
Journal of Cancer 2020, Vol. 11 
 

 
http://www.jcancer.org 

6925 

Journal of Cancer 
2020; 11(23): 6925-6938. doi: 10.7150/jca.47631 

Research Paper 

Profiling of polar urine metabolite extracts from 
Chinese colorectal cancer patients to screen for 
potential diagnostic and adverse-effect biomarkers 
Yi Deng1#, Houshan Yao2#, Wei Chen1, Hua Wei1, Xinxing Li2, Feng Zhang1, Shouhong Gao1, Huan Man1,3, 
Jing Chen1,3, Xia Tao1, Mingming Li1 and Wansheng Chen1,4 

1. Department of Pharmacy, Changzheng Hospital, Secondary Military Medical University, Shanghai, China, 200003. 
2. Department of Surgery, Changzheng Hospital, Secondary Military Medical University, Shanghai, China, 200003. 
3. College of Chemical and Biological Engineering, Yichun University, Jiangxi Province, China, 336000. 
4. Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 

China, 201203. 

#These authors contributed equally to this work. 

 Corresponding authors: Mingming Li, Department of Pharmacy, Changzheng Hospital, Secondary Military Medical University, Shanghai, China. E-mail: 
limingming@smmu.edu.cn; Wansheng Chen, Department of Pharmacy, Changzheng Hospital, Secondary Military Medical University, Shanghai, China. E-mail: 
chenwansheng@smmu.edu.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2020.04.30; Accepted: 2020.08.27; Published: 2020.10.08 

Abstract 

Background: Metabolomics has demonstrated its potential in the early diagnosis, drug safety evaluation 
and personalized toxicology research of various cancers. 
Objectives: We aim to screen for potential diagnostic and capecitabine-related adverse effect (CRAE) 
biomarkers from urinary endogenous metabolites in Chinese colorectal cancer (CRC) patients. 
Methods: The metabolic profiles of 139 CRC patients and 50 non-neoplastic controls were analyzed 
using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass 
spectrometry. 
Results: There were 41 metabolites identified between the CRC patients and the non-neoplastic 
controls, and 19 metabolites were identified between CRC patients with and without CRAE. Based on 
these identified metabolites, bioinformatic analysis and prediction model construction were completed. 
Most of these differential metabolites have important roles in cell proliferation and differentiation and the 
immune system. Based on binary logistic regression, a CRC prediction model, composed of 
3-methylhistidine, N-heptanoylglycine, N1,N12-diacetylspermine and hippurate, was established, with an 
area under curve (AUC) of 0.980 (95% CI: 0.953–1.000; sensitivity: 94.3%; specificity: 92.0%) in the 
training set, and an AUC of 0.968 (95% CI: 0.933–1.000; sensitivity: 89.9%; specificity: 92.0%) in the testing 
set. In addition, methionine and 4-pyridoxic acid can be combined to predict hand foot syndrome, with an 
AUC of 0.884; ubiquinone-1 and 4-pyridoxic acid can be combined to predict anemia, with an AUC of 
0.889; and 5-acetamidovalerate and 3,4-methylenesebacic acid can be combined to predict neutropenia, 
with an AUC of 0.882. 
Conclusion: The profiling of urine polar metabolites has great potential in the early detection of CRC 
and the prediction of CRAE. 
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Introduction 
Colorectal cancer (CRC) is one of the most 

common malignancies worldwide, with an estimated 
1.4 million new diagnosed cases and 693,900 death 

cases in 2012 [1]. Over the last few years, with the 
changes of risk factors and the introduction of early 
screening, the incidence rates and death rates of CRC 
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have declined in the United States [2]. However, the 
incidence and mortality rates are increasing rapidly in 
developing countries like China [3]. Although the 
5-year survival rate of stage I patients can reach nearly 
90%, the rate of stage IV patients is only 12% [4]. Thus, 
the early detection of CRC is of central importance to 
improve overall survival rates. Colonoscopy, which is 
currently the gold standard for CRC diagnosis, is 
invasive and uncomfortable [5]. Computed 
tomography colonography (CTC) is an accurate and 
reliable diagnostic technique, but its high cost has 
always been a problem. Fecal occult blood testing 
(FOBT), as well as other noninvasive and inexpensive 
plasma biomarkers, such as carcinoembryonic antigen 
(CEA), carbohydrate antigen 19-9 (CA19-9) and 
SEPT9 gene methylation, are the main screening 
methods. However, their sensitivity and specificity 
are relatively poor, and screening with these 
biomarkers can easily miss asymptomatic patients. 
Therefore, simple, noninvasive, highly sensitive and 
specific biomarkers are urgently required for the early 
diagnosis of CRC. 

