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Abstract 

Background: Ovarian cancer (OC) is the most lethal malignancy in the female reproductive system. 
Growing evidences demonstrates that competing endogenous RNA (ceRNA) network play crucial roles 
in the occurrence and progression of tumors. Therefore, we aimed to explore and identify novel 
mRNA-miRNA-lncRNA ceRNA networks associated with prognosis of OC. 
Methods: The differentially expressed gene (DEGs) of four expression profiles datasets (GSE5438, 
GSE40595, GSE38666 and GSE26712) were collected from Gene Expression Omnibus (GEO) database 
and analyzed with NetworkAnalyst. Intersection of DEGs were further employed for Gene Ontology 
(GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis. Protein–protein 
interaction (PPI) network and hub genes of DEGs were also identified. The expression levels and survival 
analysis of the hub genes in OC and their upstream miRNAs and lncRNAs were performed by various 
bioinformatics databases. More importantly, ceRNA networks were constructed based on 
mRNA-miRNA-lncRNA in OC. 
Results: A total of 178 DEGs including 38 upregulated and 140 downregulated genes from intersected 
DEGs of four expression profiles were identified in OC. Functional enrichment analysis suggested that 
the commonly DEGs were enriched in regulating enzyme inhibitor activity, glycosaminoglycan and G 
protein-coupled receptor binding, cell morphogenesis, and involved in pathways including metabolic 
process, proteoglycans in cancer. Top 10 hub genes with higher connectivity degree were selected for 
subsequent expression and prognosis analysis. After take expression levels and prognostic roles of hub 
genes and their upstream miRNAs and lncRNAs in OC into consideration, 2 mRNAs (TACC3 and 
CXCR4), 2 miRNAs (hsa-miR-425-5p and hsa-miR-146a-5p) and 3 lncRNAs (FUT8-AS1, LINC00665 and 
LINC01535) were significantly associated with the poor prognosis of OC. The mRNA-miRNA-lncRNA 
networks (TACC3-hsa-miR-425-5p-FUT8-AS1 and CXCR4-hsa-miR-146a-5p-LINC00665/LINC01535) 
were eventually constructed in OC based on ceRNA mechanism. 
Conclusion: We successfully constructed novel ceRNA network associated with the prognosis of 
ovarian cancer, which may provide a new strategy for early diagnosis and therapeutic intervention of OC. 
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Introduction 
Ovarian cancer is one of the most common 

malignant tumors in gynecology worldwide [1], 
which causes the highest mortality and poor 
prognosis due to the low diagnostic accuracy in the 
early stage and extensive metastasis at an advanced 

stage [2]. Although the great advancements in 
therapeutic strategies of ovarian cancer has been 
achieved including surgery, chemotherapy and 
radiotherapy, the 5-year survival rate of ovarian 
cancer patients was still less than 45% [3, 4]. Effective 
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biomarkers for early diagnosis and prognosis 
evaluation have not been fully explored and clarified. 
Therefore, a better understanding of molecular 
mechanisms that associated with the prognosis of 
ovarian cancer may contribute to the development of 
advanced diagnostic and therapeutic technologies to 
improve the survival quality of patients with ovarian 
cancer. 

Accumulating evidences have demonstrated that 
noncoding ribonucleic acids (ncRNA) play key roles 
in the occurrence and development of multiple 
tumors, including microRNAs (miRNAs), long non-
coding RNA (lncRNAs) and circular RNA (circRNA) 

[5]. Based on different transcripts in length with no or 
limited protein-coding ability, both miRNAs and 
lncRNAs could not only participate in a variety of 
biological processes and molecular mechanism of 
tumors, such as regulating gene transcription and 
post-transcriptional translation [6], epithelial-to- 
mesenchymal transition [7] and signaling pathways 
[8], but exert profound influence on early diagnosis, 
prognosis evaluation and therapeutic targets of 
different malignancies including ovarian cancer [9]. 
Recent studies have suggested that lncRNAs, based 
on the competitive endogenous RNA (ceRNA) 
mechanism, can competitively bind to miRNAs acting 
as sponge of miRNAs to further relieve the 
suppression of miRNAs on their target genes [10]. The 
aberrant regulation of mRNA-miRNA-lncRNA 
ceRNA network play key role in tumorigenesis and 
progression of multiple cancers, such as gastric cancer 
[11], breast cancer [12] and ovarian cancer [13]. 
However, the underlying mechanisms of mRNA- 
miRNA-lncRNA ceRNA regulatory networks, 
especially associated with prognosis of ovarian 
cancer, are not fully clarified. 

