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Abstract 

Ki-67 is a nuclear antigen widely used in routine pathologic analyses as a tumor cell proliferation marker for 
lung cancer. However, Ki-67 expression analyses using immunohistochemistry (IHC) are invasive and 
frequently influenced by tissue sampling quality. In this study, we assessed the feasibility of noninvasive magnetic 
resonance imaging (MRI) in predicting the Ki-67 labeling indices (LIs). A total of 51 lung cancer patients, 
including 42 non-small cell lung cancer (NSCLC) cases and nine small cell lung cancer (SCLC) cases, were 
enrolled in this study. Quantitative MRI parameters from conventional diffusion-weighted imaging (DWI), 
intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) were obtained, and their correlations 
with tumor tissue Ki-67 expression were analyzed. We found that the true diffusion coefficient (D value) from 
IVIM was negatively correlated with Ki-67 expression (Spearman r = -0.76, P < 0.001). The D values in the high 
Ki-67 group were significantly lower than those in the low Ki-67 group (0.90 ± 0.21 × 10-3 mm2/s vs. 1.22 ± 0.30 
× 10-3 mm2/s). Among three MRI techniques used, D values from IVIM showed the best performance for 
distinguishing the high Ki-67 group from low Ki-67 group in receiver operating characteristic (ROC) analysis 
with an area under the ROC curve (AUROC) of 0.85 (95% CI: 0.73-0.97, P < 0.05). Moreover, D values 
performed well for differentiating SCLC from NSCLC with an AUROC of 0.82 (95% CI: 0.68-0.90), Youden 
index of 0.72, and F1 score of 0.81. In conclusion, D values were negatively correlated with Ki-67 expression in 
lung cancer tissues and can be used to distinguish high from low proliferation statuses, as well as SCLC from 
NSCLC. 
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Introduction 
Lung cancer was the most frequently diagnosed 

cancer and the leading cause of cancer death among 
males in 2012 [1]. Lung cancer survival rates are poor, 
with five-year survival rates of less than 20% [2]. Ki-67 
is a nuclear antigen present in most proliferating cells. 
Ki-67 is expressed during the active phases of the cell 
cycle, including the G1, G2, and S phases, and is a 
common marker used to detect tumor cell 
proliferation related to tumor invasiveness and 
prognoses. The Ki-67 labeling index (LI) has been 
widely used to predict the prognoses of breast cancer 
[3], glioma [4], and lung cancer [5]. A meta-analysis 

demonstrated that high Ki-67 expression is associated 
with poor prognoses and disease progression in lung 
cancer patients. Ki-67 has been used as an 
independent biologic marker to predict lung cancer 
patient prognoses [6]. However, the quantification of 
Ki-67 expression using immunohistochemistry (IHC) 
is invasive and frequently influenced by tissue 
sampling quality [7]. 

The application of magnetic resonance imaging 
(MRI) to lung cancer analyses is a relatively recent 
development yet is a rapidly growing field. Apparent 
diffusion coefficient (ADC) values derived from 
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diffusion-weighted imaging (DWI) can reflect tumor 
cellularity. In recent years, ADC values were reported 
to be associated with Ki-67 expression in various 
tumors, such as breast cancer [8, 9], endometrial 
stromal sarcoma of the uterus [10], endometrial 
carcinoma [11], and lung cancer [12]. However, ADC 
values are calculated using a mono-exponential 
model that is affected not only with the molecular 
movements of water but also by capillary 
microcirculation [13]. 

Intravoxel incoherent motion (IVIM) allows the 
separation of perfusion and molecular-based 
diffusion coefficients [14]. By fitting multiple-b DWI 
data with a biexponential model, three parameters 
can be obtained from IVIM, including the true 
diffusion coefficient (D value), perfusion-related 
pseudodiffusion coefficient (D* value), and perfusion 
fraction (f value) [15-18]. In addition, tumor tissue 
microenvironments are complicated, making the 
diffusion of water molecules behave in a non- 
Gaussian fashion, especially when b values are >1000 
s/mm2 [19]. A non-Gaussian diffusion model, 
diffusion kurtosis imaging (DKI), proposed by Jensen 
et al. [20], can measure tissue structures, including 
cellular compartments and membranes [18, 21-23]. 