Metabolomics, which is the comprehensive 
study of low molecular weight metabolites and 
potentially offers phenotypic information not 
captured by genetic profiling, has become the focus of 
modern systematic biology [6]. It has demonstrated its 
potential in the early diagnosis, drug safety 
evaluation and personalized toxicology research 
related to various cancers [6,7,8], including CRC [9]. 
To date, by identifying the metabolic profiles in blood, 
urine, stool and tissue samples between CRC patients 
and healthy counterparts, significant variations have 
been revealed, and a number of candidate biomarkers 
identified [9]. However, none of these biomarkers 
have entered into clinical practice. 

There has also been research on the application 
of metabolomics for prediction of drug-induced 
adverse effects (AEs) [10, 11, 12, 13, 14]. Studies of 
metabolic biomarkers of oncology are relatively rare. 
According to the National Comprehensive Cancer 
Network (NCCN) guideline (2016), the first-line 
CAPEOX protocol, containing capecitabine and 
oxaliplatin, is usually used for both early 
postoperative adjuvant chemotherapy and advanced 
palliative chemotherapy. However, AEs remain the 
major limitation in treatment, especially for bone 
marrow suppression (BMS) and hand foot syndrome 
(HFS). Both BMS and HFS were selected as AEs for 
analyses in this study, since our previous clinical 
observation and literature research showed that these 
two AEs have the highest incidence rates [15]. 

In this article, a urinary metabolomics study was 
conducted on a cohort of CRC patients (n = 139) and 
non-neoplastic control subjects (n=50) using ultra- 

high-performance liquid chromatography combined 
with quadrupole time-of-flight mass spectrometry 
(UHPLC-Q-TOF-MS). The purpose of this study is to 
screen endogenous metabolite biomarkers, and to 
establish prediction models for CRC diagnosis and 
capecitabine-related AEs (CRAEs). 

Methods 
Chemicals and reagents 

Acetonitrile, methanol and isopropanol (HPLC 
grade) were purchased from Merck (Darmstadt, 
Germany). Chloroform, formic acid, ammonium 
acetate and other solvents (analytical grade) were 
purchased from Tedia (Fairfield, CT, USA). Internal 
standard (L-2-chlorophenylalanine) was purchased 
from Sigma Aldrich (St. Louis, MO, USA). 

Clinical samples 
The 139 patients were 36–87 years old and 

diagnosed with CRC (72 colon cancers and 67 rectal 
cancers). They were selected from a registered 
ongoing clinical trial at Shanghai Changzheng 
Hospital (code at www.clinicaltrials.gov, 
NCT03030508) from June 2016 to June 2017. The 
ethical approval for the study was granted by 
Shanghai Changzheng Hospital Biomedical Research 
Ethics Committee (approval number: 2016SL007). 
Recruited subjects in CRC patients were (1) over 18 
years old and (2) diagnosed with CRC by biopsy 
examination. Patients with any preoperative 
anti-neoplastic medication were excluded. Clinical 
information was obtained from the hospital and 
provided in Table S1. The 50 non-neoplastic controls 
were aged 47–89 years. They were without any known 
inflammatory condition or gastrointestinal tract 
disorders, and were enrolled after a routine physical 
examination. The age and sex of the controls were 
equivalent to those of the CRC patients (Table S1). 
Prior to sample collection, a written informed consent 
was obtained from each patient. 

To ensure the effectiveness of the CRC 
diagnostic model, all samples were randomly divided 
into a training set and a test set with a ratio of 1:1 
using Excel (Microsoft, USA). The two sets were 
well-matched between CRC patients and control 
groups in age and sex (Table S1). Among the 139 CRC 
patients, 43 had received capecitabine-based adjuvant 
chemotherapy. For these patients, HFS and BMS 
(including anemia, neutropenia and thrombocytov-
penia) were followed-up and graded according to 
Common Terminology Criteria for Adverse Events 
(Version 4.0) (Table S2) (2010). These patients were 
divided into AE and no-AE groups, respectively. 
Student’s t test showed no significant difference in age 
and chemotherapy cycle between the two groups. 
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Chi-square test showed no difference in sex, and 
Mann–Whitney test showed no difference in the 
pathological stage, between CRAE and no-CRAE 
groups (Table S3). 

