Supplementary materials

Serum metabolomics analysis for the progression of esophageal squamous cell carcinoma

Serum samples collection and preparation

Blood samples were taken in the morning from the participants after an overnight fasting. The samples were clotted at 37 °C water batch for 30 min and followed by centrifugation for 15 min at 3000 rpm. Then the serum supernatant was taken, immediately stored at -80°C until further analysis.

Before UHPLC-QTOF/MS analysis, serum samples were thawed at 4 °C on ice. Then 50 μ L of serum sample was taken and placed in a 96-well plate, then extracted with 150 μ L of MeOH (which was kept at -20 °C before extraction) using Bravo liquid handling system (Agilent Technologies, USA), and followed by vortex for 30 s and incubation for 2 h at -20 °C to precipitate proteins. The 96-well plate was then centrifuged at 4000 rpm for 20 min at 4 °C. The resulting supernatants were transferred to LC–MS vials and stored at -80 °C until the UHPLC-QTOF/MS analysis.

UHPLC-QTOF/MS analysis

The serum samples were randomly injected for the UHPLC-QTOF/MS analysis. Quality control (QC) samples were prepared by pooling aliquots of all serum samples that were representative of the serum samples under analysis, and used for data normalization. Blank samples (75 % ACN in water) and QC samples were injected every eight samples during acquisition.

The UHPLC-QTOF/MS analyses were performed using a UHPLC system (1290 series, Agilent Technologies, USA) coupled to a quadruple time-of-flight (QTOF) mass spectrometer (Agilent 6550 iFunnel Q-TOF, Agilent Technologies, USA). Waters ACQUITY UHPLC HSS T3 columns [particle size, 1.8 µm; 100 mm (length) × 2.1 mm (i.d.)] were used for the LC separation and the column temperature was kept as 25 °C. The flow rate was 0.5 mL/min and the sample injection volume was 6 µL. The mobile phases A was 0.1 % FA in water in positive mode (ESI+) or 0.5 mM NH4F in water in negative mode (ESI-), and B was 0.1 % FA in ACN in positive mode or 100 % ACN in negative mode. The linear gradient was set as follows: 0–1 min: 1 % B, 1–8 min: 1 % B to 100 % B, 8–10 min: 100 % B, 10–10.1 min: 100 % B to 1 % B, 10.1–12 min: 1 % B. The acquisition rate was set as 4 spectra/s and the TOF mass range was set as m/z 50–1200 Da. The parameters of MS data acquisition were set as follows: sheath gas temperature, 400 °C; dry gas temperature, 250 °C; sheath gas flow, 12 L/min; dry gas flow, 16 L/min; capillary voltage, 3000 V in positive mode or -3000 V in negative mode, respectively; nozzle voltage, 0 V; and nebulizer pressure, 20 psi in positive or 40 psi in negative mode, respectively.

Tandem mass spectrometry (MS/MS) data acquisition was performed using another quadruple time-of-flight mass spectrometer (Triple TOF 5600+, AB SCIEX, USA). QC samples were used for MS/MS data acquisition. To expand the coverage of MS/MS spectra, the mass range were divided into four segments: 50–300 Da, 290–600 Da, 590–900 Da, 890–1200 Da. The acquired MS/MS spectra were matched against in-house tandem MS spectral library for metabolite identification (see details in follow). The source parameters were set as

follows: GAS1, 60; GAS2: 60; CUR: 30; TEM: 600 °C; ISVF: 5500 V and -4500 V in positive and negative modes, respectively.

Metabolite identification: Tandem mass spectrometry (MS/MS) spectra data for metabolites were acquired using AB Sciex TripleTOF 5600+. The acquired MS/MS spectra were matched against our in-house standard MS/MS spectral library and metabolite standards. The MS/MS spectra match score was calculated using dot-product algorithm ranging from 0-1. The cutoff for match score was set as 0.8. The MS/MS spectra match results were further manually checked to confirm the identification. All the m/z errors are less than 25 ppm and all the RT errors are less than 18 seconds. Secondly, the biomarkers whose MS/MS spectra were not matched in our in-house databases or cannot be interpreted by MS/MS spectra, were searched against online databases of HMDB (www.hmdb.ca), METLIN (http://metlin.scripps.edu/) and KEGG (http://www.genome.jp/kegg/). The mass tolerance between the measured m/z values and the exact masses of the components of interest was set to within 30 ppm. The potential biomarkers were identified according to their molecular weights.

