Journal of Cancer 2021, Vol. 12

1884

D/UUEFQB IVYSPRING

V§ INTERNATIONAL PUBLISHER

Research Paper

Journal of Cancer

2021; 12(7): 1884-1893. doi: 10.7150/jca.52089

|dentification of hub genes-based predictive model in
hepatocellular carcinoma by robust rank aggregation

and regression analysis

Di Wul, Yun Pan2, Xueyong Zheng!**

1.
2.

Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
Department of Emergency, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

P4 Corresponding author: E-mail: 3306053@zju.edu.cn.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
See http:/ /ivyspring.com/terms for full terms and conditions.

Received: 2020.08.17; Accepted: 2020.12.27; Published: 2021.01.30

Abstract

Background: Though various hub genes for HCC have been identified in decades, the limited sample
size, inconsistent bioinformatic analysis methods and lacking evaluation in validation cohorts would make
the results less reliable, novel biomarkers and risk model for HCC prognosis are still urgently desired.

Methods: The Robust Rank Aggression method was applied to integrate 12 HCC microarray datasets to
screen for robustly and stably differentially expressed candidates. The Least Absolute Shrinkage and
Selection Operator regression and multivariate Cox regression analysis were performed to construct a
six hub genes-based prognostic model, which was further verified in matched tumor and non-tumor
hepatic samples and two independent validation cohorts.

Results: Six hub genes for HCC were identified including CD163, EHHADH, KIAA0101, SLC16A2, SPPI
and THBS4. The risk score according to hub genes-based prognostic model could be an independent
predictive factor for HCC. Quantitative real-time polymerase chain reaction results showed significant
difference in expression level between tumor and non-tumor hepatic tissues. Prognostic value of risk
model has been verified in TCGA-HCC and GSE76240 datasets. Biological function analysis revealed
these hub genes were closely associated with tumorigenesis processes.

Conclusion: A novel six hub genes predictive risk model for HCC has been established based on
multiple datasets analyses, providing novel features for the prediction of HCC patients’ outcome.

Key words: hepatocellular carcinoma; bioinformatic analysis; regression analysis; hub gene; prognostic risk

model; validation dataset

Introduction

Hepatocellular carcinoma (HCC), ranking the
sixth in incidence among malignancies, is a
widespread disease that causes over 800,000 deaths
per year [1]. Although alpha fetoprotein (AFP) value
has been widely utilized for the diagnosis and
prediction of HCC, however, the AFP levels might
also be elevated in benign liver disease [2-4] and the
different AFP cut-off values would possibly result in
high false-positive or negative rates [5].

Recently, with the rapid development and
popularization of high-throughput microarrays and
sequencing technologies, more and more novel
biomarkers and therapeutic targets for HCC have

been reported. However, the limited sample size,
inconsistent microarray platforms and different
bioinformatic ~ analyzing  methods  generate
heterogeneity, making results greatly varied in each
individual study. Therefore, predictive biomarkers or
functional genes should be screened in discovery
datasets with enlarged sample size by applying
modified analyzing methods to generate more reliable
and accurate results.

In the present study, 12 HCC microarray
datasets from Gene Expression Omnibus (GEO) were
analyzed using the Robust Rank Aggregation (RRA)
method to identify the most stably differentially
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expressed genes (DEGs) between HCC samples and
normal hepatic samples. These DEGs were then
sequentially analyzed by the Least Absolute
Shrinkage and Selection Operator (LASSO) regression
method and multivariate Cox regression method to
identify the hub genes with the best prognostic value
in HCC. Six functional genes including CD163,
EHHADH, KIAA(0101, SLC16A2, SPP1 and THBS4
were filtered out. Tumor and paired non-tumor
samples of 12 patients were applied to confirm the six
genes’ expression value. Gene Set Enrichment
Analysis (GSEA) and weighted gene co-expression
network analysis (WGCNA) were further conducted
to investigate their potential biological functions. In
addition, two HCC datasets with survival statistics,
TCGA-HCC dataset and GSE76427, were used to
validate the prognostic value of the hub genes-based
model. The primary objective of the current research
was to construct a prognostic model based on the
robustly and stably expressed hub genes in HCC
which could be used for predicting patients” outcome
and providing potential therapeutic targets.