To our knowledge, no studies have evaluated the 
associations between the quantitative parameters 
derived from IVIM and DKI and Ki-67 expression in 
lung cancer tissues. The difference in these IVIM and 
DKI parameters between small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC) are 
also largely unknown. Therefore, this study aimed to 
evaluate whether IVIM and DKI can predict Ki-67 
expression levels in lung cancer tissues preoperatively 
and if IVIM and DKI quantitative values differ 
between SCLC and NSCLC. 

Materials and methods 
Patients 

This prospective study was approved by the 
Clinical Research Ethics Committee of Huadong 
Hospital, Fudan University. All procedures 
performed in studies involving human participants 
were in accordance with the ethical standards of the 
institutional and/or national research committee and 
with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards. 
Informed consent was obtained from all individual 
participants involved in the study. 

From September 2016 to August 2018, patients 
who met the following criteria were included: (1) 
pulmonary nodule or mass diameters larger than 15 
mm as detected by computed tomography (CT); (2) 
>50% of the tumors were solid; (3) Ki-67 tumor 

expression was available; (4) no previous treatments 
were given before MR examinations. The exclusion 
criteria were: (1) MRI contraindications present (n = 
13); (2) unsatisfactory image qualities with server 
motion or distortion artifacts (n = 9); (3) A lack of 
pathologic results (n = 8). A total of 51 lung cancer 
patients were finally enrolled in this study, with 42 
NSCLC and 9 SCLC patients. The characteristics of 
the enrolled patients are shown in Table 1. 

MRI acquisitions 
All MRI examinations were performed with a 

3-T MR scanner (MAGNETOM Prisma, Siemens 
Healthcare, Erlangen, Germany) using a 32-channel 
body coil and an integrated spine coil. After routine 
scanning that included coronal and transverse half 
acquisition single-shot turbo spin-echo (HASTE) 
T2-weighted imaging (T2WI), transversal turbo 
spin-echo (TSE) T2WI with fat suppression, and 
T1-volumetric interpolated breath-hold examination 
(VIBE), multi-b diffusion-weighted MRI scans (b = 0, 
20, 60, 80, 150, 200, 400, 600, 800, 1200, 1600, 2000 
s/mm2) with a single-shot echo-planar imaging pulse 
sequence in an axial orientation during free breathing 
was performed. The MRI protocols were listed in 
Table S1. 

Image analyses 
All quantitative derived parameter maps were 

calculated using the prototype software Body 
Diffusion Toolbox (Siemens Healthcare, Erlangen, 
Germany). The DWI data were respectively post- 
processed with the mono-exponential and bi- 
exponential models. The ADC was calculated using 
the mono-exponential model from DWI with b values 
of 0 and 800 s/mm2, as show below: 

𝑆𝑆(𝑏𝑏) = 𝑆𝑆0exp (−𝑏𝑏 𝐴𝐴𝐴𝐴𝐴𝐴) 
where S(b) represents the signal intensities at a 

specified b value, and S0 represents the signal 
intensities measured without radiofrequency 
saturations. Tumor regions of interest (ROIs) were 
drawn by outlining the tumor borders on ADC maps 
and showing the largest cross-section of the tumors. 
Necrotic areas and adjacent large vessels were 
avoided. Then the software-generated mean ADC 
values were recorded. 

