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Abstract 

Background: Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is the catalytic subunit of 
ribonucleotide reductase and modulates the enzymatic activity, which is essential for DNA replication 
and repair. However, the role of RRM2 in lung adenocarcinoma (LUAD) remains unclear. 
Methods: In this study, we explored the expression pattern and prognostic value of RRM2 in LUAD 
across TCGA, GEO, Oncomine, UALCAN, PrognoScan, and Kaplan-Meier Plotter, and confirmed its 
independent prognostic value via Cox analyses. LinkedOmics and GEPIA2 were applied to investigate 
co-expression and functional networks associated with RRM2. Besides, we used TIMER to assess the 
correlation between RRM2 and the main six types of tumor-infiltrating immune cells. Lastly, the 
correlations between immune signatures of immunomodulators, chemokines, and 28 tumor-infiltrating 
lymphocytes (TILs) and RRM2 were examined by tumor purity-corrected partial Spearman's rank 
correlation coefficient through TIMER portal. 
Results: RRM2 was found upregulated in tumor tissues in TCGA-LUAD, and validated in multiple 
independent cohorts. Moreover, whether in TCGA or other cohorts, high RRM2 expression was found 
to be associated with poor survival. Cox analyses showed that high RRM2 expression was an independent 
risk factor for overall survival, disease-specific survival, and progression-free survival of LUAD. Functional 
network analysis suggested that RRM2 regulates RNA transport, oocyte meiosis, spliceosome, ribosome 
biogenesis in eukaryotes, and cellular senescence signaling through pathways involving multiple 
cancer-related kinases and E2F family. Also, RRM2 expression correlated with infiltrating levels of B cells, 
CD4+ T cells, and neutrophils. Subsequent analysis found that B cells and dendritic cells could predict the 
outcome of LUAD. B cells were identified as an independent risk factor among six types of immune cells 
through Cox analyses. At last, the correlation analysis showed RRM2 correlated with 67.68% (624/922) of 
the immune signatures we performed. 
Conclusion: Our research showed that RRM2 could independently predict the prognosis of LUAD and 
was associated with immune infiltration. In particular, the tight relationship between RRM2 and B cell 
marker genes are the potential epicenter of the immune response and one of the critical factors affecting 
the prognosis. Our findings laid the foundation for further research on the immunomodulatory role of 
RRM2 in LUAD. 
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Introduction 
Lung cancer is the leading cause of cancer- 

associated deaths worldwide [1-3]. The survival rate 
of lung cancer depends mainly on the stage of 
diagnosis. In general, the current 5-year survival rate 
is about 18%; however, the prognosis can be 
improved when confirmed early [4]. Unfortunately, 
only about 15% of cases were at the early stage when 
diagnosed, while the vast majority (57%) were already 
at the advanced stage [4]. Lung adenocarcinoma 
(LUAD) is a subclass of non-small cell lung cancer 
(NSCLC), which develops along the outer edge of the 
lungs within glandular cells in the small airways. 
LUAD accounted for approximately 40% of all lung 
cancer cases being the most common type of histology 
[5]. 

Whereas, due to the combination of adverse 
factors that span a range of different biological and 
clinical behaviors and the increased resistance to anti 
lung cancer drugs, existing targeted drugs have 
shown unsatisfactory efficacy [6]. In NSCLC, little is 
known about the genomic and host factors that drive 
the progression of pre-invasive lesions. Investigating 
these factors can enhance our understanding of lung 
cancer biology, help to develop better screening 
strategies, and improve patient prognosis [7]. 
Furthermore, the lack of specific markers for disease 
stages or tumor types represents a fundamental gap in 
the current understanding and treatment of LUAD. 

Ribonucleoside-diphosphate reductase subunit 
M2 (RRM2) is the catalytic subunit of ribonucleotide 
reductase and modulates the enzymatic activity, 
which is essential for DNA replication and repair [8]. 
According to recent reports, RRM2 is involved in the 
progression of various cancers, including glioma, 
colorectal cancer, and bladder cancer [9, 10]. 
Compared with normal tissues, RRM2 is over-
expressed in breast cancer patients and is associated 
with poor survival [11]. Recent studies have shown 
that RRM2 upregulation occurs in multiple myeloma 
tumors, and RRM2 inhibition can inhibit multiple 
myeloma cell proliferation [12]. Rahman et al. 
demonstrated that alteration of RRM2 induces 
apoptosis by modulating Bcl-2 expression in lung 
cancer [13]. Low expression of RRM2 has been 
reported can be used to value the treatment response 
to platinum-based chemotherapy of lung cancer [14]. 
Immunohistochemical evaluation of RRM2 indicates 
that it has strong prognostic significance in some 
subsets of NSCLC patients (primarily women, non- 
smokers, and former smokers quitting longer than ten 
years) [15]. Previous researches on the relationship 
between RRM2 and lung cancer were too specific but 
short of a comprehensive view [16-18]. Moreover, 

whether RRM2 is a robust biomarker for LUAD, 
existing studies do not present a clear answer. 
Furthermore, the biological function of RRM2 in 
LUAD remains to be established. 

In this study, we examined the expression and 
prognostic value of RRM2 in LUAD patients in the 
Cancer Genome Atlas (TCGA) and validated them in 
multiple independent cohorts. Moreover, using 
multidimensional analysis, we assessed the co- 
expression and functional network associated with 
RRM2 in LUAD and studied its part in tumor 
immunity. The present study may potentially reveal 
new direction, biological targets, and strategies for the 
diagnosis, treatment, and prognosis assessment of 
LUAD. 

Materials and Methods 
Data mining from TCGA 

LUAD patients’ gene expression profiles, along 
with their clinical data such as age, gender, tumor 
stage, TNM classification, and survival status, were 
downloaded from the TCGA portal (v22.0, https:// 
portal.gdc.cancer.gov/) with project ID: TCGA- 
LUAD. 