Materials and methods

Selection of HCC gene expression datasets

All microarray datasets were downloaded from
GEOQO, the selection criteria of which were listed as
follows: 1) Samples contained in datasets were
diagnosed with HCC, other benign hepatic
hyperplasia or non-HCC malignancies were excluded.
2) Inclusion of datasets containing HCC and normal
hepatic samples. 3) Microarray platform contained
more than 5000 genes. According to the
above-mentioned screening criteria, 11 datasets were
finally included in the current research for further

analyzation, including  GSE25097,  GSE39791,
GSE46408,  GSE57957, GSE62232, GSE64041,
GSE75271, GSE76427, GSES84005, GSES84402,

GSE14520. For GSE14520, the dataset contained two
groups measured by different platforms, GPL571 and
GPL3921. Therefore, datasets analyzed by GPL571
platform and GPL3921 platform were processed
independently and listed as two individual cohorts in
RRA analysis.

Identification of robustly DEGs from multiple
GEO datasets

The R package “limma” was utilized for data
normalization and DEGs identification in HCC. Then
RRA algorithm was used to integrate the results from
those 12 datasets and arrange the genes in descending
order according to the adjusted P value and log»fold
change value to screen for the most significantly
upregulated and downregulated genes. DEGs with

adjusted P < 0.05 and log:|fold change| > 1 were
considered as the potential candidates for following
analyses.
Functional enrichment analyses

Gene Ontology (GO) enrichment and Kyoto

Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were conducted using the
comprehensive and simple R package

“clusterprofiler” [6]. GO terms and KEGG pathways
with P < 0.05 or adjusted P < 0.05 were considered
statistically significant and selected for visualization.

Construction of hub genes-based predictive
model in HCC

The GEO dataset GSE14520 which also provided
relevant clinical information was chosen as the
training dataset. After combining the two groups
contained in GSE14520 into one single dataset, batch
normalization using R package “limma” and “SVA”
were performed to normalize the integrated data.
LASSO regression using R package “glmnet” was
performed on the candidates generated from RRA
analysis. The results from LASSO regression analysis
were further analyzed by stepwise multivariate Cox
regression analysis using R package “survminer” to
establish the final hub genes-based prognostic model
for HCC. Risk score of each HCC patient was
calculated according to multivariate Cox regression
analysis.

Validation of the hub genes and prognostic
model

The expression levels of the screened hub genes
were evaluated by quantitative real-time polymerase
chain reaction (PCR) assay in tumor and paired
non-tumor tissues from 12 HCC patients. To assess
the hub genes’ prognostic value, receiver operating
characteristic (ROC) curves and calculated area under
the ROC curve (AUC) were plotted with R package
“pROC”, survival analysis was performed using R
packages “survival” and “survminer”. HCC patients
were divided into high- and low-risk groups using the
median risk score as the cut-off value. Chi-square test
was performed to compare the distribution of each
clinical characteristic between two risk groups.
Univariate and multivariate Cox regression analyses
were performed to evaluate the prognostic value of
the risk score and other clinical pathological
characteristics. Similar analyses based on the six hub
genes risk model were also performed in two
validation cohorts including TCGA-HCC dataset and
GSE76427 to determine the hub genes’ prognostic
value.
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Gene set enrichment analysis

The expression matrix of GSE14520 was divided
into high- and low-expression groups according to
each single hub gene’s expression level, using median
expression value as the cut-off point. Then gene set
enrichment analysis was performed between the two
groups by GSEA software (Version 4.0.3). P<0.05 was
regarded as statistically significant. “h.all.v7.0.
symbols.gmt” which was download from the
Molecular Signature Database was selected as the
reference gene set.

Weighted gene co-expression network analysis

The R package “WGCNA” was applied to
perform WGCNA in GSE14520 to generate clinical
traits-related modules. After transforming the
adjacency matrix into topological overlap matrix
(TOM), genes were classified into different modules
according to the TOM-based dissimilarity measure.
Here, we set soft-thresholding power as 4 (scale free
R? = 0.85), 0.25 as cutting height and minimal module
size as 30 to identify key modules. Modules
containing the screened hub genes were further
analyzed through GO and KEGG analyses to explore
potential biological functions.