All urine samples were collected from the 
Department of General Surgery in Shanghai 
Changzheng Hospital. A 12-mL urine sample was 
collected into a Falcon tube 1–3 days before surgery 
with an empty stomach, followed by adding 1 mL of 
protease inhibitor mixture (0.4 mL of 100 mM NaN3, 
0.6 mL of 10 mM phenylmethylsulfonyl fluoride and 
50: l of 1 mM leupeptin) [16]. Then, the samples were 
stored at −80°C. 

Sample preparation 
Since urinary metabolites were concentrated in 

polar metabolites and contained only few non-polar 
metabolites, we focused on polar metabolites in this 
study by separating the polar content and using a 
separation column specialized for polar metabolites. 
A volume of 10 μL of urine from each sample was 
mixed and used as the quality control (QC). The QC 
sample was made for testing the instrument state, 
equilibrating the UHPLC-Q-TOF-MS system before 
sample injection and indicating system stability 
during the batch analyses [17]. Subsequently, the 
polar metabolites were extracted from 200 μL of urine 
sample or QC sample with 800 μL of chloroform/ 
methanol (2:1, v/v) spiked with 0.2 μg/mL 
L-2-chlorophenylalanine as the internal standard in a 
fume hood. Then, the mixture was vortexed for 1 min 
and centrifuged at 15,000 × g for 10 min at 4°C to 
remove protein and split the polar (supernatant layer) 
and non-polar metabolites (lower phase). An aliquot 
of 300 μL from the supernatant was transferred to a 
1.5-mL EP tube, mixed with 900 μL of methanol and 
centrifuged at 12,000 g for 10 min at 4°C. Next, 900 μL 
of the supernatant was lyophilized. The lyophilized 
sample was resuspended in 900 μL of acetonitrile, and 
stored at -80°C. Stored samples were thawed at 4°C 
before analysis. Finally, 200 μL of the solution was 
transferred to a plastic insert within a sampler bottle 
for injection in the UHPLC-Q-TOF-MS system. 

UHPLC-Q-TOF-MS analysis 
Sample analysis was performed on an Agilent 

1290 ultra-high-performance liquid chromatography 
system (Agilent Technologies, Santa Clara, CA, USA) 
coupled with an Agilent 6530 Accurate-Mass Q-TOF 
LC/MS system (Agilent Technologies) in positive 
Dual Agilent Jet Stream Electrospray Ionization (Dual 
AJS ESI) mode (Agilent Technologies). The mobile 
phases A and B were water with 0.1% v/v formic acid 
and acetonitrile with 0.1% v/v formic acid, 
respectively. The column was a 2.1 × 100 mm, 3.5 μm, 

HSS T3 column (Waters, Manchester, UK) and the 
temperature was kept at 30°C. The gradient started 
with 5% B, increased to 20% at 6 min, 50% at 9 min, 
95% at 13 min, 100% at 15 min, followed by a post-run 
of 5 min. The flow rate was maintained at 0.4 
mL/min. The injection volume was 3 μL. The 
capillary voltage was 3500 V, and the nozzle voltage 
was 500 V. The gas temperature was set at 300°C with 
a gas flow of 11 L/min and nebulizer pressure of 35 
psi, and a sheath gas temperature of 300°C with a 
sheath gas flow of 11 L/min. For MS acquisition, 
centroid data were acquired from 100 to 1100 m/z at 
0.5-s intervals. For MS/MS acquisition, data were 
acquired at 0.33-s intervals with collision energy 0, 10, 
20 and 40 eV. A reference solution (m/z 121.0509 and 
m/z 922.0098) was used to correct small mass drifts 
during the acquisition [17]. The QC samples were 
injected at the beginning of the run and after every 
eight samples during sequence analysis to assess the 
analytical performance [18]. 

Data analysis 
The acquired MS data were analyzed using the 

Profinder program (Version b8.0, Agilent 
Technologies). After integration and alignment, a list 
of spectral features was obtained with the retention 
time (RT), m/z and spectral area by recursive feature 
extraction. The spectral features generated by the 
internal standard, noise and column bleed were 
removed from the dataset. Then, the integration 
results were manually checked before they were 
transferred to the Mass Profiler Professional program 
(Agilent Technologies) for subsequent analysis. The 
background and non-biologically relevant 
information were eliminated according to the 80% 
rule [19], which means only spectral features with a 
frequency ≥ 80% in the CRC patient or control groups 
were kept. Then, these spectral features were 
normalized using the sum intensity of each feature in 
each sample. 