The IVIM parameters were calculated by fitting 
the acquired signal with 9 b-values (0, 20, 60, 80, 150, 
200, 400, 600, and 800 s/mm2) into the IVIM model 
equation described by Le Bihan et al. [14]: 

𝑆𝑆(𝑏𝑏) = 𝑆𝑆0[(1 − 𝑓𝑓) exp(−𝑏𝑏𝑏𝑏) + 𝑓𝑓 exp(−𝑏𝑏𝐷𝐷∗) 
 where D* is the pseudo-diffusion coefficient 

representing the perfusion-related incoherent 
microcirculation, f is the pseudodiffusion fraction, 
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and D is the true diffusion coefficient representing 
pure molecular diffusion. 

DKI parameters including Dapp and Kapp, were 
obtained with six b-value signal intensities (b = 0, 600, 
800, 1200, 1600, and 2000 s/mm2) fitted into the 
following equation [20]: 

𝑆𝑆(𝑏𝑏) = 𝑆𝑆0exp (−𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 +
𝑏𝑏2𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝2𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

6
) 

where Dapp represents diffusivity, and Kapp 
represents diffusion kurtosis. 

Two radiologists (with 6 and 10 years of 
experience in MRI, respectively), who were blinded to 
the pathologic results, drew ROIs on the ADC maps 
and recorded the values of each parameter 
independently. The ROIs were automatically copied 
from the ADC maps to the corresponding IVIM-DKI 
parametric maps to obtain the values of D, D*, f, Dapp, 
and Kapp. Each lesion ROI was drawn twice and 
averaged to a mean value for analyses. 

All DWI parameters were performed using a 
prototype Body Diffusion Toolbox (Siemens 
Healthcare, Erlangen, Germany). We selected 9 
b-values (0, 20, 60, 80, 150, 200, 400, 600, and 800 
s/mm2) to calculate DWI and IVIM parameters with 
the mono- and bi-exponential models, respectively. 
Six b-values (b = 0, 600, 800, 1200, 1600 and 2000 
s/mm2) were selected for the DKI parameter 
calculations. The two blinded radiologists performed 
the following measurements. Tumor regions of 
interest (ROIs) were drawn by outlining tumor 
borders on ADC maps, showing the largest tumor 
cross-sections, and avoiding necrotic areas and 
adjacent large vessels by referring to T2WI and DWI 
images. The same ROIs were automatically copied to 
the D, D*, f, Dapp, and Kapp maps at the same level. 
All DWI parameters were measured synchronously. 

Immunohistochemistry 
The immunohistochemical (IHC) analyses of 

Ki-67 expression were performed using the mouse 
monoclonal anti-human Ki-67 antibody (MIB-1, 
ZSGBBIO, Beijing, China). A pathologist with 14 years 
of experience in lung cancer pathology, blinded to the 
clinical and MRI data, assessed Ki-67 tumor 
expression. The percentage of Ki-67-positive cells was 
assessed by counting the number of stained nuclei per 
100 tumor cells in the most representative areas 
(×400), corresponding to areas with the highest 
mitotic activity. Then, Ki-67 expression levels were 
divided into low (≤25%) and high (>25%) Ki67 
expression groups, based on previous studies [24-26]. 

Statistical analyses 
Statistical analyses were conducted using SPSS 

22.0 (IBM SPSS Statistics, USA) or GraphPad Prism 8.0 

(Prism, USA) software. Quantitative data were 
expressed as the mean ± standard deviation (SD) or 
median and interquartile ranges based on the 
distribution. The interclass correlation coefficient 
(ICC) was used to evaluate reader reproducibility for 
parameter measurements (0.00-0.20, poor correlation; 
0.21-0.40, fair correlation; 0.41-0.60, moderate 
correlation; 0.61-0.80, good correlation; and 0.81-1.00, 
excellent correlation). The correlations between the 
DWI-derived parameters and Ki-67 expression were 
analyzed using Spearman’s rank correlations. The 
differences in DWI parameters between low and high 
Ki-67 expression and between SCLC and NSCLC 
were analyzed with a Student’s t-test or Mann- 
Whitney U-test. Receiver operating characteristic 
(ROC) curve analyses were performed to determine 
the optimal cut-off values of these parameters for 
predicting high Ki-67 expression levels and lung 
cancer subtypes. The area under the ROC curve 
(AUCROC), sensitivity, specificity, Youden index, 
and F1 score were calculated. A P < 0.05 was 
considered statistically significant. 