RRM2 differential expression 
In TCGA-LUAD cohort, the analysis of 

differential mRNA expression of RRM2 in tumor and 
healthy tissues were examined by the Wilcoxon test, 
including unpaired or paired test. Oncomine (version 
4.5, https://www.oncomine.org/) is a cancer 
microarray database and web-based data-mining 
platform. The mRNA expression level or copy 
number of RRM2 in LUAD and normal tissue were 
examined in Oncomine. In order to select the dataset 
to be included in this study from Oncomine, the 
screening parameters were set as follows: 1) Set 
“Analysis Type” as “Cancer vs. Normal Analysis” 
and “Cancer Type” as “Lung Adenocarcinoma”; 2) Set 
“THRESHOLD” as “P-value<0.05”, “FOLD 
CHANGE” as “ALL”, and “GENE RANK” as “ALL”. 
UALCAN (http://ualcan.path.uab.edu/) is an online 
tool for analyzing cancer transcriptome data, which is 
based on public cancer transcriptome data (TCGA 
and MET500 transcriptome sequencing) [19]. The 
"CPTAC analysis" module of UALCAN provides 
protein expression analysis option using data from 
Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) Confirmatory/Discovery dataset [20]. The 
comparison of RRM2 protein expression between 
LUAD and normal lung was examined in UALCAN. 
Analyses in TCGA-LUAD and Oncomine were 
visualized through R package “beeswarm”. A 
difference was defined as significant at p-value < 0.05. 
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RRM2 expression in clinical characteristics 
sub-groups 

The associations of RRM2 expression with 
clinical were examined by a non-parametric test (i.e., 
if the data were divided into two groups, the 
Wilcoxon test was performed; if the data were divided 
into three groups or more, the Kruskal–Wallis test 
was performed). R software was used for the 
visualization. 

Survival analyses of RRM2 
Survival analyses in the TCGA-LUAD cohort 

were conducted between high and low RRM2 
expression groups through Kaplan–Meier analysis 
with the log-rank test. PrognoScan (http://dna00.bio. 
kyutech.ac.jp/PrognoScan/) is a database for meta- 
analysis of the prognostic value of genes [21]. In order 
to select the dataset to be included in this study from 
PrognoScan, the screening parameters were set as 
follows: 1) Set “Cancer Type” as “Lung cancer” and  
“Subtype” as “Adenocarcinoma”; 2) Set 
“THRESHOLD” as “P-value<0.05”. Kaplan-Meier 
Plotter (https://kmplot.com/) is a web application 
developed for meta-analysis-based biomarker 
assessment that can be used for breast, ovarian, lung, 
gastric, and liver cancer [22]. The correlations between 
RRM2 expression and survival in LUAD were 
additionally analyzed in PrognoScan and Kaplan- 
Meier Plotter. Analyses from TCGA-LUAD and 
PrognoScan were visualized through “survminer” 
and “survival” packages in R. 

The independent prognostic value of RRM2 
To identify the independent prognostic value of 

RRM2 in LUAD and assess the correlation between 
important clinical characteristics and prognosis, we 
performed Cox analyses. First, we conducted 
univariate Cox analysis on every variable, in turn, to 
check their correlation with prognosis. Then, all 
variables were gathered for a multivariate Cox 
analysis to evaluate whether each of them has an 
independent prognostic value. 

LinkedOmics and GEPIA2 databases analysis 
LinkedOmics (http://www.linkedomics.org) is 

a publicly available portal that includes multi-omics 
data from all 32 TCGA Cancer types[23]. In the 
“LinkFinder” module of LinkedOmics, we used the 
Pearson test to perform statistical analysis on RRM2 
co-expression, and the results were displayed in the 
form of volcano, heat, or scatter plots. 
“LinkInterpreter” module of LinkedOmics was 
applied to conducted analyses of Gene Ontology 
(Biological Process), Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways, kinase-target 

enrichment, miRNA-target enrichment and 
transcription factor-target enrichment through Gene 
Set Enrichment Analysis (GSEA). The rank criterion 
was false discovery rate (FDR) < 0.05, and simulations 
was 1000. The Gene Expression Profiling Interactive 
Analysis (GEPIA2) database (http://gepia2.cancer- 
pku.cn/) is a web server for analyzing the RNA 
sequencing expression data of 9,736 tumors and 8,587 
normal samples from the TCGA and the GTEx 
projects, using a standard processing pipeline[24]. 
GEPIA2 was applied to plot survival heatmaps of top 
co-expression genes and survival curves of top kinase 
regulators. 

The correlation between RRM2 and six types 
of infiltrating immune cells 

The Tumor Immune Estimation Resource 
(TIMER, https://cistrome.shinyapps.io/timer/) is a 
comprehensive resource for systematical analysis of 
immune infiltrates across diverse cancer types [25, 
26]. “Gene” module of TIMER was applied to explore 
the correlation between RRM2 expression and 
abundance of six types of immune cells infiltrates, 
including B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells, in 
LUAD, by tumor purity-corrected partial Spearman’s 
correlation. Kaplan-Meier analysis was conducted to 
assess the prognostic value of each immune infiltrate. 
Multivariate Cox analysis was used to evaluate how 
RRM2 and these six types of immune cells together 
affect outcomes. 

Correlation between RRM2 and immune 
signatures 

TISIDB is a central portal for tumor and immune 
system interactions, which integrates multiple 
heterogeneous data types [27]. This online tool 
contained various immune gene signatures 
categorized by type of immune or their function. Gene 
signatures of chemokine, receptor, major histo-
compatibility complex (MHC), immunoinhibitor, 
immunostimulator, and 28 tumor-infiltrating 
lymphocytes (TILs) [28] were downloaded. The 
correlations between RRM2 and these gene signatures 
were calculated via the “Correlation” module of 
TIMER with tumor purity-corrected partial 
Spearman’s correlation. 

Results 
Patient characteristics 

The clinical characteristics of 522 cases were 
obtained from the TCGA-LUAD cohort, including 
age, gender, tumor stage and TNM classification. As 
shown in Table 1, 241 (46.17%) cases were younger 
than or equal to 65 years old, 262 (50.19%) were older 
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than 60 years old, while 19 (3.64%) were unknown. 
280 (53.64%) were females, and 242 (46.36%) were 
males. Stage I was found in 279 patients (53.45%), 
stage II in 124 (23.75%), stage III in 85 (16.28%), stage 
IV in 26 (4.98%), and unknown in 8 (1.53%). The 
patients with T1 (32.95%) and T2 (53.83%) made up 
the majority of the total patients, and the remaining 
are T3 (9.00%), T4 (3.64%), and unknown (0.57%). 353 
(67.62%) were at M0, 25 (4.79%) were at M1, while the 
rest 144 cases (27.59%) were unknown. In the 
distribution of N classification, N0, N1, N2, N3, and 
unknown accounted for 64.18%, 18.77%, 14.37%, 
0.38%, and 2.30%, respectively. 