RNA isolation and quantitative real-time PCR

RNA was isolated from tissues using RNeasy
Mini Kit (Qiagen, Valencia, Canada) according to the
manufacturer’s protocol. One microgram of total
RNA was reverse-transcribed to cDNA by Hifair® III
1st Strand cDNA Synthesis Kit (Yeason, Shanghai,
China). The experimental protocol was gDNA
removal (42 °C for 2 minutes), followed by reverse
transcription (25 °C for 5 minutes, 42 °C for 30
minutes, 85 °C for 5 minutes). Quantitative real-time
PCR by a 20 pL reaction volume was performed using
LightCycler® 480 Real-Time PCR system. The
amplification program was repeated for 40 cycles. The
expression of each gene was calculated using 2-A4CT
method. Results were normalized against the level of
B-actin. Primers were designed online and purchased
from Tsingke (Hangzhou, China). All primers were
listed in Table 2. All the assays were performed in
triplicates and results were plotted as mean + SD.

Clinical samples collection

Tumor and matched non-tumor samples used in
the present research were obtained from 12 cases of
HCC patients with completely informed consent who
underwent surgical resection at Sir Run-Run Shaw
Hospital. The samples derived from patients who
underwent preoperative chemotherapy or radio-
therapy was excluded. The study was approved by
the Clinical Research Ethics Committee of Sir

Run-Run Shaw Hospital of Zhejiang University.

Statistical analysis

The Chi-square test or Student’s t test
(two-tailed) was used as required to analyze the
statistical differences between groups using R
software (Version 3.7). Figures were generated by
using R software or GraphPad Prism (Version 7).
Network was constructed by Cytoscape software
(Version 3.7.2). P value or adjusted P value less than
0.05 was considered statistically significant. * denotes
a statistical significance (* P < 0.05, ** P < 0.01, *** P <
0.001).

Results

Identification of robustly and stably DEGs by
RRA method

A workflow of the present research for
identification, validation and functional analyses of
hub genes in HCC was presented in Figure 1. 11 HCC
datasets met the inclusion criteria were selected for
further investigation, including GSE25097, GSE39791,
GSE46408,  GSE57957,  GSE62232,  GSE64041,
GSE75271,  GSE76427,  GSE84005,  GSE84402,
GSE14520. The two cohorts contained in GSE14520
which were respectively measured by platform
GPL571 and GPL3921 were independently listed as
GSE14520! and GSE145202. Therefore, a total of 12
HCC datasets were enrolled for the following DEGs
screening. Brief introductions for each dataset,
including GEO accession number, contactor,
platform, research city, sample size, submission time
were presented in Table S1. Data normalization was
performed for each included cohort. Based on the
results of RRA analysis, 133 wup- and 426
down-regulated significant DEGs were identified.
GPC3 was the most significantly up-regulated gene
(adjusted P = 1.21E-32, logxfold change = 4.38),
followed by SPINKI1 (adjusted P = 1.19E-25, logxfold
change = 3.94) and AKR1B10 (adjusted P = 3.04E-23,
log>fold change = 2.82). Meanwhile, SLC22A1
(adjusted P = 1.44E-30, log»fold change = -3.83),
HAMP (adjusted P = 6.08E-27, log,fold change = -5.18)
and CYP1A2 (adjusted P = 1.54E-26, log>fold change =
-4.41) were the top three significantly down-regulated
genes. The top 40 DEGs including 20 up-regulated
and 20 down-regulated genes were shown in the
heatmap (Figure 2A). The heatmap for these 40 DEGs
was also drawn based on TCGA-HCC dataset (Figure
S1A), demonstrating a similar expression variation
tendency.
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Figure 1. Flow chart of overall design of the present study.

The mRNA expression of six hub genes in
HCC and normal tissues

Expression value of CD163, EHHADH,
KIAA0101, SLC16A2, SPP1, THBS4 were determined
using quantitative real-time PCR between HCC and
normal hepatic tissue samples. As shown in Figure S2,
KIAAQ0101, SPP1 and THBS4 were significantly
upregulated while EHHADH, CD163, SLC16A2 were
significantly =~ downregulated in HCC tissues
compared to matched normal tissues, which were in
consistent with results from microarrays or
sequencing method.

Functional enrichment analyses of DEGs in
HCC

The 559 DEGs obtained from RRA analysis were
chosen to perform KEGG analysis and construct
protein association network. For KEGG pathway
analysis, several crucial signaling pathways involved
in tumorigenesis such as “chemical carcinogenesis”,
“PPAR signaling pathway”, “drug
metabolism-cytochrome P450” and “cell cycle” were
found significantly associated with these screen DEGs
(Figure 2B). The functional protein association
networks for the DEGs were established by an online

tool “String”. The number of interactions for each
gene was calculated (Figure 2C). DEGs with
interactions ranking in top 100 were selected to
establish a protein-protein interaction network
(Figure 2D).

