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Abstract 

Purpose: To build a dual-energy computed tomography (DECT) delta radiomics model to predict 
chemotherapeutic response for far-advanced gastric cancer (GC) patients. A semi-automatic segmentation 
method based on deep learning was designed, and its performance was compared with that of manual 
segmentation.  
Methods: This retrospective study included 86 patients with far-advanced GC treated with chemotherapy 
from September 2016 to December 2017 (66 and 20 in the training and testing cohorts, respectively). Delta 
radiomics features between the baseline and first follow-up DECT were modeled by random forest to predict 
the chemotherapeutic response evaluated by the second follow-up DECT. Nine feature subsets from 
confounding factors and delta radiomics features were used to choose the best model with 10-fold 
cross-validation in the training cohort. A semi-automatic segmentation method based on deep learning was 
developed to predict the chemotherapeutic response and compared with manual segmentation in the testing 
cohort, which was further validated in an independent validation cohort of 30 patients.  
Results: The best model, constructed by confounding factors and texture features, reached an average AUC 
of 0.752 in the training cohort. Our proposed semi-automatic segmentation method was more time-effective 
than manual segmentation, with average saving-time of 11.2333 ± 6.3989 minutes and 9.9889 ±5.5086 minutes 
in the testing cohort and the independent validation cohort, respectively (both p < 0.05). The predictive ability 
of the semi-automatic segmentation was also better than that of the manual segmentation both in the testing 
cohort and the independent validation cohort (AUC: 0.728 vs. 0.687 and 0.828 vs. 0.749, respectively).  
Conclusion: DECT delta radiomics serves as a promising biomarker for predicting chemotherapeutic 
response for far-advanced GC. Semi-automatic segmentation based on deep learning shows the potential for 
clinical use with increased reproducibility and decreased labor costs compared to the manual version. 

Key words: Delta radiomics, far-advanced gastric cancer, deep learning, semi-automatic segmentation, 
dual-energy computed tomography 

Introduction 
Gastric cancer (GC) is a considerable health 

burden worldwide, accounting for more than one 
million newly diagnosed individuals and 
appropriately 783,000 deaths in 2018 [1]. Despite 

radical resection being considered the only curable 
treatment for GC, nearly two-thirds of patients 
present with unresectable, locally advanced or 
metastatic disease with poor outcomes when initially 
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diagnosed [2]. For those patients, systemic 
chemotherapy is recommended to prolong overall 
survival from 4 months to 12 months compared with 
the best supportive care [3]. Despite improved 
survival, the standard regimen of systemic 
chemotherapy is still controversial, and the reported 
rate for tumor response is less than 40% [3,4]. With the 
coexistence of intratumor heterogeneity [5] as well as 
underlying mechanisms of resistance to 
chemotherapy in GC [6], it seems that evaluating the 
chemotherapeutic response at timepoints after a 
defined follow-up time may be too late, especially for 
long cycles of chemotherapy regimens. Patients not 
converting to appropriate treatment strategies may 
endure unnecessary chemotherapeutic toxicity. 
Therefore, it would be more beneficial to predict 
treatment response at early stages of chemotherapy 
courses before certain chemotherapy resistance 
occurs. 

Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1 is accepted as the set of criteria 
for evaluating the therapeutic response for solid 
tumors. However, the RECIST criteria are applied to 
evaluating the treatment response based on the 
current therapeutic timepoint instead of predicting 
the response in advance, which may delay the time for 
intervention. In addition, due to the movement of the 
stomach and the irregular and nonspherical shape of 
lesions in the stomach wall, measuring the longest 
tumor diameter as the only criterion is difficult to 
reproduce for the purposes of making predictions [7]. 
Given the current drawbacks, it is crucial to improve 
the efficacy in evaluating the chemotherapeutic 
response. 

