figure 5. Relationship between the risk score and clinicopathological features. (A) Distribution of risk scores in training dataset GSE14520 stratified by BCLC staging, TNM 
staging, cirrhosis, main tumor size, age, gender and survival status. (B) Heatmap shows the expression levels of six hub genes in low-risk and high-risk HCC patients in GSE14520. 
(C) Univariate and multivariate Cox regression analyses of association between risk score, clinicopathological factors and overall survival time of HCC patients in GSE14520. 
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Figure 6. (A) Gene set enrichment analysis of six hub genes in GSE14520. Critical tumorigenesis related signaling pathway ranking among the top three enriched pathways in high 
expression group of each single hub gene was shown. (B) Dendrogram of genes in GSE14520 (samples with clinical traits) clustered based on a dissimilarity measure (1-TOM). 
(C) Heatmap of the correlation between module eigengenes and clinical traits in GSE14520. Each cell contains the correlation coefficient and P value. (D) GO and KEGG analyses 
for genes in blue, red and yellow modules, showing top ten terms according to adjusted p value. 

 
Previous studies have reported the individual 

gene’s function during tumorigenesis including 
vascular invasion [13, 14], sorafenib resistance [15, 16], 
macrophage activation [17, 18], cell cycle disorder 
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[19-21] and metabolic derangements [22, 23]. In our 
research, the biological functions of the six hub genes 
were also analyzed by performing GSEA and 
WGCNA. The results showed that these genes were 
closely related with energy metabolism, cell cycle 
regulation, IL6-JAK-STAT3 and TNFα signaling 
pathways, which play the vital roles while 
undergoing tumorigenesis. 

In conclusion, we screened the genes with the 
highest differential expressing level among samples 
from multiple high-throughput HCC datasets, 
providing the reliable DEGs closely associated with 
HCC tumorigenesis. Moreover, we constructed a 
six-gene based prognostic model which could be used 
to predict the HCC patients’ outcome. In addition, the 
risk score according to the model could be an 
independent prognostic factor in HCC. Finally, the 
prognostic value of the six genes-based model has 
been validated in two independent HCC datasets, 
indicating the clinical application potentiality. Further 
research should focus on clarifying how these hub 
genes contributed to HCC development and 
validating the prognostic value among larger HCC 
population. 

Supplementary Material  
Supplementary figures and tables.  
http://www.jcancer.org/v12p1884s1.pdf  
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