Construction of a hub genes-based prognostic
model

GSE14520 was chosen as the training dataset. By
performing LASSO regression analysis, 15 candidate
genes were left, including AQP9, CAT, CD163, CLIC1,
EHHADH, F12, FETUB, KIAA0101, NDRGI,
SLC16A2, SLC27A5, SLC6A12, SPP1, SPP2 and
THBS4. The LASSO coefficient of each gene was also
calculated and presented (Figure 3A-B). After
applying univariate Cox regression and stepwise
multivariate Cox regression analyses on the 15 seed
genes, six hub genes were identified to be
significantly related to HCC prognosis, which were
CD163, EHHADH, KIAA(0101, SLC16A2, SPP1,
THBS4 (Figure 3C-D). The log: fold change value of
each gene according to RRA result and TCGA-HCC
dataset were present in Figure 3E and Figure S1B. The
predictive risk model based on the six hub genes
expression value and multivariate Cox coefficients
was constructed as follow: risk score = (-2.17x the
expression value of CD163) + (-1.37% the expression
value of EHHADH) + (1.28% the expression value of
KIAAQ0101) + (-0.96% the expression value of
SLC16A2) + (1.46x the expression value of SPP1) +
(1.57% the expression value of THBS4). The detailed
analyzing results for the six hub genes were listed in
Table 1.

Table 1. Prognostic risk model based on six hub genes in
GSE14520

Hub gene LASSO coefficient Multivariate Cox regression

HR 95% CI P value
CD163 -0.053869857 0.11 0.035-0.38 <0.001
EHHADH -0.031966924 0.26 0.089-0.73 0.011
KIAA0101 0.018794088 3.6 0.919-14.14 0.066
SLC16A2 -0.017229864 0.38 0.124-1.17 0.093
SPP1 0.030270674 4.32 2.16-8.63 <0.001
THBS4 0.11223438 4.78 2.37-9.64 <0.001

Prognostic value of six hub genes

The training dataset GSE14520 was divided into
high-risk group (n=120) and low-risk group (n=121)
using the median risk score (1.025) as cut-off value.
Kaplan-Meier analysis showed that the patients in
high-risk group exhibited a significantly poorer
outcome than that in low-risk group (P=5.81e-8)
(Figure 4A). The risk scores of HCC patients in
GSE14520 were ranked, and the survival status for
each HCC patient was also plotted, showing patient
mortality in high-risk group was much higher than
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that in the low-risk group (Figure 4B-C).
Time-dependent ROC analyses were performed and
1-, 2-, 3-year AUC were calculated as 0.779, 0.802 and
0.773 (Figure 4E). A heatmap showed the expression
profiles of the six hub genes in high- and low-risk
HCC patients in GSE14520 (Figure 4D). The
prognostic value of the six hub genes were further
evaluated in two validation cohorts: TCGA-HCC

dataset and GSE76427, showing significant
differences in survival outcome between the high-risk
and low-risk groups (P=3.34e-4, DP=5.94e-3,
respectively) (Figure 4F-G). ROC cure and AUC
analyses, risk score ranking, survival state plotting
and heatmap presentation were also performed and
showed in supplemental files (Figure S3A-H).

Integrated GEO datasets
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Figure 2. Identification of DEGs from multiple GEO datasets and functional analyses. (A) Heatmap showing the top 20 up-regulated and top 20 down-regulated DEGs according
to P value and log|fold change|. Each row indicated one gene and each column represents one included dataset. Red represents up-regulation and green represents down-
regulation. The values in heatmap represent logarithmic fold change between tumor and normal tissues. (B) KEGG pathway enrichment of DEGs obtained from RRA method. (C)
Protein-protein interaction number of DEGs ranking in top 50. (D) Protein-protein interaction network based on DEGs with interactions ranking in top 100.
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Figure 3. Identification of hub genes and construction of risk score model in GSE14520. (A) LASSO regression analysis of DEGs acquired by RRA methods. (B) The reserved 15
candidates from LASSO regression analysis and corresponding coefficients. (C) Univariate Cox regression analysis for 15 candidates from LASSO regression analysis. (D)
Multivariate Cox regression analysis for selecting final hub genes. The hazard ratios, 95% confidence intervals and P values are shown. (E) Logarithmic fold change of the six hub

genes between tumor and normal tissues based RRA result.