Radiomics is a promising field for providing 
insight into tumor heterogeneity by noninvasively 
extracting and analyzing massive numbers of 
quantitative features beyond what can be observed by 
the naked eye [8]. Compared with biopsy specimens, 
radiomics can noninvasively and repeatedly sample 
the heterogeneity of and screen the entire tumor in 
succession during chemotherapy courses, which may 
provide interferences in advance of any 
ineffectiveness or deterioration. Previous publications 
have reported the predicting value of radiomics on 
the prognosis for locally advanced GC [9-12]. 
However, those studies focused on using radiomics to 
evaluate treatment response or predict survival for 
local advanced GC treated with neoadjuvant 
chemotherapy or postsurgical chemotherapy based 
on images pre-treatment. As mentioned above, the 
resistance to chemotherapy drugs may result from 
individual differences, making radiomics analysis 
based only on pretreatment or posttreatment less 
convincing. Delta radiomics, defined as the changes in 

features according to the dynamic process that occur 
during therapeutic courses makes possible 
personalized predictions for chemotherapeutic 
benefits [13]. Besides, dual-energy computed 
tomography (DECT) is a promising modality for 
stomach imaging due to its potential to provide a 
large amount of pathophysiological information [14] 
and no prior studies have investigated the role of 
DECT in GC using radiomics, except for one that 
applied DECT radiomics to predict lymph node 
metastasis [15].  

Volumes of interest (VOIs) are recommended in 
radiomics research [16]. Given intratumor 
heterogeneity, delineation of only one slice may not 
provide as much information as delineation of the 
entire tumor. In addition, compared with 
one-dimensional measurements, the tumor volume 
could more accurately depict the dynamic changes in 
tumor burden and morphology during treatment [17]. 
The combination of tumor morphology and delta 
radiomics, showing tumor burden and heterogeneity, 
respectively, has the potential to provide a large 
amount of information for predicting the 
chemotherapeutic response. Nevertheless, manually 
delineating the entire tumor slice by slice, especially 
for thin-section CT images, is observer inconsistent 
and time consuming [7]. For delta radiomics, which 
requires repeated delineation at different timepoints, 
highly efficient segmentation is urgently needed. 
Deep learning, a multilayer stack of neural networks, 
discovers intricate structures from big data and has 
been widely used for the segmentation of biological 
images for its accuracy and efficiency [18]. In the field 
of GC, studies have mainly concentrated on 
modalities using endoscopy images and pathological 
sections [19-21]. Due to the movement and irregular 
shape of GCs and background noise and the 
complexity of the abdomen, to our knowledge, no 
studies have delineated GC using deep learning on 
CT to date. 

In this study, we aimed to build a DECT delta 
radiomics model to predict the therapeutic response 
of far-advanced GC patients during continuous 
intermittent chemotherapy, which may have potential 
benefits for timely intervention and adjustment of 
treatment strategies in advance. In addition, we aimed 
to develop and validate a semi-automatic 
segmentation method using a modified V-net deep 
learning algorithm for far-advanced GC and then 
compare the performance of the predictive value for 
the chemotherapeutic response with that of manual 
segmentation. 
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Materials and Methods 
Patients 

This retrospective study was approved by our 
local ethics committee, and informed consent was 
waived. Data from patients with far-advanced GC 
during the period from September 2016 to December 
2017 were collected. Far-advanced GC was defined as 
recurrent GC or GC with peritoneal or distant 
metastasis or tumors surrounding major vessels on 
CT examination (cT4a~bNxM0~1). The inclusion criteria 
were as follows: 1) histologically confirmed primary 
stomach adenocarcinoma; 2) no prior history of 
chemotherapy or radiotherapy; 3) administration of at 
least 6 cycles of chemotherapy; and 4) availability of at 
least three DECT examinations obtained before 
chemotherapy within one week and the first and 
second follow-up DECT images. 

The exclusion criteria were as follows: 1) 
incomplete medical records during chemotherapy 
courses or poor CT image quality due to artifacts; 2) 
concurrent cancer; and 3) intolerance to 
chemotherapy due to poor performance status. 
Detailed information is presented in Figure 1. 

Treatment response was evaluated after the 
second follow-up CT examination based on RECIST 
1.1 [22]. Patients with complete response and partial 
response were classified as the responder group, 

while patients with stable disease and progressive 
disease were classified as the nonresponder group 
[23]. Follow-up CT was performed every 2~3 months 
after chemotherapy. The imaging protocol was 
described in our previous study [24] and is presented 
at Doc S1. 

Finally, a total of 86 patients who underwent at 
least three CT scans were enrolled in this study. These 
86 patients were further randomly split into training 
(66 patients, 21 responders and 45 nonresponders) 
and testing (20 patients, 9 responders and 11 
nonresponders) cohorts.  