Soft Independent Modelling by Class Analogy 
14.0 (SIMCA, Umetrics AB, Umeå, Sweden) and SPSS 
version 17.0 (SPSS Inc., Chicago, IL, USA) were used 
for further analyses. A P-value of less than 0.05 was 
considered significant. Principal Component Analysis 
(PCA) was applied to examine data distribution, and 
for a comprehensive understanding of the metabolic 
profile. Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA) was carried out to 
focus on clustering information and visualize the 
metabolic alterations. Multivariate statistical analysis 
in SIMCA 14.0 was used to analyze the complex 
metabolomics. Criteria for potential biomarkers were 
a coefficient of variation (CV) < 30% in QC samples. 
The affected metabolic pathways were examined by 
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Metabolic Sets Enrichment Analysis (MSEA) in 
MetaboAnalyst 4.0. Student’s t test was performed 
between the two groups to select biomarker 
candidates. Spectral features with a low P-value (< 
0.05) and a high fold of change (FOC ≥ 2) in Student’s 
t test, or with the value of variable importance in the 
projection (VIP) more than 1 in the OPLS-DA model 
were added to the candidate list for further metabolite 
identification. These metabolites were identified by an 
integrated method which included comparing to 
commercially approached standards and the 
web-based spectrum databases such as the Human 
Metabolite database (http://www.hmdb.ca/) and 
METLIN (http://metlin.scripps.edu/) [21,22]. 

Then, binary logistic regression was applied to 
combine several variables into a multivariable, using 
a stepwise variable selection method. Receiver 
operating characteristic (ROC) curve analysis was 
performed to evaluate the predictive ability of each 
identified metabolite and the combinational 
multivariable. 

Results 
Urinary metabolic profiling 

Typical total ion current (TIC) chromatograms of 
the metabolic profiles are shown in Figure S1. All 
pooled QC samples were used to monitor the system 
stability and data reliability for peak intensity (<30% 
CV) and RT (<20% CV). After manually checking, the 
metabolomics data revealed 1114 peaks of polar 
compounds detected by Q-TOF LC/MS and 583 
peaks were screened by the 80% rule. 

A PCA model (two components, R2Xcum = 0.366 
and Q2cum = 0.338) with unit variance (UV) scaling and 
an OPLS-DA model (one predictive component and 
three orthogonal components, R2Xcum = 0.306, R2Ycum 
= 0.963 and Q2cum = 0.89) based on Pareto Variance 
(Par) scaling were established using the 570 spectral 

features. The QC samples showed tight clustering but 
separation between control and patients was not clear 
in the PCA (Figure S2). This separation was more 
obvious in the OPLS-DA model (Figure 1A). A 
999-time permutation test was performed to evaluate 
the PLS-DA model. The R2Y- and Q2-intercepts were 
0.692 and 0.412, respectively (Figure 1B). The 
validation plots from permutation tests strongly 
supported the validity of the established OPLS-DA 
model because all permuted R2 and Q2 values on the 
left were lower than the original point on the right, 
and the Q2 regression line in blue had a negative 
intercept. 

Different metabolites between controls and CRC 
patients were identified using Student’s t test (P ≤ 0.05 
and FOC ≥ 2), or VIP ≥ 1 in the OPLS-DA model. A 
total of 281 compounds were screened and 41 
metabolites were identified by comparing 
metabolomic databases (Table 1, Table S4). 
Subsequently, 19 differential identified metabolites 
were found to be related to CRAE based on Mann–
Whitney tests (Table 2). 

Metabolic pathway analyses 
In order to understand the significant differences 

in the metabolic networks between the CRC patients 
and the controls, the 41 CRC related metabolites 
identified were submitted to the CPDB website 
(http://cpdb.molgen.mpg.de/) for metabolic 
pathway enrichment analysis. This analysis was also 
repeated for the 19 CRAE related metabolites. The 
MSEA results are shown in Tables 3 and 4. There were 
15 CRC related and 10 CRAE related metabolic 
pathways enriched. For the CRC related metabolic 
pathways, majority of them are related to the 
synthesis and catabolism of some of the basic 
metabolites such as basic carboxylic acid and amino 
acids. These metabolic pathways include glucose 
homeostasis, conjugation of carboxylic acids, amino 

 

 
Figure 1. Results from UHPLC-Q-TOF-MS. (A) An OPLS-DA scores plot discriminating urine samples from CRC patients (black boxes) and non-neoplastic controls (red 
dots) using UHPLC-Q-TOF-MS positive ion model analysis. (B) The chance permutation test at 999 times strongly supported the validity of the established OPLS-DA model. 
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acid conjugation and etc. Some of these changes may 
be related to abnormal DNA synthesis, since one 
carbon metabolism and related pathways and folate 
metabolism were also enriched. Beside these, vitamin 

B12 metabolism was also found related to CRC, this 
may indicate that abnormal in inflammation response 
or immune system may also be related to the 
susceptibility of CRC. 