 

Table 1. The characteristics of patients in the TCGA-LUAD 
cohort 

Characteristic Total (522) Percentage (%) 
Age   
≤65 241 46.17 
>60 262 50.19 
unknown 19 3.64 
Gender   
Female 280 53.64 
Male 242 46.36 
Tumor stage   
Stage I 279 53.45 
Stage II 124 23.75 
Stage III 85 16.28 
Stage IV 26 4.98 
unknown 8 1.53 
T classification   
T1 172 32.95 
T2 281 53.83 
T3 47 9.00 
T4 19 3.64 
unknown 3 0.57 
N classification   
N0 335 64.18 
N1 98 18.77 
N2 75 14.37 
N3 2 0.38 
unknown 12 2.30 
M classification   
M0 353 67.62 
M1 25 4.79 
unknown 144 27.59 
TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma. 

 

High RRM2 expression in LUAD 
In the TCGA-LUAD cohort, we compared the 

mRNA expression of RRM2 in tumor and normal or 
their adjacent tissues. The unpaired and paired tests 
both indicated that the mRNA expression of RRM2 in 
LUAD was elevated (Figure 1A, 1B). Moreover, we 
checked the Oncomine online database finding that 
many datasets suggested that the mRNA expression 
of RRM2 increased in tumor tissues (Figure 1C-J). 
Besides, we found that the copy number of RRM2 also 
increased in tumor tissue (Figure 1K, 1L). We 

examined RRM2 protein expression in UALCAN 
database, discovering it was highly expressed in 
tumor tissues (Figure 1M). 

Distribution of RRM2 expression in clinical 
characteristics sub-groups 

Based on the gene profile and clinical data 
extracted from TCGA-LUAD, the expression of RRM2 
in patients with younger age (≤ 65 years old) was 
found significantly higher compared to patients who 
were older than 65 years old (p-value = 0.013, Figure 
2A). The distribution of RRM2 showed a significant 
difference among the tumor stages. RRM2 was highly 
expressed as tumor stage increased (p-value = 
1.991e−05, Figure 2C). Similarly, RRM2 increased 
with the N classification (p-value = 9.625e−04, Figure 
2E). Moreover, RRM2 became increased expression in 
patients with tumor metastasis (p-value = 0.018, 
Figure 2F). As shown in Figure 2D, RRM2 was 
significantly differently distributed in the sub-groups 
of T classification, with highly expressed in T2 and T4 
classification (p-value = 9.625e−04). Furthermore, 
different genders were not associated with the 
expression of RRM2 (Figure 2B). 

High RRM2 expression indicates significant 
worse survival in LUAD 

Then, to understand the correlation between 
RRM2 expression and patients' outcomes, we used the 
Kaplan-Meier survival curves to evaluate and 
compare the survival differences between patients 
with high and low (grouped according to median) 
expression of RRM2 (Figure 3). In the TCGA-LUAD 
cohort, the high RRM2 expression group had 
significantly shorter overall survival, and the median 
overall survival of group of high expression vs. low 
expression was 3.47 years vs. 4.73 years (log-rank test, 
p-value = 4.581e-04, Figure 3A). The high expression 
group also had a significant unfavorable disease- 
specific survival (log-rank test, p-value = 8.838e−04, 
Figure 3B) and disease-free survival (log-rank test, 
p-value = 0.042, Figure 3C) than that in low 
expression group. Furthermore, in the comparison of 
progression-free survival between high and low 
expression patients, the high expression group had a 
worse median survival than that in low expression 
group (2.13 years vs. 3.78 years, log-rank test, p-value 
= 0.002, Figure 3D). Besides, we checked the 
PrognoScan and Kaplan-Meier Plotter finding that 
high RRM2 expression associated with poor overall 
survival, relapse-free survival, and progression-free 
survival (Figure 3E-J). 
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Figure 1. RRM2 is highly expressed in LUAD. (A) RRM2 mRNA expression comparison between normal and tumor tissues in the TCGA-LUAD cohort (unpaired 
Wilcoxon test). (B) RRM2 mRNA expression comparison between normal and adjacent tissues in the TCGA-LUAD cohort (paired Wilcoxon test). (C - J) RRM2 mRNA 
expression comparisons between normal and tumor tissues obtained from the Oncomine web tool (Wilcoxon test). (K - L) RRM2 copy number comparisons between normal 
and tumor tissues obtained from the Oncomine web tool (Wilcoxon test). (M) RRM2 protein expression comparison between normal and tumor tissues obtained from the 
UALCAN web tool (Wilcoxon test). TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma; CPTAC: Clinical Proteomic Tumor Analysis Consortium; The title of each 
graphic refers to the project name in TCGA, GEO, Oncomine, or UALCAN; P-value < 0.05 was used to assess differences. 

 

High expression of RRM2 is a potential 
independent risk factor 

As shown above, a higher expression of RRM2 
was related to a higher tumor stage (Figure 2). 
Kaplan-Meier analysis indicated that high expression 
of RRM2 was associated with poor survival (Figure 3). 
To find more evidence, the Cox proportional-hazards 
model was constructed. Univariate Cox analyses in 
overall survival showed that tumor stage, TNM 
classification, and RRM2 were acting potential risk 
roles in LUAD. Additionally, the multivariate Cox 
analyses confirmed the critical value of T classification 
and RRM2, proving that they can predict tumor 

prognosis independently of other factors in overall 
survival (Table 2). Also, the Cox analysis based on 
disease-specific survival only showed that RRM2 was 
the riskiest factor. Consistently, in the progression- 
free survival Cox analysis, RRM2 was the only marker 
that can predict survival independently. Taking 
together, RRM2 is a potential independent risk factor 
in LUAD. 