Results 
Patients’ characteristics 

A total of 51 lung cancer patients were enrolled 
in this study, including 42 NSCLC and 9 SCLC 
patients. The median age was 64 (Range: 42-83). The 
mean Ki-67 values of all 51 patients was 39.7 ± 26.9% 
(range: 2%-90%). Thirty-one patients had Ki-67 
expression values of > 25% (Table 1). 

 

Table 1. Characteristics of patients in this study 

Characteristics Value Percentage P value 
Sex      
Male 27 52.9% 0.69 
Female 24 47.1% 
Age      
Median (range) 64 (42 - 83)    
Ki67 (Mean ± SD) 39.7 ± 26.9    
>25% (n) 31 60.8% 0.05 
≤25% (n) 20 39.2% 
Pathological feature      
NSCLC (Non-small cell lung cancer) 42 82.4%  
Adenocarcinoma 28    
Squamous cell carcinoma 12   < 0.001 
Large cell carcinoma 2    
SCLC (Small cell lung cancer) 9 17.7%  
Data are number and percentage or mean and standard deviation (SD). A 
two-sample proportion Z-Test was conducted to compare the differences between 
categorical variables. 

 

DWI images and ADC, IVIM, and DKI maps of 
lung tumors in patients with NSCLC and 
SCLC 

The diffusion-weighted images of a typical 
NSCLC patient are shown in Figure S1. Tumor signals 
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were attenuated with ascending b values. Figure 1 
shows representative parametric maps of a 58-year- 
old male diagnosed with SCLC. The parametric maps 
(ADC, IVIM, and DKI) of an 80-year-old male 
diagnosed with lung adenocarcinoma are shown in 
Figure 2. Figures S2 and S3 show a 75-year-old male 
patient with lung squamous cell carcinoma and a 
72-year-old male patient with large cell carcinoma, 
respectively. The parametric maps are followed by 
images of hematoxylin-eosin and Ki-67 immunohisto-
chemical stained tissue sections. 

The associations between the quantitative 
IVIM and DKI values and Ki-67 expression 

The interclass correlation coefficients (ICCs) for 
D* ranged from 0.33 – 0.84, and the ICCs of other 
parameters were 0.701–0.905. The ADC, D, and D* 
values of the high Ki-67 group were 1.11 ± 0.26 × 10-3 

mm2/s, 0.90 ± 0.21 × 10-3 mm2/s, 16.66 ± 8.07 × 10-3 
mm2/s, respectively, and were significantly lower 

than low Ki-67 group (ADC, D and D* values were 
1.33 ± 0.30 × 10-3 mm2/s, 1.22 ± 0.30 × 10-3 mm2/s, 
23.09 ± 12.70 × 10-3 mm2/s, respectively) (Table 2). 
However, the Kapp value of the high Ki-67 group 
(0.78 ± 1.98) was significantly higher than that of the 
low Ki-67 group (0.64 ± 0.15) (Table 2 and typical 
cases shown in Figures 1 and 2, and Figures S2 and 
S3). There were no significant differences in the f and 
Dapp values between the high and low Ki-67 groups. 

 

Table 2. Comparison of ADC, D, D*, f, Kapp, and Dapp values of 
lung tumors with low and high Ki-67 

Parameters Low Ki-67 (n = 21) High Ki-67 (n = 30)  P 
ADC (×10-3 mm2/s) 1.33 ± 0.30 1.11 ± 0.26 0.012 

D (×10-3 mm2/s) 1.22 ± 0.30 0.90 ± 0.21 0.000 

D* (× 10-3 mm2/s) 23.1 ± 12.7 16.7 ± 8.07 0.031 
f (%) 30.3 ± 15.2 26.9 ± 16.5 0.48 
Kapp 0.64 ± 0.15 0.78 ± 1.98 0.011 

Dapp (× 10-3 mm/s) 1.91 ± 0.51 1.74 ± 0.68 0.34 
Data are mean ± standard deviation (SD). ADC: apparent diffusion coefficient; D: 
true diffusion coefficient, D* value: the perfusion-related pseudodiffusion 
coefficient; f: perfusion fraction; Kapp: diffusion kurtosis; Dapp: diffusivity. 