Table 2. Real-time PCR primers used for six hub genes and
[B-actin

Gene Sequence
CD163 F: 5-ATTCCTCAGAAAATTCCCATGAGTC-3'
R: 5-TCAGAATGGCCTCCTTTTCC-3'
EHHADH F: 5-TGCCCTCGGTGATAGAGGAA-3'
R: 5-GTCGTACTGATCGCGTTGAC-3'
KIAA0101 F: 5-GGTGCGGACTAAAGCAGACA-3'
R: 5-TTTTTGCCACTTGGGAGTTGG-3'
SLC16A2 F: 5-GGTAGGAAGGGGCCCTAGAA-3'
R: 5-CAGAACCACCCTCTGGTGAC-3'
SPP1 F: 5-AACGCCGACCAAGGAAAACT-3'
R: 5-TGCCCATTTGTTGTTTGGCT-3'
THBS4 F: 5-CGACCGAGGTTCAACGCA-3'
R: 5-ATGTTGGCTCTTCCTGCTCC-3'
B-actin F: 5'-CTGGAACGGTGAAGGTGACA-3'

R: 5'-AAGGGACTTCCTGTAACAATGCA-3'

Prognostic risk score closely associated with
clinicopathological features in HCC

A heatmap showed the expression value of the
six hub genes in high- and low-risk groups in
GSE14250 (Figure 5B). Significant differences between
the high- and low-risk groups were observed with

respect to BCLC staging (P = 0.02), TNM staging (P <
0.001), cirrhosis (P = 0.04), main tumor size (P = 0.04)
and survival status (P < 0.001) (Figure 5A). By
performing univariate Cox regression analysis, main
tumor size, cirrhosis, TNM staging, BCLC staging and
risk score were associated with overall survival time.
When included these factors into multivariate Cox
regression analysis, risk score remained significantly
associated with the overall survival time (Figure 5C).
Similar results by multivariate Cox regression
analysis were also acquired in validation cohorts
TCGA-HCC dataset and GSE76427, showing that risk
scores were significantly associated the overall
survival time (HR = 2.21, P < 0.001; HR = 2.36, P =
0.019; respectively) (Figure S4).

GSEA for HCC patients in different risk groups

Potential functions of CD163, EHHADH,
KIAA0101, SLC16A2, SPP1, THBS4 in HCC were
investigated by performing GSEA based on hallmark
gene sets, indicating multiple pathways related to

tumorigenesis were activated. As shown in Figure 6A,
genes in high groups of SLC16A2, EHHADH and
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THBS4 were respectively enriched in “fatty acid
metabolism”,  “peroxisome” and “bile acid
metabolism” gene sets, which were closely associated
with energy metabolism. Meanwhile, “Gz/M
checkpoint” gene set was enriched in high-expression
group of KIAA0101, “IL6-JAK-STATS3 signaling” and
“TNFa signaling via NFxB” pathways were
respectively enriched in the CD163 high-expression
and SPP1 low-expression group, all of which were
crucial signaling pathways while undergoing
oncogenesis and metastasis.

WGCNA and functional analyses of key
modules containing hub genes

WGCNA was performed on GSE14520 dataset to

Training cohort

create gene modules associated with clinical traits
including survival time, survival state, gender, age,
HBV infection, ALT level, main tumor size,
multinodular, cirrhosis, TNM staging, BCLC staging,
CLIP staging and AFP level. By setting 4 as
soft-thresholding power (scale free R?=0.85) and 0.25
as cutting height, 36 modules were eventually
identified (Figure 6B-C). A heatmap showed the
correlation between module eigengenes and clinical
traits of HCC (Figure S5A-D). EHHADH, SLC16A2
and SPP1 were contained in blue module. Meanwhile,
CD163, KIAA0101 and THBS4 respectively belonged
to the red, yellow and grey module. GO and KEGG
analyses were conducted on blue, red and yellow
gene modules to reveal the potential biological
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Figure 4. Prognostic assessment of the hub genes-based risk score model. (A) Kaplan-Meier overall survival curve, (B, C) Distribution of risk score, (D) Expression levels of six
hub genes and (E) 1, 2, 3-year ROC curves for patients assigned to high- and low risk groups in training cohort GSE14520. Kaplan-Meier overall survival curves for patients
assigned to high- and low risk groups in validation cohorts (F) TCGA-HCC dataset and (G) GSE76427.
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functions. The most significant GO terms and KEGG
pathways were shown in Figure 6D, indicating that
genes in red module were mainly involved in
immune response, genes in yellow module were
mainly associated with cell cycle regulation and genes
in blue module were mainly related to drug or energy
metabolism.