Data preprocessing and annotation

Raw data obtained by UHPLC-QTOF/MS analysis was firstly converted to the mzXML format using ProteoWizard, and processed by R package XCMS (version 3.2). Then a data matrix consisted of the retention time (RT), mass-to-charge ratio (m/z) values, and peak intensity was generated. R package CAMERA was used for peak annotation after XCMS data processing. Metabolic features detected less than 80 % in all the QC samples were discarded. Only monoisotopic peaks annotated by CAMERA were selected for the subsequent statistical analyses. To remove the unwanted analytical variations occurring intra- and interbatches, each metabolite peak in all subject samples was normalized using the LOESS method based on QC samples. Then the relative intensity of each metabolite was standardized with Z-transformation (mean = 0, SD = 1).

Supplementary figure legends:

Figure S1. The PCA performed on the whole samples including normal participants, esophagitis, LGD and HGD/ESCC patients, and QC samples. LGD, low-grade dysplasia; HGD, high-grade dysplasia; ESCC, esophageal squamous cell carcinoma.

Figure S2. Boxplots of relative intensity of expression of five metabolites that associated with increased risk of developing ESCC between normal and esophagitis, LGD and HGD/ESCC patients. LGD, low-grade dysplasia; HGD, high-grade dysplasia; ESCC, esophageal squamous cell carcinoma.

Metabolites	Cluster	p value	FDR	OR (95% CI)
Dopamine	1	2.63E-05	1.17E-04	0.69 (0.59 ~ 0.82)
L-Histidine	1	1.13E-09	2.26E-08	0.59 (0.49 ~ 0.70)
5-Hydroxyindoleacetate	1	8.73E-04	2.91E-03	0.78 (0.67 ~ 0.90)
L-Tryptophan	1	1.50E-07	1.50E-06	0.67 (0.58 ~ 0.78)
2'-O-methylcytidine	1	1.99E-02	4.06E-02	0.70 (0.52 ~ 0.95)
PC (14:0/0:0)	1	1.70E-06	1.30E-05	0.68 (0.58 ~ 0.79)
PC (O-16:1/0:0)	1	6.42E-10	2.26E-08	0.61 (0.52 ~ 0.71)
PE (18:0/0:0)	1	5.54E-08	7.38E-07	0.63 (0.53 ~ 0.74)
PC (16:1/0:0)	1	1.95E-06	1.30E-05	0.68 (0.58 ~ 0.80)
PC (18:2/0:0)	1	4.42E-04	1.61E-03	0.76 (0.65 ~ 0.89)
Hypoxanthine	2	1.23E-03	3.77E-03	1.27 (1.10 ~ 1.47)
Inosine	2	2.24E-05	1.12E-04	1.36 (1.18 ~ 1.57)
Carnitine (14:1)	2	9.73E-05	3.89E-04	1.34 (1.16 ~ 1.56)
Glycochenodeoxycholate	2	2.53E-03	7.22E-03	1.25 (1.08 ~ 1.44)
PC (P-18:0/18:3)	2	1.88E-02	4.06E-02	1.19 (1.03 ~ 1.38)

Table S1 Metabolites associated with the progression of ESCC by univariate ordinal logistic regression

 analysis

Pathway Name	Total	Expected	Hite	Paw p	log10(p)	Holm D	EUD	Impact
Falliway Name	TOLAT	Expected	nits	naw p	-logro(h)	HUIIII P	FUK	impact
Tryptophan metabolism	41	0.19	2	0.01	1.88	1	0.75	0.16
Aminoacyl-tRNA biosynthesis	48	0.22	2	0.02	1.75	1	0.75	0.00
Purine metabolism	65	0.29	2	0.03	1.50	1	0.89	0.02
Histidine metabolism	16	0.07	1	0.07	1.15	1	1.00	0.22
beta-Alanine metabolism	21	0.09	1	0.09	1.04	1	1.00	0.00
Tyrosine metabolism	42	0.19	1	0.18	0.76	1	1.00	0.13
Primary bile acid biosynthesis	46	0.21	1	0.19	0.72	1	1.00	0.01

Table S2 Pathway enrichment analysis for metabolites associated with the progression of ESCC