 
 

 
Figure 1. A 58-year-old male diagnosed with small cell lung cancer. (A) An axial ADC map showed a hypointense mass in the left pulmonary lobe (red arrow), with an 
ADC value of 0.82×10-3mm2/s. (B) A diffusion map (D) demonstrating a reduced D value (0.69×10-3 mm2/s). (C) A pseudodiffusion coefficient (D*) map demonstrating a D* value 
of 16.01x10-3 mm2/s. (D) A perfusion fraction (f) map showing an f value of 14.17%. (E) A diffusion map (Dapp) showing a Dapp value of 1.03×10-3 mm2/s. (F) A kurtosis map 
showing a Kapp value of 1.14. (G) Small cell lung cancer was confirmed by Hematoxylin and eosin (H&E) staining (magnification, × 400; scale bar, 100 µm). (H) Ki-67 
immunohistochemical labeling shows that approximately 90% of cells are positive for nuclear staining (magnification, × 400, scale bar, 100 µm). ADC: Apparent diffusion 
coefficient; D: true diffusion coefficient, D* value: the perfusion-related pseudodiffusion coefficient; f: perfusion fraction; Kapp: diffusion kurtosis; Dapp: diffusivity. 
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Figure 2. An 80-year-old male diagnosed with lung adenocarcinoma. (A) An axial ADC map shows a hypointense mass in the left pulmonary lobe (red arrow), with an 
ADC value of 1.13×10-3mm2/s. (B) A diffusion map demonstrating a D value of 1.22×10-3 mm2/s. (C) A pseudodiffusion coefficient map demonstrating a D* value of 14.63×10-3 

mm2/s. (D) A perfusion fraction map showing an f value of 13.94%. (E) A diffusion map showing a Dapp value of 1.54×10-3 mm2/s. (F) A kurtosis map showing a Kapp value of 0.66. 
(G) Hematoxylin and eosin (H&E) staining confirms the mass to be lung adenocarcinoma (magnification, ×400, scale bar, 100 µm). (H) Ki-67 immunohistochemical labeling shows 
that approximately 10% of cells are positive for nuclear staining (magnification, × 400, scale bar, 100 µm). 

 
Figure 3. The significant correlations between the quantitative values of different magnetic resonance imaging (MRI) techniques and Ki-67 expression in lung tumor tissue 
sections. (A) Apparent diffusion coefficient (ADC); (B) True diffusion coefficient (D value); (C) Kapp values (diffusion kurtosis) from diffusion kurtosis imaging (DKI). Spearman’s 
rank correlation was performed. 

 
Spearman’s rank correlation analyses revealed 

that the ADC and D values were negatively correlated 
with Ki-67 expression (r = -0.55 and -0.76, 
respectively, all P < 0.001) (Figures 3A and 3B). In 
contrast, Kapp values were positively correlated with 
Ki-67 expression (r = 0.41, P < 0.01) (Figure 3C). No 

significant correlations were found between D*, f, 
Dapp, and Ki-67 expression (Table S2). 

The performance of ADC, D, D*, Dpp, and Kpp 
for distinguishing high Ki-67 group from the low 
Ki-67 group was then tested using AUROC curve 
analyses. Among the tested parameters, D values had 
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the highest AUC of 0.85 (95% CI: 0.73-0.97, P < 0.001) 
in discriminating the high Ki-67 group from the low 
Ki-67 expression group (Figure 4A). In addition, D 
values yielded a sensitivity of 90.2%, a specificity of 
77.4%, and a Youden index of 0.67 (Table 3). 