Discussion

HCC is characterized by high heterogeneity and
mortality with the tumorigenesis mechanism
remaining to be clarified. The early diagnosis and
treatment, as well as follow-up for survival are vital
importance for improving the HCC patients’
outcome. Since HCC is a complex disease with
multiple pathogenic mechanisms caused by various
risk factors, it is difficult to predict the outcome with
single biomarker. Recently, the high-throughput
technology has been rapidly developed and more and
more novel potential biomarkers are identified for
HCC prognosis [7-10]. However, the reported DEGs
varied greatly among different researches due to the
limited sample size and the inconsistent bioinformatic
analyzing methods. Reliable biomarkers that could be
applied to most HCC patients are still lacking.
Therefore, the sample size of the discovery dataset
should be enlarged to eliminate the potential selecting
bias and generate more convincing results. Moreover,
expression level of the identified hub genes and

prognostic value of the established risk model should
be further evaluated in other validation cohorts,
which could increase the credibility and make the
results more reliable.

In the present study, 12 HCC microarray
datasets were enrolled as the discovery cohorts, which
contained much more samples than previously
published works [9-11]. Meanwhile, RRA algorithm
method was utilized to integrate all the qualified
datasets for data analysis, therefore, the robustly
DEGs among multiple HCC datasets could be
identified for the prognostic model establishment. The
HCC patients always show the high mortality rate.
Clinical features including tumor size and
pathological stage have been used as the indicators to
predict the patients’ outcome. However, the
prognostic results could be varied using these
conventional indicators, even in patients with the
same tumor size or pathological stage [12]. Therefore,
we sequentially performed the LASSO regression and
multivariate cox regression methods among the
selected DEGs and finally established a prognostic
model based on six genes (CD163, EHHADH,
KIAA0101, SLC16A2, SPP1 and THBS4). Moreover,
the multivariate analysis result indicates that the risk
score according to the six genes-based model is an
independent prognostic factor in HCC, which is also
verified in other two validation cohorts, suggesting
the potentiality for future clinical application.
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Figure 5. Relationship between the risk score and clinicopathological features. (A) Distribution of risk scores in training dataset GSE14520 stratified by BCLC staging, TNM
staging, cirrhosis, main tumor size, age, gender and survival status. (B) Heatmap shows the expression levels of six hub genes in low-risk and high-risk HCC patients in GSE14520.
(C) Univariate and multivariate Cox regression analyses of association between risk score, clinicopathological factors and overall survival time of HCC patients in GSE14520.
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Figure 6. (A) Gene set enrichment analysis of six hub genes in GSE14520. Critical tumorigenesis related signaling pathway ranking among the top three enriched pathways in high
expression group of each single hub gene was shown. (B) Dendrogram of genes in GSE14520 (samples with clinical traits) clustered based on a dissimilarity measure (1-TOM).
(C) Heatmap of the correlation between module eigengenes and clinical traits in GSE14520. Each cell contains the correlation coefficient and P value. (D) GO and KEGG analyses
for genes in blue, red and yellow modules, showing top ten terms according to adjusted p value.

Previous studies have reported the individual
gene’s function during tumorigenesis including

vascular invasion [13, 14], sorafenib resistance [15, 16],
macrophage activation [17, 18], cell cycle disorder
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[19-21] and metabolic derangements [22, 23]. In our
research, the biological functions of the six hub genes
were also analyzed by performing GSEA and
WGCNA. The results showed that these genes were
closely related with energy metabolism, cell cycle
regulation, IL6-JAK-STAT3 and TNFa signaling
pathways, which play the wvital roles while
undergoing tumorigenesis.

In conclusion, we screened the genes with the
highest differential expressing level among samples
from multiple high-throughput HCC datasets,
providing the reliable DEGs closely associated with
HCC tumorigenesis. Moreover, we constructed a
six-gene based prognostic model which could be used
to predict the HCC patients” outcome. In addition, the
risk score according to the model could be an
independent prognostic factor in HCC. Finally, the
prognostic value of the six genes-based model has
been validated in two independent HCC datasets,
indicating the clinical application potentiality. Further
research should focus on clarifying how these hub
genes contributed to HCC development and
validating the prognostic value among larger HCC
population.
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