In this present study, we collected four original 
expression profiles by array (GSE5438, GSE40595, 
GSE38666 and GSE26712) of ovarian cancer from the 
Gene Expression Omnibus (GEO) database. 
Differentially expressed genes (DEGs) between 
ovarian cancer and normal samples were further 
identified with various bioinformatics approaches. 
Additionally, the intersection of DEGs of these four 
datasets were further employed for functional 
enrichment analysis, protein-protein interaction (PPI) 
network construction and top-ranked hub genes 
identification with online tools. After comprehensive 
evaluation of expression levels and prognostic roles of 
hub genes in ovarian cancer, 4 upregulated DEGs and 
1 downregulated DEGs were eventually identified for 
predicting their upstream miRNAs with the 
miRTarBase online database. Furthermore, the 
upstream miRNAs which analyzed by expression 
levels and prognostic values were chosen for 

predicting the upstream lncRNAs by miRNet 
database. Similarly, the expression levels and 
prognostic values of these upstream lncRNAs were 
also analyzed with online database. As a consequence, 
an mRNA-miRNA-lncRNA regulatory network 
associated with the prognosis of patients with ovarian 
cancer was successfully constructed. This study may 
provide new insights into exploring and identifying 
novel diagnostic biomarkers or potential targets for 
therapeutic intervention of ovarian cancer. 

Materials and Methods 
Collection of datasets 

Four expression profiles by array (GSE54388, 
GSE40595, GSE38666 and GSE26712) of ovarian 
cancer were collected from the Gene Expression 
Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo/) 
online database [14]. According to publication time 
and the sample size, only datasets being published the 
past 10 years and including at least 10 epithelial 
ovarian cancer samples were enrolled in current 
research. Datasets with only blood samples or cell 
lines of ovarian cancer were excluded, and patients 
with chemotherapy, radiotherapy, hormone therapy 
before surgery and lack of histopathological diagnosis 
were not implemented in this study. The datasets 
from GSE54388 [15], GSE40595 [16] and GSE38666 [17] 
were all based on the GPL570 platform (HG-U133_ 
Plus_2; Affymetrix Human Genome U133 Plus 2.0 
Array). GSE54388 dataset covered 16 ovarian cancer 
samples and 6 normal ovarian epithelium samples. 
GSE40595 dataset contained 32 ovarian epithelial 
tumor samples and 6 normal ovarian epithelium 
samples. GSE38666 dataset contained 18 ovarian 
cancer patients and 12 ovarian surface epthelium 
samples. GSE26712 [18], which was based on the 
GPL96 ([HG-U133A] Affymetrix Human Genome 
U133A Array), contained 185 primary ovarian tumors 
and 10 normal ovarian epithelium samples. We 
further downloaded the platform and series matrix 
files of above four datasets. 

Identification of differentially expressed genes 
(DEGs) 

NetworkAnalyst 3.0 (https://www. 
networkanalyst.ca/) [19] is a user-friendly 
bioinformatics tools that helps to perform 
comprehensive gene expression analysis, meta- 
analysis and network analysis, which accepts five 
types of data inputs including one or multiple gene 
lists, a single or multiple gene expression data, raw 
RNAseq reads as well as series matrix files. This 
unique online tool integrates cell or tissue-specific 
protein-protein interactions (PPI), TF-gene interaction 
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networks, miRNA-gene interactions, protein-drug 
interactions and protein-chemical interactions, and 
the processes of which contain data update, data 
processing and analysis, integrated knowledgebase 
and interactive visual analysis. DEGs can be identified 
with statistical methods such as limma, edgeR and 
DESeq2. In this study, NetworkAnalyst 3.0 was 
employed to normalize the data and identify DEGs in 
each dataset, the cut-off criteria were set as follows: 
adjusted P < 0.05 and log2 fold change (log2 FC) ≥1. 

Functional enrichment analysis 
All the DEGs of the four datasets identified by 

NetworkAnalyst 3.0 were further divided into 
upregulated DEGs and downregulated DEGs, 
respectively. The commonly DEGs in all of the various 
datasets were subjected to subsequent analysis. An 
online tool-Draw Venn Diagram (http:// 
bioinformatics.psb.ugent.be/webtools/Venn/) was 
employed to explore the intersection genes of the four 
datasets by venn diagrams. To further explore the 
potential functions and mechanisms of above 
commonly DEGs in ovarian cancer, Metascape 
(http://metascape.org) [20] was used to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis of all the commonly DEGs. The thresholds: P 
<0.05, a minimum count of 3, enrichment factor >1.5 
were considered to be statistically significant. 

Construction and analysis of PPI network and 
identification of hub genes 

To explore the hub genes correlated with ovarian 
cancer, PPI networks of commonly DEGs identified 
(upregulated and downregulated DEGs) were 
constructed separately with the Search Tool for the 
Retrieval of Interacting Genes (STRING) (http:// 
string-db.org) [21], which is a flexible and 
user-friendly platform that facilitates protein-protein 
interaction networks. A confidence score ≥ 0.4 was set 
as the cut-off criteria to construct PPI network. 
Subsequently, the hub genes of the PPI network were 
identified by the CytoHubba, a plug in Cytoscape 
software (v3.7.1) [22]. Based on the degree of 
connectivity of DEGs, and the top 20 hub genes were 
exhibited separately with Cytoscape, and the top 10 
hub genes were identified separately as hub genes for 
further analysis and validation. 