 

Table 1. Identified metabolites related to colorectal cancer 

No. Metabolites Formula Mass tR 
(min) 

FOC a 
(Patient/Control) 

P-value b VIP c Chemical class AUC (95% CI) d P-value d 

1 Pyroglutamate* C5H7NO3 129.043 4.974 -7.524 <0.001 1.202 Amino acids 0.873 (0.801 - 0.944) <0.001 
2 Methionine* C5H11NO2S 149.051 0.952 -24.955 <0.001 1.380 Amino acids 0.685 (0.557 - 0.793) 0.006 
3 5-acetamidovalerate* C7H14NO3 159.089 3.486 -15.543 <0.001 1.282 Amino acids 0.762 (0.647 - 0.877) <0.001 
4 S-(2-carboxypropyl)-Cysteamine# C6H13NO2S 163.066 1.356 -36.231 <0.001 1.204 Amino acids 0.510 (0.394 - 0.625) 0.886 
5 Methylhistidine# C7H11N3O2 169.085 0.566 -4.146 <0.001 0.834 Amino acids 0.897 (0.835 - 0.959) <0.001 
6 N-lactoyl-Valine# C8H15NO4 189.100 4.603 -17.175 <0.001 0.952 Amino acids 0.837 (0.744 - 0.931) <0.001 
7 N-Acetylaminooctanoic acid# C10H19NO3 201.137 8.886 -5.477 <0.001 0.973 Amino acids 0.777 (0.675 - 0.879) <0.001 
8 N-lactoyl-Leucine# C10H13N5 203.117 0.693 14.632 0.020 0.959 Amino acids 0.749 (0.634- 0.864) <0.001 
9 4-Hydroxy-3-methoxy-cinnamoylglycine# C12H13NO5 251.080 5.811 -2552.980 <0.001 2.664 Amino acids 0.926 (0.847 - 1.000) <0.001 
10 Alpha-N-Phenylacetyl-L-glutamine* C13H16N2O4 264.111 4.974 -2.196 <0.001 0.837 Amino acids 0.773 (0.678 - 0.868) <0.001 
11 N-Acetylleucine # C8H15NO3 173.106 5.638 -2.170 <0.001 0.614 Amino acids 0.705 (0.596 - 0.814) 0.002 
12 Indoleacetic acid# C10H9NO2 175.064 8.188 -6.239 <0.001 0.845 Amino acids 0.677 (0.562 - 0.791) 0.009 
13 Octenoylglycine# C10H17NO3 199.121 8.452 -2.474 0.032 0.524 Amino acids 0.562 (0.434 - 0.691) 0.357 
14 N-Propionylmethionine# C8H15NO3S 205.077 4.66 9.583 0.014 1.098 Amino acids 0.588 (0.461 - 0.715) 0.193 
15 N-Acetyltryptophan# C13H14N2O3 246.101 7.509 9.136 0.019 0.879 Amino acids 0.518 (0.380 - 0.655) 0.793 
16 Pyro-L-glutaminyl-L-glutamine# C10H15N3O5 257.101 1.026 -4.299 <0.001 0.874 Amino acids 0.510 (0.390 - 0.629) 0.886 
17 Hydroxyphenylacetylglycine# C10H11NO4 209.069 6.013 -119.931 <0.001 1.638 Amino acids 0.758 (0.652 - 0.863) <0.001 
18 Hepteneoylglycine# C9H15NO3 185.105 6.357 -1730.717 <0.001 2.480 Amino acids  0.783 (0.653 - 0.912) <0.001 
19 Creatinine* C4H7N3O 113.059 0.645 2.851 0.018 0.441 Amino acids 0.542 (0.411 - 0.672) 0.537 
20 Indolylacryloylglycine# C13H12N2O3 244.086 7.857 -30.454 <0.001 1.476 Amino acids 0.774 (0.658 - 0.889) <0.001 
21 8-Hydroxy-5,6-octadienoic acid# C8H12O3 156.079 6.806 -6.225 0.005 1.219 Fatty acids 0.519 (0.393 - 0.644) 0.780 
22 N-Heptanoylglycine# C9H17NO3 187.122 6.183 1194.673 <0.001 2.493 Fatty acids 0.932 (0.884 - 0.980) <0.001 
23 cis-4-Decenedioic acid# C10H16O4 200.105 6.285 -9.210 <0.001 1.083 Fatty acids 0.717 (0.173 - 0.394) <0.001 
24 Alanylasparagine# C9H18NO4 203.116 6.515 -77.434 <0.001 1.468 Fatty acids 0.842 (0.763 - 0.922) <0.001 
25 1-Methyl-2-nonyl-4(1H)-quinolinone# C15H27NO4 285.193 7.987 -3.594 0.016 0.929 Quinolones and 