Chemotherapy regimen 
Platinum or taxane-based combination 

chemotherapy was the main regimen applied in this 
study, including S-1 plus oxaliplatin (SOX regimen) 
and S-1 plus docetaxel (PS regimen), accounting for a 
total of 53 patients among the 86 in the study. For the 
training cohort, 14 and 28 patients adopted the SOX 
and PS regimens, respectively. For the testing cohort, 
the numbers of patients who underwent SOX and PS 
were seven and four, respectively. 

For the SOX regimen, patients received S-1 at a 
dose of 60 mg/m2 orally twice daily from days 1 to 14. 
Oxaliplatin was administered intravenously for 2 
hours at 130 mg/m2 on day 1. Cycles were repeated 
every 21 days. 

 

 
Figure 1. Flowchart for included patients in the training and testing cohorts. Abbreviation: CT: computed tomography; GC: gastric cancer. 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

7227 

For PS regimen, patients received S-1 at a dose of 
60 mg/m2 orally twice daily from days 1 to 14. 
Docetaxel was administered intravenously for 1 hour 
at 40 mg/m2 on day 1. Cycles were also repeated 
every 21 days. 

Chemotherapy toxicity was evaluated after 
every cycle, and treatment was given for at least six 
cycles unless disease progression, intolerable toxicity 
or death occurred. 

Performance of the CT delta radiomics model 
by manual segmentation 

Manual segmentation 
Manual segmentation was considered as the 

reference and was performed on the delayed phase 
images. Two radiologists (L.W. and J.T., with five and 
six years of experience in abdominal imaging, 
respectively), blinded to the pathological and clinical 
outcomes, delineated the 3D region of interest (ROI) 
with ITK-snap (version 3.6.0) along with the edge of 
the tumor slice by slice on axial images. Partial 
volume effects were avoided by omitting the ROIs 
from the initial and final slices. 

Radiomics features 
Open source pyradiomics packages 

implemented in Python were used to extract 
radiomics features from the CT images, which 
complies with the Image Biomarker Standardization 
Initiative [25,26]. The extracted features included 
shape-based features (n=18), first-order histogram 
features (n=14), and second-order histogram features 
(texture features, n=75). The texture features consisted 
of Gray Level Co-occurrence Matrix (GLCM), Gray 
Level Run Length Matrix (GLRLM), Gray Level Size 
Zone Matrix (GLSZM), Gray Level Dependence 
Matrix (GLDM), and Neighboring Gray Tone 
Difference Matrix (NGTDM). For each patient, a total 
of 107 features were extracted from the segmented 
region of interest on each CT image. Feature 
information is presented in Table S1. Delta radiomics 
features were calculated by related difference from 
ROIs between baseline and the first follow-up CT 
examinations. 

Clinical features for confounding factors 
In addition to the delta radiomics features at 

baseline and the first follow-up DECT, we also 
considered four clinical features that could be 
potential confounding factors. These four features 
were the max length of the ROIs (mm) from the 
baseline DECT images, the max length of the ROIs 
(mm) from the first follow-up CT images, the time 
interval (days) between the baseline CT examination 
and the first follow-up CT examination, and the time 

interval (days) between the baseline CT examination 
and the second follow-up CT examination. The four 
confounding factors were then analyzed 
independently and combined with the radiomics 
features. 

Optimal feature subset and modeling by manual 
segmentation 

The random forest (RF) method was used to 
predict the therapeutic response for its simplicity and 
effectiveness [27]. To select a suitable subset of 
features for classification, we performed the analysis 
in two steps: 1) evaluating the performance of the four 
confounding factors, all 107 delta radiomics features 
and the combination of both subsets; 2) evaluating 
subgroups of the delta radiomics features grouped 
into three categories and the combination of the 
confounding factors and the three new subgroups of 
delta radiomics features. 

Therefore, a total of nine feature subsets were 
constructed, including five single and four 
combination feature subsets. They consisted of the 
subset of confounding factors, all delta radiomics 
features, a combination of confounding factors and all 
delta radiomics features, first-order features, a 
combination of confounding factors and first-order 
features, shape features, a combination of 
confounding factors and shape features, texture 
features and a combination of confounding factors 
and texture features. For simplification, we renamed 
each feature subset as Subset 1 to Subset 9 according 
to the above order (Table S2). 