Validation of gene expression and prognostic 
values analyzed with GEPIA, HPA and Kaplan- 
Meier plotter 

The Gene Expression Profiling Interactive 
Analysis (GEPIA) (http://gepia.cancer-pku.cn/) [23] 
is an effective web interface that covers gene 

expression data from 9736 tumor samples and 8587 
normal samples. The web-based tool provides various 
analysis modules such as analyzing differential gene 
expression, evaluating survival and prognosis and 
correlation analysis. In this research, GEPIA database 
was utilized to further explore the expression of the 
top 10 hub genes identified in DEGs. One-way 
ANOVA was used to evaluate the differences of hub 
genes between tumor samples and normal samples, 
and the filter criteria were set as follows: P-value < 
0.05, |Log2FC| >2. Human Protein Atlas (HPA) 
(https://www.proteinatlas.org/) [24] could provide 
the distribution, expression and prognosis of 24000 
human proteins in 20 tumors tissues, 48 normal 
tissues, 47 cell lines and 12 blood cells validated by 
immunology method. In this study, HPA database 
was used to investigate the staining of hub proteins in 
ovarian cancer and normal tissues with 
immunohistochemistry. The Kaplan–Meier (KM) 
Plotter (http://kmplot.com) [25] is an online tool for 
evaluating the prognosis of patients with tumors 
including 2190 ovarian cancer samples. The hazard 
ratio (HR) at a 95% confidence interval and log-rank 
P-values were also explored online. The filter 
conditions were as follows: cancer: ovarian cancer; 
survival: progression free survival (PFS); follow-up 
threshold: 120 months, log-rank P value < 0.05 was 
regarded as statistically significant difference. 

Identification of upstream miRNA 
miRTarBase (http://mirtarbase.mbc.nctu.edu. 

tw/php/index.php) [26], a newly web-based 
database, mainly contains miRNA-target interactions 
verified by different experiments and provides 
powerful evidences with literatures or assays. In this 
study, the upstream miRNAs of the hub genes were 
investigated by miRTarBase, and only those verified 
by at least one powerful experiment were identified as 
the potential miRNAs interactions (reporter assay, 
Western blot or quantitative reverse transcription 
PCR) and then chosen for subsequent analysis. 
dbDEMC (database of Differentially Expressed 
MiRNAs in human Cancers) (https://www.picb.ac. 
cn/dbDEMC/) [27] is an integrated database that 
designed to explore differentially expressed 
microRNAs (miRNAs) in human cancers detected by 
high-throughput methods, including a total of 209 
newly published data sets collected from Gene 
Expression Omnibus (GEO) and The Cancer Genome 
Atlas (TCGA). We utilized this database to explore the 
expression of upstream miRNAs in ovarian cancer, 
and the prognostic values of miRNAs were detected 
by the Kaplan–Meier Plotter. 
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Identification of upstream lncRNA 
miRNet (https://www.mirnet.ca/) [28] is a 

user-friendly and online tool which provides 
miRNA-centric multiplex networks integrating key 
molecules of interest, and contains comprehensive 
interaction between miRNA and its targeted lncRNA. 
In this study, miRNet was employed to detect the 
potential upstream lncRNAs correlated with key 
miRNA, and the selection criteria were set as follows: 
Organism: Homo sapies, Target type: lncRNAs. 
What’s more, the expression levels and prognostic 
values of these potential lncRNAs were further 
evaluated by GEPIA database and Kaplan–Meier 
Plotter. The lncRNAs conformed to the ceRNA 
hypothesis were identified as key lncRNA. 

Construction of the mRNA–miRNA- lncRNA 
regulatory network 

LncLocator (https://LncLocatorwww.csbio.sjtu. 
edu.cn/bioinf/lncLocator/) [29] is a reliable online 
platform to analyze the subcellular localization of 
lncRNAs, which includes 5 subcellular localizations of 
lncRNAs and their distribution proportion, such as 
cytoplasm, nucleus, ribosome, cytosol and exosome. 
LNCipedia databases (https://lncipedia.org) [30] is a 
freely and effectively annotated database of lncRNAs 
transcriptional sequences and structures, which 
provides insights into functions of over 1500 human 
lncRNAs, including evaluating coding ability, 
predicting open reading frame and secondary 
structure. In this study, sequences information of 
lncRNAs were explored by LNCipedia databases, and 
the cellular localizations of lncRNAs were then 
detected by LncLocator. Cytoscape is a very powerful 
and effective software for visualizing and analyzing 
network data, which assists users to achieve many 
complex biological networks [22]. Node and edge are 
the two core elements in the network diagram 
constructed by Cytoscape. Cytoscape was further 
employed to construct and visualize competing 
endogenous RNA (ceRNA) network (lncRNA- 
miRNA-mRNA), including differentially expressed 
genes, differentially expressed miRNAs, and 
differentially expressed lncRNAs. 