derivatives 
0.609 (0.474 - 0.744) 0.108 

26 3,4-Methylenesebacic acid# C12H18O4 226.122 7.755 -17.150 <0.001 1.437 Fatty acids 0.700 (0.576 - 0.824) 0.003 
27 2-trans,4-cis-Decadienoylcarnitine# C17H29NO4 311.210 8.867 -2.488 <0.001 0.833 Fatty acids 0.702 (0.588 - 0.816) 0.003 
28 4-Hydroxy-(3',4'-dihydroxyphenyl)- 

valeric acid# 
C11H14O5 226.121 8.219 -4.113 0.001 0.937 Fatty acids 0.642 (0.526 - 0.758) 0.035 

29 N1,N12-Diacetylspermine# C14H30N4O2 286.238 0.614 277.128 <0.001 1.990 Carboximidic acids 0.819 (0.717 - 0.921) <0.001 
30 Hippurate* C9H9NO3 179.059 4.841 -4.755 <0.001 1.069 Benzoic acids 0.830 (0.745 - 0.914) <0.001 
31 Hydroxyhippurate# C9H9NO4 195.054 3.621 -12497.060 <0.001 3.005 Benzoic acids 0.865 (0.767 - 0.963) <0.001 
32 Prolyl-Valine# C10H18N2O3 214.131 0.996 -6.156 0.008 0.938 Dipeptide 0.817 (0.718 - 0.915) <0.001 
33 Aspartylphenylalanine# C13H16N2O5 280.106 4.230 -10.818 <0.001 1.131 Dipeptide 0.828 (0.733 - 0.923) <0.001 
34 Phenylacetylglutamine# C8H13N3O6 264.108 4.740 14.025 0.014 1.070 Amino acids 0.636 (0.506 - 0.766) 0.044 
35 Humulinic acid A C13H18N2O4 266.124 7.507 -2572.774 <0.001 2.499 Dipeptide 0.862 (0.773 - 0.950) <0.001 
36 Ubiquinone-1# C14H18O4 250.120 7.813 -8.768 <0.001 1.142 Quinone 0.693 (0.568 - 0.818) 0.004 
37 4-Pyridoxic acid# C8H9NO4 183.053 1.394 4.161 <0.001 0.656 Pyridinecar- 

boxylic acids 
0.662 (0.553 - 0.771) 0.016 

38 alpha-D-Glucose# C10H12O3 180.079 6.907 -11.393 <0.001 1.249 Carbohydrates 0.629 (0.502 - 0.756) 0.056 
39 3-Hydroxydodecanedioic acid# C12H22O5 246.149 8.070 -19.079 <0.001 1.174 Hydroxy acids 0.774 (0.673 - 0.874) <0.001 
40 Indoxyl# C8H7NO 133.053 4.795 -3.872 0.002 0.871 Indoxyl 0.749 (0.650 - 0.849) <0.001 
41 Glutamylproline# C9H12N2O6 244.070 0.944 -2.031 0.010 0.454 Amino acids 0.613 (0.496 - 0.730) 0.094 
aFOC was calculated from the arithmetic mean values. FOC with a positive value means a relative higher concentration in CRC patients, while a negative value indicates a 
relative lower concentration as compared to controls. bP value was calculated from student’s t test. cVariable importance in the project (VIP) was obtained from OPLS-DA. 
dAUC and p value was obtained by ROC curve analysis on the basis of the training set. Abbreviations: FOC, Fold of changes. AUC, area under the curve. These metabolites 
were identified by commercially approached standards (*) or web-based spectrum databases (#). 

 
 

Table 2. Differential metabolites related to capecitabine related AE 

Metabolites HFS Anemia Neutropenia Thrombocytopenia BMS 
FOCa AUC  

(95% CI)b 
P- 
valueb 

FOCa AUC  
(95% CI)b 

P- 
valueb 

FOCa AUC (95% CI)b P- 
valueb 

FOCa AUC  
(95% CI)b 

P- 
valueb 

FOCa AUC  
(95% CI)b 

P- 
valueb 

Methionine -1.738 0.731 
(0.569-0.893) 

0.029* -1.208 0.612 
(0.418-0.807) 

0.281 -1.268 0.592 
(0.398-0.785) 

0.355 1.083 0.543  
(0.347-0.739) 