RRM2 co-expression networks in LUAD 
In order to better understand the biological 

meaning of RRM2 in LUAD, the “LinkFinder” module 
in LinkedOmics was applied to check the co- 
expression pattern of RRM2. As plotted in Figure 4A, 
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it shows that 6152 genes (red dots) positively 
correlated with RRM2, and 7399 genes (green dots) 
negatively correlated (p-value < 0.05). Figures 4B and 
4C show the heatmaps of the top 50 genes positively 
and negatively associated with RRM2, respectively. 
Moreover, Table S1 detailed lists the co-expressed 
genes. 

Significant Gene Ontology term annotation by 
GSEA showed that RRM2 co-expressed genes 
involved mainly in the organelle fission, mitotic cell 
cycle phase transition, DNA recombination, negative 
regulation of mitotic cell cycle, regulation of DNA 
metabolic process, and chromatin assembly or 
disassembly. In contrast, the protein localization to 
cell surface, regulation of transporter activity, cilium 
or flagellum-dependent cell motility, and excretion 
were inhibited (Figure 4D and Table S2). KEGG 
analysis showed genes were primarily enriched in the 
Fanconi anemia pathway, RNA transport, oocyte 
meiosis, spliceosome, ribosome biogenesis in 
eukaryotes, and cellular senescence pathways, etc. 
(Figure 4E and Table S3). 

RRM2 expression displayed a strong positive 
association with the expression of NCAPG (positive 
rank #1, r = 0.908, p-value = 5.28E-196), BUB1 (r = 
0.899, p-value = 8.98E-186), and CCNA2 (r = 0.897, 
p-value = 3.79E-184), etc. Remarkably, the top 50 
positively genes owned highly probability of 
becoming high-risk markers in LUAD, interesting, of 
which 50/50 genes had high hazard ratio (HR, p-value 
< 0.05) (Figure 4F). In comparison, 26 of the top 50 

negatively correlated genes had low HR (p-value 
<0.05) (Figure 4G). 

 

Table 2. Univariate analysis and multivariate analysis of the 
correlation of RRM2 expression and important clinical 
characteristics with survival among lung adenocarcinoma patients 

Parameter Univariate analysis Multivariate analysis 
HR 95% CI P-value HR 95% CI P-value 

Overall survival       
Age 1.000  0.983-1.018 9.685E-01 1.012  0.994-1.030 2.059E-01 
Gender 1.074  0.768-1.503 6.757E-01 0.939  0.668-1.321 7.191E-01 
Tumor stage 1.584  1.355-1.852 7.826E-09 1.469  0.975-2.215 6.616E-02 
T classification 1.607  1.322-1.954 1.953E-06 1.293  1.030-1.624 2.667E-02 
N classification 1.724  1.422-2.091 3.055E-08 1.083  0.755-1.552 6.661E-01 
M classification 1.825  1.028-3.240 3.982E-02 0.737  0.261-2.082 5.642E-01 
RRM2 1.028  1.015-1.041 1.542E-05 1.286  1.118-1.480 4.324E-04 
Disease-specific survival     
Age 0.981  0.960-1.002 7.232E-02 0.995  0.973-1.017 6.300E-01 
Gender 0.900  0.576-1.406 6.424E-01 0.781  0.497-1.226 2.832E-01 
Tumor stage 1.597  1.301-1.960 7.515E-06 1.473  0.840-2.580 1.763E-01 
T classification 1.514  1.157-1.982 2.534E-03 1.242  0.918-1.680 1.602E-01 
N classification 1.628  1.267-2.094 1.428E-04 1.014  0.623-1.650 9.562E-01 
M classification 2.258  1.126-4.530 2.184E-02 0.818  0.183-3.653 7.922E-01 
RRM2 1.035  1.020-1.051 5.702E-06 1.330  1.106-1.601 2.483E-03 
Progression-free survival     
Age 0.993  0.977-1.010 4.155E-01 0.998  0.981-1.015 8.134E-01 
Gender 0.987  0.708-1.375 9.384E-01 0.920  0.657-1.287 6.255E-01 
Tumor stage 1.320  1.123-1.551 7.468E-04 1.475  0.975-2.231 6.606E-02 
T classification 1.356  1.112-1.653 2.653E-03 1.185  0.932-1.505 1.660E-01 
N classification 1.299  1.060-1.591 1.152E-02 0.824  0.570-1.191 3.026E-01 
M classification 1.432  0.771-2.658 2.551E-01 0.508  0.168-1.536 2.304E-01 
RRM2 1.022  1.009-1.035 6.605E-04 1.215  1.064-1.388 4.101E-03 

HR: hazard ratio; CI: confidence interval. Bold values indicate p-value < 0.05. 

 

 
Figure 2. RRM2 expression in sub-groups of clinical characteristics. (A, B, F) RRM2 expression distribution analyses stratified based on age, gender, and M classification 
(Wilcoxon test). (C - E) RRM2 expression distribution analyses stratified based on tumor stage and TN classification (Kruskal-Wallis test). P-value < 0.05 was used to assess 
differences. 
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Figure 3. RRM2 is associated with survival outcome. (A - D) Survival analyses of RRM2 in the TCGA-LUAD cohort by Kaplan–Meier estimator with a log-rank test. (E - 
H) Survival analyses of RRM2 by Kaplan–Meier estimator with log-rank test obtained from PrognoScan web tool. (I, J) Survival analyses of RRM2 by Kaplan–Meier estimator with 
log-rank test obtained from the Kaplan Meier plotter web tool. Survival differences are compared between patients with high and low (grouped according to median) expression 
of RRM2; The numbers below the figures denote the number of patients at risk in each group; The title of each graphic refers to the project name in TCGA, GEO, PrognoScan, 
or Kaplan Meier plotter web tool; TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma; OS: overall survival; DSS: disease-specific survival; DFS: disease-free survival; 
PFS: progression-free survival; RFS: Relapse free survival; P-value < 0.05 was used to assess differences. 