Results 
Identification of significant DEGs in ovarian 
cancer from GEO database 

To explore the potential roles of molecular 
associated with the tumorigenesis, development and 
prognosis of ovarian cancer, we firstly identified 
DEGs in four expression profiles (Table 1) 
downloaded from GEO with NetworkAnalyst. 
According to the pre-defined cut-off criteria (adjusted 

P<0.05 and |log2 FC| >1), as shown in the heatmaps 
and volcano plots, a total of 1420 DEGs (756 
upregulated genes and 664 downregulated genes) 
were identified between ovarian cancer samples and 
normal samples from GSE54388 dataset (Figure 1A 
and Figure 1E). In GSE40595 dataset, a whole of 3101 
DEGs (936 upregulated genes and 2165 
downregulated genes) were screened out in ovarian 
cancer samples compared with normal samples 
(Figure 1B and Figure 1F). In GSE38666 dataset, a total 
of 3243 DEGs (1018 upregulated genes and 2225 
downregulated genes) were identified in ovarian 
cancer samples compared with normal samples 
(Figure 1C and Figure 1G). In GSE26712 dataset, a 
total of 1200 DEGs (487 upregulated genes and 713 
downregulated genes) were detected in ovarian 
cancer tissues compared with normal samples (Figure 
1D and Figure 1H). The clinical characteristics of all 
patients with ovarian cancer in GSE38666 and 
GSE26712 were displayed in Supplementary Table S1 
and Table S2, and detailed clinic parameters of 
enrolled patients in GSE54388 and GSE40595 were not 
provided in the original researches. 

 

Table 1. Details of the four datasets from GEO 

Dataset Platform Epithelial ovarian 
cancer 

Normal Reference 

GSE54388 GPL570 16 6 Yeung TL et al. (2017) 
GSE40595 GPL570 32 6 Yeung TL et al. (2015) 
GSE38666 GPL570 18 12 Lili LN et al. (2013) 
GSE26712 GPL96  185 10 Bonome T et al. (2018) 

 

Identification of DEGs in ovarian cancer 
shared by four GEO datasets and functional 
analysis for DEGs 

We further performed the overlapping analysis 
of the upregulated or downregulated DEGs in four 
datasets separately with a total of 178 DEGs, 
including 38 upregulated (Figure 2A) and 140 
downregulated genes (Figure 2B) were considered as 
commonly dysregulated genes in four GEO 
expression profiles shown by the Venn diagram. The 
result of detailed DEGs were shown in 
Supplementary Table S3 and used to further analysis. 
To investigate the potential functions and 
mechanisms of identified intersected DEGs in the 
development of ovarian cancer, GO and KEGG 
pathway enrichment analysis of intersected DEGs 
(including 38 up-regulated and 140 down-regulated 
genes) were explored by Metascape. The results of GO 
enrichment analysis showed that the intersected 
DEGs were mainly enriched in regulating enzyme 
inhibitor activity, retinal dehydrogenase activity, 
glycosaminoglycan binding and G protein-coupled 
receptor binding (Figure 2C and Supplementary Table 
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S4). The biological processes of intersected DEGs were 
involved in response to steroid hormone, hormone 
metabolic process, regulation of actin filament-based 
process and cell morphogenesis (Figure 2C and 
Supplementary Table S5). The intersected DEGs were 
mainly focused on extracellular matrix, blood 
microparticle, lateral plasma membrane, basolateral 

plasma membrane (Figure 2C and Supplementary 
Table S6). KEGG enrichment analysis revealed that 
these intersected DEGs could participate in signaling 
pathways such as retinol metabolism, proteoglycans 
in cancer, glycine, serine and threonine metabolism 
(Figure 2C and Supplementary Table S7). 
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Figure 1. Identification of differentially expressed genes (DEGs) in ovarian cancer from GEO datasets. (A–D) The heatmap of DEGs (Top 250) in GSE54388 (A), 
GSE40595 (B), GSE38666 (C) and GSE26712 (D) datasets shown by NetworkAnalyst. Red: the upregulated genes; green: the downregulated genes. (E-H) The volcano plot of 
DEGs in GSE54388 (E), GSE40595 (F), GSE38666 (G) and GSE26712 (H) datasets shown by NetworkAnalyst. Red spots: the upregulated genes; blue plots: the downregulated 
genes. DEGs, differentially expressed genes. 

 

PPI network construction and identification of 
hub genes 

In order to further explore the protein–protein 
interaction of the identified DEGs, the STRING online 
tool was employed to investigate the relationship 
among the 38 upregulated DEGs and 140 
downregulated DEGs in the intersection of four 
datasets, and all the data were further extracted and 
visualized by PPI networks constructed with 
Cytoscape software. The result showed complicated 
interactions among these intersected genes (Figure 
3A-B). Subsequently, the top 20 upregulated and 
downregulated hub genes shared by four datasets 
were screened out and visualized with CytoHubba 
plug in Cytoscape software (Figure 3C-D). What’s 
more, the top ten upregulated DEGs (UBE2C, CDC20, 
BIRC5, RNASEH2A, TK1, TACC3, CXCR4, SDC1, 
RNASEH2B and RNASEH2C) (Table 2) and top ten 
downregulated DEGs (KDR, HSD17B6, NANOG, 
AOX1, CYP3A5, ALDH1A1, ADH1B, MAOB, 
ALDH1A2 and FGF13) (Table 2) were regarded as 
hub genes in ovarian cancer and selected for the 

following investigation. 
 