To explore which feature subset is more effective 
in classification, we perform 10-fold cross-validation 
on the training cohort. Therefore, the training set was 
further divided into ten folds, of which eight were 
used for training in turn, and the other two folds were 
used for validation and testing separately. We 
repeated the 10-fold cross-validation ten times, and 
we recorded the average area under the curve (AUC) 
and accuracy (ACC) and the corresponding standard 
deviation at each time point. Finally, the best CT delta 
radiomics model was chosen for comparison with the 
model developed by semi-automatic segmentation. 

Sensitivity analysis for different chemotherapy 
regimens 

Given the different chemotherapy regimens used 
in this study, the therapeutic effect may have 
nonnegligible variation among the different 
chemotherapy drugs. To verify this influence, we also 
conducted a sensitivity analysis between 
chemotherapy regimens and radiomics features (the 
nine feature subsets described above) in the training 
cohort. The names of feature subsets were appended 
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with an “S” or a “P” for the SOX and PS regimens, 
respectively. For example, Subset 1 for all patients 
was named SSubset 1 for patients treated with the 
SOX regimen (Table S2). However, due to the limited 
size, the analysis for the testing cohort was not 
performed. We selected the two most commonly used 
chemotherapeutic regimens (SOX and PS regimens) in 
our study. There were 14 and 28 patients who 
received the SOX and PS regimens, respectively, 
accounting for nearly 2/3 of the patients (42/66). The 
performance of the delta radiomics model in each 
chemotherapy regimen was evaluated with the 
classification metrics applied above. 

Semi-automatic segmentation using deep 
learning 

Manual segmentation is time-consuming; 
therefore, we developed a deep learning model for 
semi-automatic segmentation of the GC region. The 
model was trained on the training cohort and 
evaluated on the testing cohort. 

To further validate the performance of the 
semi-automatic segmentation and compare with 
manual segmentation, we also recruited a group of 
patients as an independent validation cohort from 
January 2018 to July 2018. Inclusion and exclusion 
criteria were consistent with the Patients section. 
Finally, 30 patients were enrolled (11 responders and 
19 nonresponders). 

V-Net segmentation model 
A volumetric, fully convolutional neural 

network referred to as V-Net [28] was adopted to 
perform segmentation on the 3D image. The V-Net 
architecture is the 3D version of U-Net [29]; 
specifically, it introduces 3D convolutional and 
residual models (Figure S1) in the architecture. The 
entire network consists of a compression path that 
gradually reduces a 256×256×32 input image to an 
8×8×4 representation and a decompression path, then 
gradually upsampled the representation to a 
256×256×32 output while increasing the number of 
channels from 1 to 256 and then decreasing the 
number to 32. 

The different stages of the network were 
operated at different resolutions. Each stage 
comprised one to three convolutional layers, and each 
convolution used 5×5×5 volumetric kernels applied 
with a stride of 1. Along the compression path, 
convolution with 2×2×2 voxel kernels applied with a 
stride of 2 was used at the end of each stage to reduce 
the resolution. Conversely, along the decompression 
path, 2×2×2 deconvolution with a stride of 2 was 
applied to decompress the data to a larger size. The 
features extracted were forwarded from the early 
stages of the left part of the network to the right part 

to improve the quality of the final contour prediction. 
At the end of the network, 1×1×1 convolution, which 
produces an output of the same size as the input, was 
applied to compute the two feature maps, and 
softmax was applied to assign probabilistic 
segmentations of the foreground and background 
regions. In our study, we applied ReLU instead of the 
original PReLu throughout the network. 

Training details for semi-automatic segmentation 
The V-Net deep learning network was trained 

with the training cohort and validated with the test 
cohort. Deep learning algorithms usually require a 
large amount of training data. Because the ground 
truth annotations of medical images need to be 
generated manually by experts, annotated medical 
images are not easily obtained. Therefore, to obtain 
robustness and an increased precision for the test 
dataset, we applied image rotation and warping to 
augment the original training dataset. 

In our study, for each 3D CT image in the 
training data, the rotation angle in the x or y direction 
was randomly selected from {-1, 0, 1} radians, and the 
rotation angle in the z direction was randomly 
selected from [-18, 18]. After augmentation, there 
were a total of 3309 3D CT images in the training data, 
and we further split these training images into a 
training cohort (95%) and a validation cohort (5%). 