 

Table 3. The kinases, miRNAs, and transcription factors-target 
networks of RRM2 in LUAD 

Enriched 
category 

Gene set Leading edge 
number 

NES FDR 

Kinase target Kinase_CDK1 67 2.3829 0 
 Kinase_PLK1 31 2.2374 0 
 Kinase_CDK2 84 2.2281 0 
 Kinase_AURKB 31 2.1503 0 
 Kinase_ATM 38 2.1011 0 
miRNA Target AGCGCTT,MIR-518F,MIR-

518E,MIR-518A 
5 -1.4072 0.48209 

 CCCAGAG,MIR-326 30 -1.4088 0.55154 
 AGGGCAG,MIR-18A 34 -1.4499 0.55987 
 GAGCTGG,MIR-337 34 -1.2417 0.61109 
 ACACTGG,MIR-199A,MIR-

199B 
36 -1.3139 0.61239 

Transcription 
Factor 

V$E2F_Q6 87 2.1966 0 

 V$E2F_Q4 87 2.1905 0 
 V$E2F1_Q6 91 2.1891 0 
 V$E2F4DP1_01 91 2.1752 0 
  V$E2F1DP1_01 90 2.1731 0 

LUAD: Lung adenocarcinoma; NES: normalized enrichment score; FDR: false 
discovery rate. 

 

Regulators of RRM2 networks in LUAD 
To understand the regulatory factors of RRM2 in 

LUAD, we further analyzed the enrichment of 
kinases, miRNAs, and transcription factors of RRM2 
co-expressed genes. The top 5 kinases related mainly 
to CDK1, PLK1, CDK2, AURKB, and ATM (Table 3 
and Table S4). In fact, 3 of the top 5 kinase genes 

include CDK1, PLK1, and AURKB, were significantly 
highly expressed in tumor tissues and significantly 
related to the overall survival of LUAD (Figure S1). 
Interestingly, the co-expressed genes of RRM2 were 
not enriched on any miRNA targets significantly 
(Table 3 and Table S5). Transcription factor 
enrichment results showed that the co-expressed 
genes of RRM2 were mainly enriched in the E2F 
transcription factor family (Table 3 and Table S6), 
including V$E2F_Q6, V$E2F_Q4, V$E2F1_Q6, 
V$E2F4DP1_01, and V$E2F1DP1_01. 

Correlation analysis between RRM2 expression 
and six main infiltrating immune cells 

Then, we investigated whether RRM2 expression 
was correlated with six main infiltrating immune cells 
(B cells, CD4 T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells) in LUAD using 
TIMER database. The analysis showed that RRM2 
expression levels correlated with B cells (r = −0.205, 
p-value = 5.74e-06), CD4+ T cells (r = −0.117, p-value = 
1.03e−02), and neutrophils (r = 0.144, p-value = 
1.56e−03) (Figure 5A). Moreover, we evaluated the 
prognostic value of each of the six types of immune 
cells via Kaplan-Meier analysis, finding B cells 
(p-value = 0 in log-rank test) and dendritic cells 
(p-value = 0.048 in log-rank test) can predict the 
outcome of LUAD (Figure 5B). At last, Cox 
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proportional hazard models were applied to assess 
the impacts of RRM2 expression and the six types of 
immune cells on the overall survival of LUAD. RRM2 
showed significant risk in univariate analyses (HR = 
1.291, 95% CI = 1.150-1.450, p-value = 0), and multi-
variate analyses (HR = 1.255, 95% CI = 1.112-1.415, 
p-value = 0), indicating it can predict tumor outcomes 
independently of the other six immune cells. 
Interestingly, B cells also displayed the similar 
performance in univariate (HR = 0.024, 95% CI = 
0.004-0.142, p-value = 0) and multivariate analyses 

(HR = 0.008, 95% CI = 0.001-0.106, p-value = 0) (Table 
4). Taking together, the significantly infiltrating with 
B cells seemed like one of the critical factors that 
RRM2 holds to influence the outcome of LUAD 
pronounced. 

Correlation between RRM2 expression and 
immune signatures 

Lastly, to expand the understanding of the 
crosstalk between RRM2 and multiple immune 
marker genes of 28 TILs, immune inhibitory or 

 

 
Figure 4. RRM2 co-expression genes in LUAD (LinkedOmics). (A) The global RRM2 highly correlated genes identified by the Pearson test in LUAD. Red and green dots 
represent positively and negatively significantly correlated genes with RRM2, respectively. (B and C) Heatmaps showing the top 50 genes positively and negatively correlated 
with RRM2 in LUAD. (D and E) Significantly enriched GO: Biological process annotations and KEGG pathways of RRM2 in LUAD. (F and G) Survival heatmaps of the top 50 
genes positively and negatively correlated with RRM2 in LUAD. The survival heatmaps show the hazard ratios in the logarithmic scale (log10) for different genes. The red and 
blue blocks denote higher and lower risks, respectively. The rectangles with frames mean the significant unfavorable and favorable results in prognostic analyses (p-value < 0.05). 
FDR: false discovery rate; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; LUAD: Lung adenocarcinoma. 
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stimulatory, cytokine-related, cancer-testis antigen, 
and MHC, we did correlation analysis between them. 
The analysis showed that the expression level of 
RRM2 in LUAD was significantly correlated with 
67.68% (624/922) immune marker genes (Table S7). 
In the significant correlated immune markers, 
352/624 (56.41%) were positively, while, 272/624 
(43.59%) were negatively related. On the whole, the 
top 5 positively correlated marker genes with RRM2 
were CCNA2 (r = 0.901976588, p-value = 3.2894E-181), 
CCNB1 (r = 0.874181398, p-value = 3.775E-156), EXO1 
(r = 0.868718344, p-value = 6.3113E-152), PRC1 (r = 
0.862049011, p-value = 5.0769E-147), and KIF11 (r = 
0.858239682, p-value = 2.474E-144). Besides, the top 5 
negatively correlated markers with RRM2 were 
CD302 (r = -0.563236799, p-value = 1.30947E-42), 
DAPK2 (r = -0.550326103, p-value = 2.23251E-40), 
GNG7 (r = -0.542454019, p-value = 4.59789E-39), DLC1 
(r = -0.525310139, p-value = 2.55007E-36), and 
GPRC5C (r = -0.524798161, p-value = 3.06273E-36). 