Table 2. Top 20 upregulated and downregulated DEGs in 
network ranked by connectivity degree with Cytoscape software 

Upregulated DEGs  Downregulated DEGs  
Rank Name Score Rank Name Score 
1 UBE2C 32 1 KDR 11 
1 CDC20 32 2 HSD17B6 7 
3 BIRC5 30 3 NANOG 6 
4 RNASEH2A 26 3 AOX1 6 
5 TK1 24 3 CYP3A5 6 
6 TACC3 6 3 ALDH1A1 6 
7 CXCR4 2 7 ADH1B 5 
7 SDC1 2 7 MAOB 5 
7 RNASEH2B 2 7 ALDH1A2 5 
7 RNASEH2C 2 10 FGF13 4 
7 ANAPC11 2 10 ANXA5 4 
12 FXYD3 1 10 HSD17B2 4 
12 S100A14 1 10 NR3C2 4 
12 KLK8 1 10 ANXA1 4 
12 DEFB1 1 10 ADRA2A 4 
12 SST 1 16 SCG5 3 
12 LCN2 1 16 S100A10 3 
12 PTX3 1 16 CPE 3 
12 APOA1 1 16 RTN1 3 
12 SCGB2A1 1 16 GFPT2 3 
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Figure 2. Identification of DEGs between ovarian cancer and normal samples shared by four GEO datasets and functional analysis of the intersected 
DEGs with Metascape. (A-B) The intersection of upregulated (A) and downregulated (B) DEGs in four GEO expression profiles with venn diagrams. (C) Significant enrichment 
analysis of GO and KEGG pathways of intersected DEGs colored by P-value with bar graph with Metascape. DEG: Differentially expressed gene; KEGG: Kyoto Encyclopedia of 
Genes and Genome. 
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Figure 3. Identification of hub genes in ovarian cancer with Cytoscape software. (A-B) PPI networks of upregulated (A) and downregulated (B) DEGs constructed by 
Cytoscape software, respectively. (C-D) The significantly upregulated genes (C) and downregulated genes (D) (top 20 hub genes) shown by PPI network, respectively. 
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Figure 4. Expression levels of hub genes in patients with ovarian cancer validated with GEPIA. (A-G) The expression levels of upregulated hub genes UBE2C (A), 
CDC20 (B), BIRC5 (C), TK1 (D), TACC3 (E), CXCR4 (F) and SDC1 (G) in ovarian cancer compared with normal tissues (all P<0.05). (H-L) The expression levels of 
downregulated hub genes AOX1 (H), ALDH1A1 (I), ADH1B (J), MAOB (K) and ALDH1A2 (L) in ovarian cancer compared with normal tissues by GEPIA (all P<0.05). TPM: 
Transcripts per Million. 

 

Validation of gene expression of hub genes and 
survival analysis 

The expression levels of top 10 upregulated and 
downregulated hub genes were validated by the 
GEPIA database (Figure 4) and the survival analysis 
of those hub genes for progression free survival (PFS) 
in patients with ovarian cancer were explored by 
online tool Kaplan–Meier plotter (Figure 5). the result 
showed that UBE2C (Figure 4A), CDC20 (Figure 4B), 
BIRC5 (Figure 4C), TK1 (Figure 4D), TACC3 (Figure 

4E), CXCR4 (Figure 4F) and SDC1 (Figure 4G) were 
upregulated in ovarian cancer compared with normal 
group (all P<0.05), and there were no significant 
differences in the expression of RNASEH2A, 
RNASEH2B and RNASEH2C between ovarian cancer 
samples and normal samples (Supplementary Figure 
S1A-C). For the downregulated hub genes, the 
expression of AOX1 (Figure 4H), ALDH1A1 (Figure 
4I), ADH1B (Figure 4J), MAOB (Figure 4K) and 
ALDH1A2 (Figure 4L) were significantly suppressed 
in ovarian cancer compared with normal samples, 
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and there were no significant differences in the 
expression of KDR, HSD17B6, MANOG, CYP3A5 and 
FGF13 between ovarian cancer samples and normal 
samples (Supplementary Figure S1D-H). After 
validation of gene expression and evaluation of 
prognostic values of hub genes, only high expression 
of UBE2C (P=0.045, HR=1.15 [1-1.32], Figure 5A), TK1 
(P=0.044, HR=1.25 [1.01-1.54], Figure 5D), TACC3 
(P=0.0054, HR=1.23 [1.06-1.43], Figure 5E) and CXCR4 
(P=0.022, HR=1.17 [1.02-1.34], Figure 5F) were 
significantly correlated with poor PFS of patients with 
ovarian cancer. While for the downregulated group, 
only low expression level of MAOB (P=0.0054, 
HR=0.83 [0.73-0.95], Figure 5I) was associated with 
poor PFS in patients with ovarian cancer. However, 
the expression of CDC20, SDC1 and ALDH1A1 were 
not significantly correlated with PFS of ovarian cancer 
patients (all P>0.05) (Supplementary Figure S2A-C). 
Therefore, the 5 key genes (UBE2C, TK1, TACC3, 
CXCR4 and MAOB) were considered for further 
analysis. 