Quantitative MRI assessments for 
distinguishing SCLC and NSCLC 

We found that the ADC, D, and Dapp values of 
SCLC were significantly lower than those of NSCLC 
(All P values <0.05) (Table S3). In contrast, the Kapp 
values of SCLC were significantly higher than those of 
NSCLC (0.90 ± 0.29 vs. 0.69 ± 0.14, P = 0.048). There 
were no significant differences in D* and f values 
between the two lung cancer types (all P > 0.05). 

D values (Cutoff value = 0.85) performed well in 
discriminating SCLC and NSCLC with an AUC of 
0.82 (95% CI: 0.68-0.92) (Figure 4B and Table S4). 
Compared with ADC, Dapp, and Kapp values, D 
values from IVIM yielded higher Youden index 
values (Table S4). 

Discussion 
Differentiating SCLC from NSCLC (large cell 

carcinoma or basaloid squamous cell carcinoma) 
using noninvasive methods is essential since the 
therapeutic strategies and clinical prognoses are 
significantly different. Several noninvasive blood 
metabolomic and dynamic multiphase computed 
tomography (CT) methods have been recently 
developed to discriminate SCLC and NSCLC [27-30]. 
However, blood metabolomic biomarker results that 
showed the differentiation of SCLC and NSCLC 
tumor types has not been confirmed with large cohort 
studies. Dynamic multiphase CT was shown to 
distinguish SCLC and NSCLC by evaluating tumor 
perfusion; however, significant radiation exposures 
restrict the use of this methodology. As a noninvasive, 
reusable technique, quantitative MRI is frequently 
used for tumor evaluations. In this study, we 
demonstrated for the first time that D values from 
IVIM had excellent accuracy in distinguishing NSCLC 
and SCLC. 

 
 

Table 3. ROC curve analysis for ADC, D, D*, and Kapp values in discriminating lung cancers with high and low Ki-67 expression 

Parameters Cut-off value Sensitivity (%) Specificity (%) AUROC (95% CI) Youden index P 
ADC (×10-3mm2/s) 1.42 45.1 93.5 0.68 (0.53 -0.84) 0.39 0.029 

D (×10-3mm2/s) 0.98 90.2 77.4 0.85 (0.73 - 0.97) 0.67 0.000 

D*(×10-3mm2/s) 13.1 85.2 45.2 0.65 (0.49 -0.81 0.31 0.073 
Kapp 0.78 51.6 85 0.69 (0.55 - 0.83) 0.37 0.023 

ROC: receiver operating characteristic; ADC: apparent diffusion coefficient; D: true diffusion coefficient, D* value: the perfusion-related pseudodiffusion coefficient; f: 
perfusion fraction; Kapp: diffusion kurtosis; Dapp: diffusivity; AUROC: Area under ROC curve; CI: confidence interval. 

 
 

 
Figure 4. Receiver operating characteristic (ROC) curve analyses. (A) ROC curve analyses show the diagnostic performance of ADC, D, D*, Kapp in distinguishing the high 
Ki-67 group from the low Ki-67 group. D values produced the highest AUROC of 0.85 (95% CI: 0.73 – 0.97, P < 0.05). (B) ROC analysis of ADC, D, Dapp, and Kapp in 
differentiating SCLC and NSCLC. The 2 × 2 contingency analyses, including the cut-off values, sensitivities, specificities, Youden indices, and F1 scores, are listed in Table 3 and 
Table S4. The raw data are shown in Table S5. ADC: Apparent diffusion coefficient; D: true diffusion coefficient, D* value: perfusion-related pseudodiffusion coefficient; f: 
perfusion fraction; Kapp: diffusion kurtosis; Dapp: diffusivity; AUROC: Area under ROC curve; CI: confidence interval; SCLC: small cell lung cancer; NSCLC: non-small cell lung 
cancer. 
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Ki-67 is a common biomarker of tumor cell 
proliferation and has been shown to be associated 
with lung cancer prognoses and therapeutic efficacies 
[5, 31-33]. In this study, we evaluated the associations 
between the DWI, IVIM, DKI parameters, and Ki-67 
proliferation in tumor tissues of patients with lung 
cancer. We selected a cut-off of 25% for Ki-67 
expression to differentiate the low and high Ki-67 
groups [34]. We found that D values from IVIM were 
negatively correlated with Ki-67 expression 
(Spearman’s coefficient r = -0.76). D values between 
the high and low Ki-67 expression groups were 
significantly different. It is likely that the highly 
proliferative tumors (high Ki-67 expression) had 
higher inner structural complexities due to increased 
cellularity, vascular hyperplasia, and necrosis [23]. 