Prior to training our model, we applied 
scipy.ndimage.zoom to scale the 512×512×z CT 
images (the whole dataset, including training, 
validation and testing images) to 256×256×z. Voxel 
values out of the range of [-200, 200] were clipped, 
and the remaining values were normalized to [0, 1]. 
For each 3D CT image, a randomly selected, 
continuous 32 layers of images were chosen as a 
training instance for the neural network input. 

Evaluation of the semi-automatic 
segmentation model and the radiomics model 
on the testing cohort and the independent 
validation cohort 

In the testing cohort, the semi-automatic 
segmentation results were compared with the manual 
segmentations, and the performance was evaluated 
with the Dice similarity coefficient. The 
semi-automatic segmentation results were further 
revised manually to form the semi-automatic 
segmentation results. The time consumption for 
annotating the segmentation from scratch based on 
the semi-automatic segmentation results was 
recorded and compared. The indices were further 
validated in the independent validation cohort. 

RF radiomics models for predicting the 
chemotherapeutic response for far-advanced GC were 
built based on all data from the training cohort. 
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Features were extracted from the manual 
segmentations and semi-automatic segmentations. 
The performance of the radiomics models was 
compared between the two segmentation methods on 
both of the testing cohort and the independent 
validation cohort. Due to the randomness property of 
the random forest model, we repeated the whole 
process 10 times to obtain a more solid result. 
Flowchart of this study is shown in Figure 2. 

Statistics 
Statistical analysis was conducted using R 

(Version 3.4.1). Clinical characteristics were analyzed 
according to the distribution of the variable; that is, 
continuous variables are shown as the means or 
medians and compared using independent t tests or 
Wilcoxon rank-sum tests based on their distributions. 
Categorical variables were measured as proportions 
and were compared using chi-squared tests or 
Fisher’s exact test. Significant differences were 
considered at p < 0.05. 

Results 
Clinical characteristics 

The clinical characteristics of the enrolled 
patients are presented in Table 1. Based on the first 
follow-up CT examination, 61 and 25 patients’ 

demonstrated nonresponse and response, 
respectively, compared with the baseline status. Based 
on the second follow-up CT examination, 56 patients 
showed nonresponse, while 30 patients showed 
response when compared with the first follow-up CT. 
No bias was found between these two cohorts in 
terms of treatment response (x2 = 1.174, p = 0.279). Of 
all medical records, only gender was at the borderline 
level of statistical significance in the training cohort 
(x2 = 4.002, p = 0.045). No clinical feature was found to 
be significantly different in the testing cohort. In the 
independent validation cohort (male 20; female 10), 
mean age was 56.3 ± 13.4 years. No difference was 
found in the independent validation cohort for gender 
and age (p = 0.893 and 0.715, respectively). 

Optimal feature subset and modeling by 
manual segmentation 

The performance of the confounding factors 
alone (Subset 1) in predicting the chemotherapeutic 
response had a mean ACC and AUC of 57.4% and 
0.478, respectively. In contrast, the independent delta 
radiomics features (Subset 2) showed better predictive 
value using random forest, with mean ACC and AUC 
values of 72.1% and 0.736, respectively. When 
confounding factors with delta radiomics features 
were incorporated, the performance of Subset 3 
improved (mean ACC and AUC of 73.0% and 0.749, 

 
 

 
Figure 2. The workflow of this study. Abbreviation: CT: computed tomography; GC: gastric cancer; ROC, receiver operating characteristic curve. 
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respectively). When subgroup analysis was 
performed, the best radiomics subset was the 
combination of confounding factors and texture 
features (Subset 9), which was slightly improved 
compared with Subset 3 (mean ACC of 73.8% and 
mean AUC of 0.752). Detailed information is shown in 
Table S3. 

This provided an interesting clue for further 
investigation of the featured characteristics of the 
corresponding specific chemotherapy regimen. 
Sensitivity analysis for the chemotherapeutic 
response showed that the SOX regimen performed the 
best in the training cohort, with the best subset being 
SSubset 9 (mean ACC and AUC of 80.0% and 0.803, 
respectively), which was consistent with the results 
for all patients. Interestingly, the optimal feature 
subset with the best performance for the PS regimen 
was PSubset 3. However, shape features seemed to be 
the most important, as PSubset 6 performed nearly 
the same as the former (mean ACC of 73.9% vs. 73.6% 
and mean AUC of 0.724 vs. 0.727). The results of the 

two regimens for all nine feature subsets are 
presented in Table S4, Table S5 and Figure 3. 