Detection and validation of upstream miRNAs 
of the 5 key genes in ovarian cancer 

To explore the upstream miRNAs of those 5 hub 
genes, miRTarBase were employed to predict the 
targeted miRNAs of the candidate genes. Based on the 
filter criteria: only miRNAs verified by at least one 
powerful experiment were identified as the potential 
miRNAs interactions (reporter assay, Western blot or 
quantitative reverse transcription PCR), and a total of 
20 upstream miRNAs were eventually identified to be 
correlated with 3 upregulated hub genes (UBEC2, 
TACC3 and CXCR4) according to the powerful 
evidence (Table 3), the upstream miRNAs of TK1 and 
MAOB were not detected with miRTarBase. Based on 
the ceRNA hypothesis, the expression of upstream 
miRNA should be negatively correlated with its target 
gene, we further evaluated the expression levels and 
the prognostic values of upstream miRNAs with 
dbDEMC2 and Kaplan – Meier plotter. The result 
showed that only downregulation of hsa-miR-425-5p 
(the upstream miRNA of TACC3) (P=0.00019, 
HR=0.64 [0.51-0.81]), hsa-miR-146a-5p (P=0.0038, 
HR=0.72 [0.57-0.9]) and hsa-miR-150-5p (P=0.00049, 
HR=0.65 [0.51-0.83]) (the upstream miRNA of CXCR4) 
were correlated with poor overall survival (OS) of 
patients with ovarian cancer (Figure 6B-D, 
Supplementary Table S8). The prognosis analysis of 
other miRNAs was shown in Figure 6, and the three 
miRNAs (hsa-miR-425-5p, hsa-miR-146a-5p and hsa- 
miR-150-5p) were regarded as key miRNAs for 
subsequent exploration. 

Table 3. Identification of upstream miRNA of the 5 hub genes in 
ovarian cancer with miRTarBase 

mRNA miRNA 
UBE2C hsa-miR-20a-5p 
 hsa-miR-17-5p 
 hsa-miR-631 
TK1 - 
TACC3 hsa-miR-24-3p 
 hsa-miR-152-3p 
 hsa-miR-425-5p 
CXCR4 hsa-miR-146a-5p 
 hsa-miR-146a-3p 
 hsa-miR-224-5p 
 hsa-miR-150-5p 
 hsa-miR-139-5p 
 hsa-miR-126-3p 
 hsa-miR-9-5p 
 hsa-miR-133b 
 hsa-miR-494-3p 
 hsa-miR-494-5p 
 hsa-miR-622 
 hsa-miR-204-5p 
 hsa-miR-663a 
 hsa-miR-335-5p 
MAOB - 

 
 

Identification and validation of key upstream 
lncRNAs 

To identify upstream lncRNAs potential binding 
to the three key miRNAs (hsa-miR-425-5p, hsa-miR- 
146a-5p and hsa-miR-150-5p), an online database 
miRNet was used to predict upstream lncRNA. The 
research showed that a total of 139 lncRNAs were 
detected in the database for three downregulated 
miRNAs (Supplementary Table S9). Based on the 
ceRNA hypothesis, lncRNAs should negatively 
regulate miRNAs and positively regulated mRNAs. 
Furthermore, the expression levels of these upstream 
lncRNAs were detected by GEPIA, and the study 
demonstrated that only FUT8-AS1, CASC9, 
LINC00665, LINC01535, PART1 and LINC00511 were 
upregulated in ovarian cancer compared with normal 
samples (Figure 7A). Survival analysis showed that 
high expression of FUT8-AS1, LINC00665 and 
LINC01535 were significantly correlated with poor OS 
of patients with ovarian cancer (Figure 7B), CASC9 
and LINC00511 were not detected in the Kaplan–
Meier plotter database. We further investigated the 
correlation between lncRNAs and their binding gens 
with GEPIA, showing that FUT8-AS1 was positively 
correlated with TACC3 (P=4.9e-24, R=0.43), both 
LINC00665 (P=4.2e-25, R=0.43) and LINC01535 
(P=3.6e-15, R=0.34) were positively correlated with 
CXCR4 (Figure 7C). As a consequence, FUT8-AS1, 
LINC00665 and LINC01535 were identified as key 
upstream lncRNAs of the ceRNA network in ovarian 
cancer. 
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Figure 5. Prognostic values of hub genes in ovarian cancer analyzed by using the Kaplan–Meier plotter. (A-F) Relationship between UBE2C (A), BIRC5 (B), 
RNASEH2A (C), TK1 (D), TACC3 (E), CXCR4 (F) and PFS of patients with ovarian cancer. (G-J) Relationship between AOX1 (G), ADH1B (H), MAOB (I), ALDH1A2 (J) and PFS 
of patients with ovarian cancer by Kaplan–Meier plotter. PFS: progression free survival. 