Although Dapp is corrected for non-Gaussian 
bias, it showed no significant correlation with Ki-67 
expression. This might be due to tumor heterogeneity 
caused by vascular proliferation and internal necrosis. 
D* and f are IVIM perfusion-related parameters. No 
significant correlations were found between the D* or 
f values and Ki-67 expression in lung cancer, 
consistent with previous bladder cancer and sinonasal 
tumor studies [17, 18]. These results indicated that 
extracellular components, such as average blood 
velocities, blood microcirculation, and capillary 
volumes, contributed little to lung tumor 
aggressiveness. In addition, we found poor D* and f 
value reproducibilities in lung cancer imaging, which 
might explain their low diagnostic performance in 
differentiating high and low Ki-67 groups. 

D represents the true molecular diffusion of 
water without adsorption [14]. In our study, D values 
performed well to identify lung tumors with high 
Ki-67 expression. Our results suggest that water 
molecule diffusion is affected more by tumor 
proliferation than by the complexity of the tumor 
microenvironment. 

Previous studies [35, 36] have reported that ADC 
values were significantly different between SCLC and 
NSCLC. Our study found that ADC, D, and Dapp 
values of SCLC were dramatically lower than those of 
NSCLC. The potential histopathologic rationale might 
be that SCLCs are highly cellular, and the cells have 
large nuclei with scant cytoplasm; all of these factors 
could restrict diffusion motion reducing ADC, D, and 
Dapp values [37]. As mentioned above, D* and f 
values were poorly repeatable. D* values were also 
related to blood flow velocities. The high variability of 
D* values could result from the dramatic differences 
in tumor vascularities among different tumor types 
[17]. The f values are affected by the T2 contributions 
in both the perfusion and pure molecular diffusion 
compartments. Therefore, measuring IVIM D values 

could be used as a noninvasive approach to 
distinguish SCLC and NSCLC. 

Our study had several limitations. First, the 
distribution of lesion types was uneven, and the 
number of patients with SCLC was relatively small 
compared with the number of patients with NSCLC. 
When the dataset was unbalanced, traditional 
classification metrics, such as AUROCs and 
sensitivities, might be overfitted. The F1 score is the 
weighted average of precision and recall; data 
distribution is considered and particularly suitable for 
unbalanced datasets [38]. Although the F1 score is 
acceptable for our analyses, further validations with 
other independent cohorts are still required. Second, 
ROIs drawn on the parametric maps might not 
correspond well with the Ki-67 expression in 
histologic specimens. MR-guided biopsies could solve 
this problem. Third, the optimal b-value combination 
for lung IVIM and DKI analyses was unclear. Adding 
more b values could improve fitting accuracies, 
improving IVIM or DKI parameter performance 
predictions. However, acquisition times would be 
increased accordingly. 

Conclusions 
In summary, ADC, D, and Kapp values were 

significantly associated with Ki-67 proliferation 
statuses in patients with lung cancer. D values 
obtained from IVIM had the highest diagnostic 
performance in distinguishing high and low Ki-67 
statuses. Moreover, D values to differentiate SCLC 
and NSCLC performed well. Our study provided a 
noninvasive approach to predict Ki-67 expression and 
distinguish different lung cancer types. 
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