Performance of manual and semi-automatic 
segmentation in the testing cohort and the 
independent validation cohort 

Effectiveness of the semi-automatic segmentation 
compared with manual segmentation in the testing 
cohort and the independent validation cohort 

Compared with manual segmentation, the 
semi-automatic segmentation was significantly more 
time-saving, with average saving-time of 11.2333 ± 
6.3989 minutes and 9.9889 ±5.5086 minutes in the 
testing cohort and the independent validation cohort, 
respectively (both p < 0.05). The average Dice 
similarity coefficient for patients was 0.637 ± 0.213 and 
0.618 ± 0.227 in the testing cohort and the independent 
validation cohort respectively, indicating a moderate 
performance of the semi-automatic segmentation 
(Figure 4 and Figure 5). 

 

 
Figure 3. Receiver operating characteristic curves (ROCs) of nine feature subsets in the training cohorts. (A) showed the performance of nine feature subsets for all patients in 
the training cohort. (B) and (C) showed the performance of nine feature subsets for patients treated with SOX regimen and PS regimen in the training cohort, respectively.  
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Figure 4. Examples of volumes of interest (VOIs) for comparison of manual and semi-automatic segmentation. Panel on the top (A, C, E) showed the reference of manual 
segmentation for three VOIs on axial images and 3D presentation. Panel on the below (B, D, F) showed the corresponding semi-automatic segmentation for each VOI. The VOIs 
from left to right severally presented good, moderate and poor Dice coefficients (0.857, 0.667 and 0.444) of the semi-automatic segmentation. Abbreviation: VOI: volume of 
interest. 

 

Table 1. Clinical characteristics of the training and testing cohorts 

 The training cohort  The testing cohort  
 Response 

group 
(n=21) 

Non-response 
group (n=45) 

p Response 
group 
(n=9) 

Non-response 
group (n=11) 

p 

Gender    
0.045* 

  0.670 

Male 9 (42.3%) 31 (68.9%)  6 (66.7%) 6 (54.5%)  
Female 12 (57.7%) 14 (31.1%)  3 (33.3%) 5 (45.5%)  
Age, y 57.19 ± 

11.63 
59.11 ± 12.72 0.560 55.44 ± 

16.39 
59.00 ± 7.38 0.526 

Stage   0.216   1.000 
Ⅲ 2 (9.5%) 10 (22.2%)  3 (33.3%) 4 (36.4%)  
Ⅳ 19 (90.5%) 35 (77.8%)  6 (66.7%) 7 (63.6%)  
Metastasis   0.454   1.000 
Yes 3 (14.3%) 10 (22.2%)  3 (33.3%) 4 (36.4%)  
No 18 (85.7%) 35 (77.8%)  6 (66.7%) 7 (63.6%)  
Borrmann 
type 

  0.098   1.000 

Type Ⅰ 1 (4.8%) 0 (0.0%)  0 (0.0%) 1 (9.1%)  
Type Ⅱ 2 (9.4%) 1 (2.2%)  0 (0.0%) 0 (0.0%)  
Type Ⅲ 17 (81.0%) 36 (80.0%)  9 (100%) 9 (81.8%)  
Type Ⅳ 1 (4.8%) 8 (17.8%)  0 (0.0%) 1 (9.1%)  
Tumor 
location 

  0.765   0.256 

Upper 2 (9.5%) 6 (13.3%)  1 (11.1%) 1 (9.1%)  
Middle 2 (9.5%) 9 (20.0%)  1 (11.1%) 1 (9.1%)  
Lower 5 (23.8%) 9 (20.0%)  5 (55.6%) 2 (18.2%)  
Diffuse 12 (57.2%) 21 (46.7%)  2 (22.2%) 7 (63.6%)  

 
 

Predictive value of manual and semi-automatic 
segmentation methods for the chemotherapeutic 
response in the testing group  

The combined total subset was considered the 
best feature subset and was used for predicting the 

chemotherapeutic response by both manual and 
semi-automatic segmentation in the testing cohort. 
The predictive value of the manual, combined model 
reached a mean AUC of 0.687 and 0.749 in the testing 
cohort and the independent validation cohort, 
respectively. The performance of the semi-automatic 
delta radiomics model was improved compared with 
manual segmentation, with a mean AUC of 0.728 and 
0.828 in the testing cohort and the independent 
validation cohort, respectively. Detailed information 
is presented in Figure 6. 