 

Construction of the lncRNA-miRNA-mRNA 
regulatory networks in ovarian cancer 

The cellular localization of lncRNA exerts 
profound influence on their molecular functions and 
mechanisms, we further inverstigated the subcellular 
localizations of FUT8-AS1, LINC00665 and 
LINC01535 with lncLocator. The results displayed 
that FUT8-AS1 and LINC00665 were mainly located 
in cytosol (score: 0.59 and 0.73, respectively) (Figure 
8A-B), LINC01535 was mainly located in cytoplasm 
and cytosol (score: 0.56 and 0.33, respectively) (Figure 
8C), which provided trustworthy evidence that above 
three lncRNAs may contribute to biological functions 
and mechanisms through the ceRNA network. 
According to all the prediction and validation, as 
shown in Figure 8D, two mRNA–miRNA-lncRNA 
regulatory networks (TACC3-hsa-miR-425-5p-FUT8- 
AS1 and CXCR4-hsa-miR-146a-5p- LINC00665/ 
LINC01535) including 2 mRNA (TACC3 and CXCR4), 
2 miRNAs (hsa-miR-425-5p, hsa-miR-146a-5p) and 3 

lncRNAs (FUT8-AS1, LINC00665 and LINC01535) 
were eventually constructed and visualized by the 
Cytoscape software, and each component in the 
ceRNA network was significantly correlated with the 
poor prognosis of patient s with ovarian cancer. 

We further verified the expression of TACC3 and 
CXCR4 protein in ovarian cancer tissues and normal 
tissues stained by immunohistochemistry with HPA. 
The results showed that TACC3 protein was mainly 
located to the cell membrane and cytoplasm, and the 
level of TACC3 proteins were significantly higher in 
ovarian cancer tissues than those in normal tissues 
(Supplementary Figure S3). The immunohisto-
chemical staining of CACR4 protein was not detected 
in HPA. 

Discussion 
A variety of complex molecular mechanisms are 

involved in the tumorigenesis and progression of 
ovarian cancer, such as abnormal regulation of genes 
transcription and post-transcription, dysregulation of 
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molecular regulatory network and aberrant activation 
of signal transduction. The characteristic of tumor 
markers and mutual regulatory molecules, especially 
the ceRNA regulatory network [31], are of great 
significance for evaluating the prognosis of ovarian 
cancer. Therefore, it is meaningful to screen effective 
tumor biomarkers and their potential regulatory 
mechanisms for early diagnosis and prognosis 
prediction of ovarian cancer. 

In the present study, based on GEO database and 

bioinformatics online tools, we first identified a total 
of 178 DEGs (38 upregulated and 140 downregulated 
DGEs) in ovarian cancer and normal samples that 
were shared by four expression profiles datasets 
(GSE5438, GSE40595, GSE38666 and GSE26712). Then 
GO and KEGG enrichment analysis of 178 intersected 
DEGs were explored with Metascape, the GO 
enrichment analysis showed that these DEGs were 
mainly located in extracellular matrix and plasma 
membrane, and involved in biological functions such 

 

 
Figure 6. The prognostic values of upstream downregulated miRNAs in patients with ovarian cancer. (A-I) Relationship between hsa-miR-631 (A), hsa-miR-425 
(B), hsa-miR-146a (C), hsa-miR-150 (D), hsa-miR-139 (E), hsa-miR-133b (F), hsa-miR-494 (G), hsa-miR-622(H), hsa-miR-663a (I) and OS of patients with ovarian cancer by 
Kaplan–Meier plotter. OS: overall survival. 
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as regulating enzyme inhibitor activity, 
glycosaminoglycan and G protein-coupled receptor 
binding. KEGG pathway enrichment analysis 
suggested that DEGs were significantly enriched in 
signaling pathways such as energy metabolism, 
proteoglycans in cancer. The above biological 
behavior and signaling pathways played crucial role 
in the progression and prognosis of ovarian cancer 
[32]. Therefore, we speculated that these commonly 
DEGs can affect the occurrence and biological 
behavior of ovarian cancer through above signaling 
pathways. 

In order to identify the hub genes, two separate 
PPI networks were investigated with STRING 
database, and the hub genes were filtered out based 
on the connectivity degree calculated by Cytoscape 
software. The top ten upregulated DEGs and top ten 
downregulated DEGs were further employed for 
expression validation and survival evaluation. Only 

high expression of UBE2C, TK1, TACC3 and CXCR4 
and low expression of MAOB were proved to be 
associated with poor prognosis of patients with 
ovarian cancer, suggesting the five genes were 
considered to be the key genes in ovarian cancer. 
Numerous studies have shown that UBE2C 
overexpression was correlated with poor prognosis 
and regulated the malignant biological process of 
various tumors, including endometrial cancer, breast 
cancer and ovarian cancer [33, 34, 35]. It’s reported 
that TACC3 could play an oncogenic role in bladder 
cancers and prostate cancer [36, 37]. Researcher found 
that CXCR4 was upregulated in colorectal cancer and 
breast cancer [38, 39], overexpressed CXCR4 
promoted the proliferation and invasion of ovarian 
cancer [40]. The studies suggested that these genes 
were widely involved in occurrence and development 
of various tumors including ovarian cancer. 