As for immunoinhibitory genes, results showed 
CD274 LAG3, PDCD1LG2, PDCD1, IDO1, KIR2DL3, 
PVRL2, TIGIT, IL10RB, HAVCR2, CTLA4, IL10, 
TGFBR1 have positively correlations with RRM2 
expression, while, ADORA2A and BTLA have 
negatively correlations with RRM2 expression. 
Moreover, the top 5 immunostimulatory genes 
positively correlated RRM2 expression were PVR, 
CD276, MICB, TNFSF4, and TNFRSF9, besides, the top 
5 negative markers were TNFSF13, TMEM173, IL6R, 
TNFRSF13B, and CD40LG (Table S7). 

In the previous section, we found that B cell 
infiltration may be one of the key reasons that caused 
RRM2 to become a prognostic factor. Thus, we were 
very interested in the correlation between RRM2 and 
B cell marker genes. Table 5, which was extracted 
from Table S7, shows the purity-corrected partial 
Spearman’s correlation between RRM2 and B cell 
markers. In B cells, RRM2 is highly correlated with 
CCNA2 (#1, r = 0.901976588, p-value = 3.2894E-181), 
CDKN3 (#2, r = 0.828306212, p-value = 1.2672E-125), 
GNG7 (#3, r = -0.542454019, p-value = 4.59789E-39), 
FCER1A (#4, r = -0.498295422, p-value = 2.66219E-32), 
and MICAL3 (#5, r = 0.344177052, p-value = 
3.71747E-15). In total, 35/57 of the B cell marker genes 
associated significantly to RRM2 expression, of which 
the number of positive correlations was 9/35 
(25.71%), and the negative was 26/35 (74.29%). We 
plotted the survival heatmaps of the significant B cell 
markers correlated significantly with RRM2 
expression in Figure S2. Notably, almost all of the 
positively related markers showed a high probability 
of becoming high-risk factors in LUAD, of which 3/9 
markers had elevated HR (p-value < 0.05) (Figure 
S2A). In comparison, there were 20/26 genes with 

low HR (p-value < 0.05) in negatively related markers 
(Figure S2B). 

Discussion 
The present study found that RRM2 was highly 

expressed in LUAD tumor tissue and significantly 
predicts a poor prognosis; also, the higher tumor stage 
got a higher expression. Univariate and multivariate 
Cox analyses indicated the RRM2 might be a potential 
independent biomarker for LUAD prognosis. Then 
we examined the co-expression and regulators 
networks of RRM2. At last, we conducted a 
correlation analysis between RRM2 and immune 
infiltration or immune signatures, finding that RRM2 
was related to most of the immune marker genes, and 
its infiltration in B cells may be one of the factors for 
its prognostic ability. Such work we have done aimed 
to guide future research in LUAD. 

The dysregulated cell cycle has been identified in 
many types of cancer [29]. Ribonucleotide reductase is 
an enzyme involved in the cell cycle. It consists of two 
subunits, namely the regulatory subunit RRM1 and 
the catalytic subunit RRM2, which is essential for 
DNA replication and repair [30, 31]. RRM2 is a 
rate-limiting enzyme used for DNA synthesis and 
repair, plays a vital role in many critical cellular 
processes, such as cell proliferation, invasiveness, 
migration, angiogenesis, and aging [8]. The present 
bioinformatics analysis showed that RRM2 was 
overexpressed in breast cancer patients to normal 
tissues and was associated with worse survival [32]. 
Overexpression of RRM2 was shown to be associated 
with an unfavorable prognosis in HER-2 positive 
breast cancer patients [33]. A recent study indicated 
that RRM2 upregulation occurred in multiple 
myeloma tumors and that RRM2 knockdown 
inhibited multiple myeloma cell proliferation [12]. Li 
et al. illustrated that RRM2 was overexpressed in 
human glioblastoma cells, and promoted 
proliferation, migration, and invasion of human 
glioblastoma cells [34]. Suppression of RRM2 inhibits 
cell proliferation, causes cell cycle arrest, and 
promotes the apoptosis of human neuroblastoma cells 
[35]. In our story, the investigation of differential 
expression in LUAD found that RRM2 was highly 
expressed in tumor tissues, which was subsequently 
examined in multiple independent cohorts. 

Then, we found that distinct histologic staging 
was associated with RRM2 expression. High 
expression of RRM2 happened in the more upper 
stage, which indicated RRM2 is mainly involved in 
the advanced period in LUAD, indicating a possible 
relationship existed between RRM2 expression and 
disease outcomes in LUAD. Thus, we carried out 
survival analysis in TCGA-LUAD, revealing that high 
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RRM2 expression was associated with poor outcomes, 
which was also checked in the other independent 
cohorts. Besides, the Cox analyses further proved that 
RRM2 was an independent risk factor in LUAD. 

Therefore, our results indicate that RRM2 
upregulation occurs in LUAD, and as a potential 
diagnostic and prognostic marker, it is worthy of 
further clinical verification. 

 

 
Figure 5. Correlation analysis between RRM2 expression and six types of infiltrating immune cells in LUAD. (A) Correlation of RRM2 expression with six types 
of immune infiltration cells obtained from TIMER (purity-corrected Spearman test). (B) Overall survival curve of each of the six types of immune cells produced by Kaplan-Meier 
estimator from TIMER. Survival differences are compared between patients with high and low (grouped according to median) infiltrating of each kind of immune cells; LUAD: Lung 
adenocarcinoma; TIMER: The Tumor Immune Estimation Resource. 
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Table 4. Cox analysis of the correlation between RRM2 expression and six types of immune cells and prognosis in patients with lung 
adenocarcinoma 

Variables Univariate analysis Multivariate analysis 
coef HR 95% CI P-value coef HR 95% CI P-value 

B cell -3.715 0.024 0.004-0.142 0 -4.822 0.008 0.001-0.106 0 
CD8+ T cell -1.209 0.299 0.083-1.074 0.064 0.382 1.466 0.244-8.813 0.676 
CD4+ T cell -1.061 0.346 0.078-1.541 0.164 3.101 22.212 1.494-330.241 0.024 
Macrophage -0.55 0.577 0.094-3.539 0.552 0.385 1.469 0.112-19.184 0.769 
Neutrophil -1.006 0.366 0.055-2.452 0.3 -2.146 0.117 0.002-5.856 0.283 
Dendritic -0.592 0.553 0.308-0.993 0.047 -0.026 0.974 0.258-3.683 0.97 
RRM2 0.255 1.291 1.150-1.450 0 0.227 1.255 1.112-1.415 0 
coef: regression coefficient; HR: hazard ratio; CI: confidence interval; Bold values indicate p-value < 0.05. 