0.665 -1.198 0.557  
(0.354-0.759) 

0.594 

5-acetamido-
valerate 

-1.603 0.716 
(0.554-0.878) 

0.042* -3.994 0.902 
(0.784-1.000) 

<0.001* -1.620 0.719 
(0.546-0.891) 

0.027* 1.117 0.553  
(0.359-0.748) 

0.594 -1.382 0.625  
(0.438-0.812) 

0.241 

Methylhistidine 1.182 0.541 
(0.330-0.751) 

0.701 -1.595 0.754 
(0.551-0.956) 

0.015* -1.477 0.650 
(0.465-0.836) 

0.129 1.342 0.573  
(0.381-0.766) 

0.463 1.011 0.545  
(0.342-0.749) 

0.670 

N-Acetylamino-
octanoic acid 

-1.926 0.631 
(0.451-0.811) 

0.215 -1.781 0.732 
(0.548-0.915) 

0.026* 1.049 0.510 
(0.309-0.711) 

0.921 1.172 0.633  
(0.447-0.820) 

0.182 -1.185 0.511  
(0.308-0.715) 

0.915 

N-Acetylleucine -1.174 0.531 0.768 -2.266 0.583 0.424 -1.405 0.797 0.003* -1.125 0.590  0.368 -1.529 0.674  0.102 
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Metabolites HFS Anemia Neutropenia Thrombocytopenia BMS 
FOCa AUC  

(95% CI)b 
P- 
valueb 

FOCa AUC  
(95% CI)b 

P- 
valueb 

FOCa AUC (95% CI)b P- 
valueb 

FOCa AUC  
(95% CI)b 

P- 
valueb 

FOCa AUC  
(95% CI)b 

P- 
valueb 

(0.304-0.759) (0.391-0.775) (0.652-0.943) (0.398-0.782) (0.488-0.861) 
Indoleacetic acid -1.326 0.625 

(0.425-0.825) 
0.238 -1.616 0.786 

(0.601-0.971) 
0.006* 4.286 0.598 

(0.402-0.794) 
0.322 2.210 0.513  

(0.315-0.712) 
0.894 2.618 0.655  

(0.467-0.843) 
0.145 

1-Methyl-2-nonyl-
4(1H)-quinolinone 

-1.773 0.684 
(0.497-0.872) 

0.081 -2.907 0.841 
(0.631-1.000) 

0.001* -2.017 0.752 
(0.585-0.918) 

0.011* -1.310 0.543  
(0.349-0.738) 

0.665 -1.880 0.693  
(0.518-0.868) 

0.070 

Hydroxyphenyl-
acetylglycine 

1.816 0.647 
(0.441-0.853) 

0.165 6.386 0.507 
(0.281-0.734) 

0.945 3.181 0.667 
(0.483-0.850) 

0.092 2.637 0.700 
(0.526-0.874) 

0.046* 2.192 0.670 
(0.493-0.848) 

0.110 

Creatinine -1.219 0.575 
(0.368-0.782) 

0.478 -1.662 0.707 
(0.521-0.892) 

0.048* -1.530 0.709 
(0.533-0.885) 

0.035* -1.125 0.690 
(0.511-0.869) 

0.057 -1.308 0.705 
(0.504-0.905) 

0.055 

Indolylacryloyl-
glycine 

-7.358 0.716 
(0.539-0.892) 

0.042* -2.399 0.667 
(0.466-0.867) 

0.110 -2.125 0.552 
(0.357-0.748) 

0.597 -1.153 0.567 
(0.363-0.770) 

0.505 -1.409 0.595 
(0.369-0.820) 

0.374 

3,4-Methylene-
sebacic acid 

-1.343 0.634 
(0.418-0.851) 

0.204 -3.602 0.826 
(0.681-0.972) 

0.002* -1.969 0.752 
(0.587-0.916) 

0.011* -1.259 0.547 
(0.352-0.741) 

0.641 -1.808 0.674 
(0.493-0.856) 

0.102 

2-trans,4-cis- 
Decadienoyl-
carnitine 

-1.488 0.678 
(0.490-0.867) 

0.092 -1.705 0.703 
(0.503-0.903) 

0.052 -1.775 0.716 
(0.540-0.891) 

0.029* -1.064 0.530 
(0.332-0.728) 

0.764 -1.395 0.580 
(0.383-0.776) 

0.456 

N1,N12-Diacetyl-
spermine 

-2.605 0.731 
(0.501-0.962) 

0.029* 1.557 0.500 
(0.298-0.702) 