 

 
Figure 7. The expression levels and prognostic values of upstream upregulated lncRNAs in patients with ovarian cancer. (A) The expression levels of 
FUT8-AS1, CASC9, LINC00665, LINC01535, PART1 and LINC00511 in ovarian cancer compared with normal samples with GEPIA. (B) The prognostic values of FUT8-AS1, 
LINC00665, LINC01535, and PART1 in ovarian cancer patients with Kaplan–Meier plotter. (C) The correlation between the key genes (TACC3 and CXCR4) and upstream 
lncRNAs with GEPIA. 
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Figure 8. The potential mRNA-miRNA-lncRNA regulatory network correlated with the prognosis of ovarian cancer. (A-C) Subcellular localizations of 
FUT8-AS1 (A), LINC00665 (B) LINC01535 (C) determined by lncLocator. (D) mRNA-miRNA-lncRNA regulatory network correlated with the prognosis of ovarian cancer. 
TACC3 and CXCR4 in the red ellipse represent upregulated hub genes; has-miR-425-5p and has-miR-146a-5p in the blue rectangle represent downregulated identified miRNAs; 
FUT8-AS1, LINC00665 and LINC01535 in the orange diamond represent upregulated identified lncRNAs. 

 
We further explored the upstream miRNAs 

associated with the five hub genes by the online 
database-miRTarBase based on the potential ceRNA 
hypothesis. After taking the expression levels and 
survival exploration into consideration, only three 
upstream miRNAs were considered as key miRNAs 
(hsa-miR-425-5p, hsa-miR-146a-5p and hsa-miR-150- 
5p), all of which were downregulated and associated 
with poor prognosis in ovarian cancer. Many studies 
have discovered that these miRNAs functioned as 
oncogene or tumor suppressor in the tumorigenesis 
and progression of different tumors. Researchers 
showed that miR-425-5p inhibited the expression of 
MALAT1 and TUG1 through inactivating the Wnt/β- 
catenin signaling pathway and further suppressed the 
progression of osteosarcoma [41]. Iacona et al. 
demonstrated that miR-146a-5p could function as a 
tumor-suppressive miRNA in lung cancer through 
targeting EGFR and regulating various metabolic and 
signaling pathways [42]. In addition, miR-146a-5p 
inhibited the process of EMT by targeting Notch2 in 
esophageal squamous cell carcinoma [43]. It has been 
reported that miR-150-5p exerted its tumor 
suppressive functions in breast cancer and colorectal 

cancer [44, 45], and miR-150-5p was found to be 
upregulated in ovarian cancer [46]. However, there 
were few researches focused on the function of 
TACC3-miR-425-5p and CXCR4-miR-146a-5p/ hsa- 
miR-150-5p in ovarian cancer. Therefore, it is valuable 
and helpful to explore the potential functions and 
molecular mechanisms of the miRNAs in ovarian 
cancer. 

Numerous studies have shown that lncRNAs 
could function as miRNAs sponge to regulate 
downstream genes based on the ceRNA mechanism, 
with the upstream lncRNAs binding to the miRNAs 
further identified with miRNet. After comprehensive 
evaluation of the expression levels, prognosis values 
and cellular locations, only high expression of three 
lncRNAs (FUT8-AS1, LINC00665 and LINC01535) 
were significantly associated with poor prognosis of 
ovarian cancer, which were finally proved to be key 
upstream lncRNAs of the ceRNA network, suggesting 
that these lncRNAs play crucial in the occurrence and 
progression of ovarian cancer. Studies focused on 
FUT8-AS1 were extremely limited. Some studies 
showed that LINC00665 contributed to the 
progression and biological behaviors via regulating 
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downstream miRNAs and targeted genes in many 
malignancies, such as lung cancer, hepatocellular 
carcinoma, breast cancer [47, 48, 49]. Previous 
research indicated that LINC01535 promoted the 
proliferation and inhibited the apoptosis of 
esophageal squamous cell cancer by regulating the 
JAK/STAT3 signaling pathway [50]. Furthermore, 
LINC01535 contributed to progression of cervical 
cancer via regulating the miR-214/EZH2 regulatory 
loop [51]. The studies above demonstrated that 
dysregulations of FUT8-AS1, LINC00665 and 
LINC01535 were closely associated with the initiation 
and progression of several tumors. 

In consequence, on the basis of ceRNA 
mechanism, we successfully constructed novel 
mRNA-miRNA-lncRNA regulatory networks 
(TACC3-hsa-miR-425-5p-FUT8-AS1 and CXCR4-hsa- 
miR-146a-5p-LINC00665/LINC01535) associated with 
prognosis of ovarian cancer. Although existing 
research may not be perfect, it is valuable to make a 
conclusion that the ceRNA networks observed in our 
study could exert profound influences on the 
predictive accuracy for ovarian cancer, and additional 
experimental exploration in vivo and vitro remains to 
be carried out to detect the functional mechanisms of 
ceRNA networks in the future. 

Conclusions 
In summary, with a series of integrated 

bioinformatics databases, we systematically explored 
and identified DEGs, miRNAs and lncRNAs 
associated with the prognosis of ovarian cancer. Based 
on the ceRNA hypothesis, novel mRNA-miRNA- 
lncRNA regulatory networks (TACC3-hsa-miR- 
425-5p-FUT8-AS1 and CXCR4-hsa-miR-146a-5p- 
LINC00665/LINC01535) in ovarian cancer were 
successfully constructed. The ceRNA networks 
observed in our study may provide new insights into 
exploring potential biomarkers for early diagnosis 
and targeted therapy of ovarian cancer, and further 
experimental exploration remains to be carried out in 
the future. 
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