Discussion 
In this study, we developed and validated a 

DECT delta radiomics model to predict the treatment 
response at early stages of chemotherapy courses for 
far-advanced GC patients. Our delta radiomics model 
based on semi-automatic segmentation was not only 
more time-efficacy, but also performed better to 
predict the chemotherapeutic response for 
far-advanced GC patients than that of the manual 
segmentation. Proper intervention could be 
introduced to avoid unnecessary treatment or transfer 
to alternative therapeutic strategies using our delta 
radiomics model.  

In 2011, delta radiomics was successfully used to 
predict the response of metastatic renal cell cancer to 
tyrosine kinase inhibitor treatment [30]. Subsequently, 
delta radiomics showed predictive value for the 
chemotherapeutic response in colorectal liver 
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metastases, rectal cancer and soft-tissue sarcoma 
[31-33]. Our study is the first application of delta 
radiomics to predict the chemotherapeutic response 
of GC at succedent instead of current timepoints. 
Studies applying radiomics analysis to predict 

treatment response usually depend on baseline 
images, which may present with patient-specific 
differences and cannot reflect the dynamic changes in 
tumor response to treatment.  

 
 

 
Figure 5. Time efficiency of the semi-automatic segmentation compared with manual segmentation in the testing cohort and the independent validation cohort. (A-B) 
Distribution of time efficiency for all VOIs of the semi-automatic segmentation compared with manual segmentation in the testing cohort presented in the histogram and scatter 
plot. The histogram showed the distribution of saving time. The scatter plot showed time difference of manual segmentation and semi-automatic segmentation for each VOI. 
(C-D) Distribution of time efficiency for all VOIs of the semi-automatic segmentation compared with manual segmentation in the indenpedent validation cohort presented in the 
histogram and scatter plot. Abbreviation: VOI: volume of interest. 
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Figure 6. ROCs of semi-automatic segmentation and manual segmentation using 10-fold cross validation in the testing cohort and the independent validation cohort. (A) ROCs 
of semi-automatic segmentation using 10-fold cross validation in the testing cohort; (B) ROCs of manual segmentation using 10-fold cross validation in the testing cohort; (C) 
ROCs of semi-automatic segmentation using 10-fold cross validation in the independent validation cohort; (D) ROCs of manual segmentation using 10-fold cross validation in the 
independent validation cohort. 

 
In contrast, delta radiomics could potentially 

minimize the baseline variance and reflect the 
dynamic changes of the tumor not only in terms of 
anatomy but also for intratumor heterogeneity. 
However, time intervals and maximum tumor length 
differences between different DECT scans could 
contribute to the variance in tumors among patients. 
Therefore, we independently analyzed time intervals 
and max tumor length to predict the 
chemotherapeutic response, which showed poor 
performance. When combining confounding factors 
and radiomics features for modeling, the combined 
model improved slightly compared with the model 
generated with radiomics features only. The results 
showed limited influence of time intervals and max 
tumor length for treatment response on follow-up. 
Notably, this is also the first delta radiomics model 

using dual-energy CT. Conventional CT, performed 
by single energy, is of limited value in differentiating 
tissues, irrespective of whether they have different 
elemental compositions. DECT, which simultaneously 
acquires dual-energy data, allows for distinguishing 
material-specific attenuation in composition and thus 
has the potential to provide more pathophysiological 
information [14]. In a previous study, we found that 
total iodine uptake has predictive value for 
pathological regression in advanced GC after 
neoadjuvant chemotherapy [34]. In this study, 
pathophysiological information, probably provided 
both by dual-energy CT and delta radiomics, 
contributes to the predictive value for the 
chemotherapeutic response. 