 
 

Table 5. Correlation analysis between RRM2 and of B cell 
markers in LUAD 

Variables None adjusted Tumor purity adjusted 
Cor P-value Cor P-value 

Activated B cell     
GNG7 -0.526  0.000E+00 -0.542  4.598E-39 
MICAL3 0.340  2.102E-15 0.344  3.717E-15 
CLEC9A -0.292  1.334E-11 -0.300  1.108E-11 
BLK -0.233  9.074E-08 -0.255  9.844E-09 
HLA-DOB -0.226  2.137E-07 -0.240  6.752E-08 
MS4A1 -0.189  1.720E-05 -0.207  3.462E-06 
SPIB -0.167  1.407E-04 -0.181  5.204E-05 
BACH2 0.157  3.387E-04 0.178  6.919E-05 
CD79B -0.159  3.009E-04 -0.173  1.157E-04 
CR2 -0.174  7.130E-05 -0.170  1.548E-04 
CLECL1 -0.163  1.945E-04 -0.166  2.140E-04 
CLEC17A -0.128  3.637E-03 -0.143  1.490E-03 
AKNA -0.135  2.078E-03 -0.142  1.535E-03 
CD27 -0.132  2.703E-03 -0.139  1.934E-03 
TNFRSF17 -0.140  1.499E-03 -0.139  1.990E-03 
ARHGAP25 -0.122  5.639E-03 -0.126  5.098E-03 
CD19 -0.107  1.507E-02 -0.119  8.208E-03 
FCRL2 -0.097  2.726E-02 -0.095  3.513E-02 
PNOC -0.072  1.046E-01 -0.069  1.235E-01 
TCL1A -0.060  1.770E-01 -0.058  1.986E-01 
CCL21 0.023  6.025E-01 0.047  2.948E-01 
ADAM28 0.026  5.587E-01 0.029  5.238E-01 
CD38 -0.001  9.755E-01 0.014  7.587E-01 
CD180 -0.022  6.135E-01 -0.003  9.491E-01 
Immature B cell     
TXNIP -0.338  4.403E-15 -0.340  8.067E-15 
CD22 -0.257  3.589E-09 -0.285  1.217E-10 
KIAA0226 0.278  1.540E-10 0.278  3.555E-10 
FCRL1 -0.232  9.644E-08 -0.257  7.175E-09 
STAP1 -0.199  5.553E-06 -0.223  5.747E-07 
FAM129C -0.190  1.495E-05 -0.203  5.791E-06 
SP100 0.142  1.190E-03 0.155  5.319E-04 
FCRLA -0.134  2.245E-03 -0.143  1.401E-03 
HLA-DQA1 -0.131  2.895E-03 -0.137  2.230E-03 
HDAC9 0.096  2.981E-02 0.087  5.282E-02 
FCRL3 -0.084  5.697E-02 -0.082  6.954E-02 
CYBB 0.027  5.347E-01 0.054  2.292E-01 
TAGAP -0.047  2.859E-01 -0.044  3.262E-01 
ZCCHC2 0.038  3.895E-01 0.042  3.524E-01 
HVCN1 -0.052  2.396E-01 -0.038  3.953E-01 
NCF1 0.020  6.561E-01 0.037  4.110E-01 
FCRL5 0.017  7.015E-01 0.027  5.563E-01 
NCF1B -0.028  5.302E-01 -0.019  6.759E-01 
P2RY10 0.000  9.974E-01 0.018  6.836E-01 
Memory B cell     
CCNA2 0.901  0.000E+00 0.902  3.289E-181 
CDKN3 0.824  0.000E+00 0.828  1.267E-125 
FCER1A -0.490  2.167E-32 -0.498  2.662E-32 

Variables None adjusted Tumor purity adjusted 
Cor P-value Cor P-value 

ENPP1 0.326  4.798E-14 0.334  2.405E-14 
MYC 0.264  1.275E-09 0.263  2.929E-09 
SOX5 -0.092  3.720E-02 -0.103  2.249E-02 
SORL1 -0.096  2.959E-02 -0.099  2.866E-02 
RUNX2 0.083  5.829E-02 0.092  4.067E-02 
AICDA 0.045  3.095E-01 0.069  1.252E-01 
FCRL4 -0.042  3.400E-01 -0.050  2.667E-01 
CLCN5 -0.038  3.852E-01 -0.037  4.185E-01 
STAT5B -0.032  4.666E-01 -0.036  4.298E-01 
TLR9 0.013  7.642E-01 0.030  5.049E-01 
STAT5A -0.033  4.490E-01 -0.021  6.418E-01 
Cor: Correlation coefficient; LUAD: Lung adenocarcinoma; Bold values indicate 
p-value < 0.05. 

 
 
We explored the regulators responsible for 

RRM2 dysregulation and found that RRM2 was 
related to kinase networks, such as CDK1, PLK1, 
CDK2, AURKB, and ATM. These kinases mainly 
regulated mitosis, genome stability, and cell cycle, 
and showed survival prognosis value and differential 
expression in LUAD. CDK1 is a prototype kinase, a 
central regulator that drives cells through G2 phase 
and mitosis [36]. CDK1 orchestrates the transition 
from the G2 phase into mitosis, and as cancer cells 
often display enhanced CDK1 activity, it has been 
proposed as a tumor-specific anti-cancer target [37]. 
Data mining from different databases demonstrated 
CDK1 upregulation in LUAD. Furthermore, CDK1 
upregulation is associated with poor prognosis [38]. 
However, the molecular mechanism and potential 
application of CDK1 in lung cancer have not been 
determined [39]. PLK1 is indispensable for finely 
regulating cell division and maintenance of genomic 
stability in mitosis, spindle assembly, and DNA 
damage response [40]. Studies have shown that PLK1 
is highly expressed in most human carcinoma, and its 
overexpression is associated with an unfavorable 
prognosis [41-43]. In human tumors, the over-
expression of AURKB is associated with poor 
prognosis. AURKB inhibitors are in clinical trials for 
stage I-II leukemia [44]. AURKB is also involved in 
resistance to specific anti-tumor agents, such as 
paclitaxel in NSCLC [45]. Bertran-Alamillo et al. 
revealed that AURKB is related to acquired resistance 
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to EGFR TKIs, and AURKB can become a potential 
biological target for anti-EGFR therapy of NSCLC 
without carrying resistance mutations [46]. 