Another important factor determining the 
difference in therapeutic response was the chemo-
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therapeutic regimen. We performed a sensitivity 
analysis between two major chemotherapeutic 
regimens in the training cohort. Intriguingly, 
inconsistency was found for the two regimens. For the 
SOX regimen, the combined texture subset performed 
the best, while the shape subset performed best for the 
PS regimen. The underlying remedies for the SOX and 
PS regimens are oxaliplatin and paclitaxel, 
respectively. Oxaliplatin is a derivative of platinum, 
which is a type of cycle-independent drug that forms 
platinum-DNA adducts by covalently bonding with 
guanine and thus interferes with DNA replication, 
consequently resulting in the apoptosis of 
proliferating cells [35]. The cumulative apoptosis of 
tumor cells may contribute to local necrosis inside 
tumors, and so it is reasonable that texture features 
reflect heterogeneity in this study. In contrast, 
paclitaxel is a well-known antitumor drug that targets 
tubulin. Paclitaxel protects microtubule polymers 
from disassembly by binding to beta-tubulin subunits, 
which are necessary for mitosis [36, 37]. In this way, 
tumor cells are blocked from proliferation via defects 
in cell division. A deceased in the proliferation of 
tumor cells may account for changes in shape instead 
of heterogeneity. 

Delineation of the entire tumor may allow the 
analysis of changes in the spatial variations of tumors 
more accurately than linear measurements [7, 38]. 
However, the poor reproducibility and high labor 
costs from manual segmentation undoubtedly hinder 
the generalization of this method. In this study, we 
developed a semi-automatic segmentation method via 
a modified V-Net CNN deep learning algorithm, 
which yielded moderate reproducibility. Unlike its 
parent algorithm U-Net, another well-recognized 
CNN segmentation model, V-Net was designed 
specifically to delineate 3D regions [28]. To our 
knowledge, no studies have delineated GC on CT 
images using deep learning. Fu et al [39] developed a 
CNN-based method to delineate abdominal organs 
for MRI-guided adaptive radiotherapy, and the Dice 
coefficient for the stomach in the study was 85.0 ± 
3.75. Gibson and colleagues obtained a Dice 
coefficient of 0.90 for the stomach on abdominal CT 
with dense V-networks [40]. A recent study used deep 
learning-based reiterative learning to perform a 
weakly supervised segmentation of GC applied to 
partially labelled pathological images, which yielded 
a union coefficient of 0.883 and a mean accuracy of 
91.09% [20]. In our study, the performance of our 
proposed semi-automatic method was moderate, with 
a mean Dice coefficient of 0.637 and 0.618 in the 
testing cohort and the independent validation cohort, 
respectively. For prudent reasons, we named our 
segmentation method semi-automatic instead of 

automatic, because more GC images on DECT are 
needed to improve the performance. Apart from the 
limited dataset, other possible reasons for the 
moderate Dice coefficient were the fickle appearance 
of GC tumors, especially after chemotherapy and in 
our experience, the relatively small lesions, which 
contributed to unsatisfactory recognition by our 
method. However, after manual calibration, our 
proposed semi-automatic segmentation was 
significantly less time-consuming compared with 
manual segmentation, saving more than 10 minutes 
for each VOI on average. Our semi-automatic 
segmentation is more effective than manual 
segmentation and has potential for clinical use in GC. 

There are several limitations in our study. First, 
the sample size was small, both for the radiomics 
model and the deep learning-based semi-automatic 
segmentation. To minimize this deficiency, we 
adopted 10 rounds of 10-fold cross-validation, which 
was rigorous and not arbitrary to guarantee the 
reproducibility of our study. Furthermore, to train our 
V-net deep learning algorithm for volumetric 
segmentation, we augmented the original training 
dataset by rotating and warping the images. Second, 
this is a retrospective study from a single tertiary 
hospital, which may inevitably lead to selective bias 
for the patients. The results need to be validated by 
prospective and external cohorts. Third, due to 
performing the study during the early stage of the 
chemotherapy courses, there were no patients 
presenting with disease progression when evaluating 
the response, which may weaken the clinical use of 
our CT delta radiomics model for proper 
interventions. Last, although we performed a 
sensitivity analysis for two chemotherapy regimens 
that were most commonly used and the results 
suggested limited influence of the different drugs on 
the variance of treatment response, due to limited 
sample size, the performance of each chemotherapy 
regimen needs further elucidation. 

Conclusion  
In conclusion, our proposed delta radiomics 

model serves as a promising method for determining 
biomarkers to predict the response during 
chemotherapy courses for far-advanced GC, 
providing potential and alternative interferences for 
further treatments. Moreover, the designed 
semi-automatic segmentation based on deep learning 
for tumor volume shows the potential for profound 
clinical use with increased reproducibility and 
decreased labor costs. 
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