In this study, we found that the E2F family was 
the main transcription factor constituting RRM2 
dysregulation. E2F is a group of genes that encodes a 
family of transcription factors in advanced 
eukaryotes. They participate in regulating the cell 
cycle and DNA synthesis in mammalian cells [47]. 
Our analysis did not find miRNAs that are 
significantly associated with RRM2, which may be 
since RRM2 is involved in the role of mRNA 
spliceosomes and is far away from miRNA cellular. 
Our results indicate that E2F1 is a vital regulator of 
RRM2, and RRM2 may play a role in regulating the 
cell cycle and proliferation ability of LUAD through 
this factor. 

Our study found that RRM2 expression levels 
had significant correlations with B cells, CD4+ T cells, 
and neutrophils infiltrating (Figure 5A). Moreover, 
the subsequent Kaplan-Meier analysis found that B 
cells and dendritic cells could predict the outcome of 
LUAD (Figure 5B). Cox analyses showed that B cells 
and RRM2 were significant independent risk factors 
among all variables (Table 4). These findings 
indicated that B cell infiltration might be one of the 
critical factors of RRM2 with prognostic value. 

Next, we conducted correlation analyses 
between RRM2 and several immune signatures. We 
detailed analyzed the correlation between RRM2 and 
B cell signatures finding 35/57 (61.40%) of the B cell 
marker genes associated significantly to RRM2 
expression, including CCNA2, CDKN3, and GNG7. 
CCNA2, also known as cyclin A2, belongs to the 
highly conserved cyclin family and plays a key role in 
cell cycle control [48]. A recent study demonstrated 
that CCNA2 is a crucial regulator of NSCLC cells 
metastasis promoting invasion and migration of 
NSCLC cells through integrin αVβ3 signaling 
pathway [49]. CDKN3 gene encodes a dual-specificity 
protein phosphatase, which was previously thought 
to suppress tumors by controlling mitosis via CDK1/ 
CDK2 [50]. It is well known that CDKN3 is 
overexpressed in multiple human tumor tissues and 
cell lines [51, 52]. The high expression of CDKN3 in 
human cancer tissue may reflect the increased 
proportion of mitotic cells in the tumor [53]. Elevated 
CDKN3 expression is associated with the adverse 
outcome of LUAD. Overexpression of CDKN3 in 
LUAD is not because of alternative splicing or 
mutation, but increased mitotic activity, which is 
related to CDKN3 as a tumor suppressor [53]. GNG7 is 
a subunit of heterotrimeric G protein, which is 
commonly expressed in various tissues, but low in 
cancer [54]. It has been speculated that GNG7 may be 

involved in cell contact-induced growth arrest and 
thus blocks uncontrolled cell proliferation in multi-
cellular organisms [55]. Correlate analysis provides an 
exhaustive characterization of the association between 
RRM2 and immune signatures in LUAD patients, 
indicating that RRM2 is a crucial player in immune 
escape in the tumor microenvironment. Also, the 
correlation between RRM2 and B cell markers is 
particularly vital to the prognosis of LUAD patients. It 
is worth noting that RRM2 may be a key factor 
mediating B cell therapy, which is needed to be 
clarified in further research. 

At present, how RRM2 affects the prognosis of 
LUAD and the biological function of RRM2 in LUAD 
is still in its infancy. Souglakos’ study revealed that 
the efficacy of docetaxel/gemcitabine in lung 
adenocarcinoma patients was associated with RRM2 
mRNA expression from 42 patients [18]. Huang and 
colleagues studied 44 patient samples and found that 
the overexpression of RRM2 promoted proliferation, 
inhibited apoptosis, and increased the chemotherapy 
resistance of NSCLC cells through upregulating EGFR 
expression and AKT phosphorylation [17]. Recently, 
Yang's team worked on 30 patients and found that 
RRM2 was upregulated in NSCLC tumors and cell 
lines, leading to poor prognosis [16]. Nevertheless, 
these are not enough, and there are still many 
unknowns to be elaborated. Insufficient sample 
inclusion in previous researches will lead to statistical 
bias. So, in our study, we attempted a comprehensive 
and multi-angle analysis of RRM2 by combining 
multiple databases to explain the role of RRM2 in 
LUAD. The previous studies did not highlight the 
independent prognostic capabilities of RRM2, which 
has been confirmed in our study. Immunity plays a 
crucial role in the development of tumors. Existing 
research is failed to declare how RRM2 affects LUAD 
immunity. To this end, we not only elaborated the 
relationship between various immune cells and 
RRM2, but also discussed in detail the immune 
signature genes related to RRM2 that affect the 
prognosis. Such a research design for RRM2 and 
LUAD has never reported before, which are aiming at 
providing one more possibility and direction for 
future LUAD research. 

Our research also has some limitations, 
described as follows. 1) The results came from 
retrospective data, and more prospective data were 
needed for proving the clinical utility of it. 2) There is 
lacking wet experimental data in this study explaining 
the relationship between RRM2 and their mechanism 
in LUAD samples. More effort is needed to clarify the 
potential relationship between RRM2 and LUAD. 
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Conclusions 
In summary, this study provided all-round 

evidence for the value of RRM2 in the progress of lung 
cancer and its potential as a bio-target and prognostic 
predictor of LUAD. Our results showed that the 
up-regulation of RRM2 in LUAD indicates an adverse 
outcome, which may be caused by multiple steps that 
weaken genomic stability or disturb the cell cycle. 
Furthermore, we find that RRM2 has a significant 
correlation with mostly immune signatures. 
Moreover, the connection between RRM2 and B cell 
markers needs to be noted, which may be the new 
direction of future LUAD research. 
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