1.000 1.073 0.578 
(0.386-0.771) 

0.428 -2.621 0.563 
(0.365-0.762) 

0.527 -1.256 0.561 
(0.352-0.770) 

0.570 

Hippurate -3.304 0.65 
(0.451-0.849) 

0.156 -2.456 0.710 
(0.524-0.896) 

0.044* -1.737 0.526 
(0.326-0.726) 

0.792 -1.507 0.507 
(0.310-0.703) 

0.947 -1.997 0.591 
(0.391-0.79) 

0.394 

Aspartylphenyl-
alanine 

-1.377 0.619 
(0.404-0.834) 

0.262 -1.924 0.717 
(0.518-0.916) 

0.037* -1.224 0.565 
(0.372-0.758) 

0.509 -1.141 0.543 
(0.350-0.737) 

0.665 -1.331 0.580 
(0.382-0.777) 

0.456 

Phenylacetyl-
glutamine 

-1.421 0.684 
(0.497-0.872) 

0.081 -1.938 0.841 
(0.631-1.000) 

0.001* -1.619 0.752 
(0.585-0.918) 

0.011* -1.402 0.543 
(0.349-0.738) 

0.665 -1.689 0.693 
(0.518-0.868) 

0.070 

Ubiquinone-1 -1.862 0.684 
(0.471-0.897) 

0.081 -3.688 0.793 
(0.617-0.970) 

0.005* -2.499 0.771 
(0.609-0.933) 

0.006* -1.613 0.590 
(0.386-0.794) 

0.368 -2.238 0.689 
(0.488-0.891) 

0.076 

4-Pyridoxic acid 3.222 0.744 
(0.550-0.938) 

0.021* 2.362 0.754 
(0.592-0.915) 

0.015* -1.350 0.546 
(0.342-0.750) 

0.644 -1.082 0.590 
(0.384-0.796) 

0.368 1.936 0.739 
(0.529-0.948) 

0.025* 

Indoxyl -1.141 0.675 
(0.500-0.850) 

0.098 -1.553 0.859 
(0.663-1.000) 

0.001* -1.455 0.637 
(0.446-0.828) 

0.166 -1.473 0.553 
(0.358-0.749) 

0.594 -1.928 0.614 
(0.425-0.803) 

0.286 

aFOC was calculated from the arithmetic mean values. FOC with a positive value means a relative higher concentration in CRC patients, while a negative value indicates a 
relative lower concentration as compared to controls. bAUC and p value was obtained by ROC curve analysis. *P-value < 0.5 is considered to have statistical significance. 
Abbreviations: FOC, Fold of changes. AUC, area under the curve. 

 
 

Table 3. Metabolic pathway enrichment analysis based on colorectal cancer related metabolites 

Pathway Source External_id P-value Matched metabolite 
Glucose Homeostasis Wikipathways WP661 0.0000  Methionine, Hippurate, D-Glucose 
Vitamin B12 Metabolism Wikipathways WP1533 0.0004  Methionine, Creatinine, D-Glucose 
Conjugation of carboxylic acids Reactome R-HSA-159424 0.0008  Hippurate, 

Alpha-N-Phenylacetyl-L-glutamine,  
Amino Acid conjugation Reactome R-HSA-156587 0.0008  Hippurate, 

Alpha-N-Phenylacetyl-L-glutamine,  
Trans-sulfuration pathway Wikipathways WP4253 0.0031  Methionine, Creatinine,  
Mineral absorption - Homo sapiens (human) KEGG path:hsa04978 0.0036  Methionine, D-Glucose,  
Amino Acid metabolism Wikipathways WP3925 0.0039  Methionine, Indoleacetic acid, D-Glucose 
Phase II - Conjugation of compounds Reactome R-HSA-156580 0.0057  Pyroglutamate, Hippurate, 

Alpha-N-Phenylacetyl-L-glutamine 
Central carbon metabolism in cancer - Homo sapiens 
(human) 

KEGG path:hsa05230 0.0058  Methionine, D-Glucose,  

One carbon metabolism and related pathways Wikipathways WP3940 0.0074  Pyroglutamate, Methionine,  
Folate Metabolism Wikipathways WP176 0.0108  Methionine, D-Glucose,  
Phenylalanine metabolism - Homo sapiens (human) KEGG path:hsa00360 0.0209  Hippurate, 

Alpha-N-Phenylacetyl-L-glutamine,  
Tryptophan metabolism - Homo sapiens (human) KEGG path:hsa00380 0.0261  Indoleacetic acid, Indoxyl,  
Selenium Micronutrient Network Wikipathways WP15 0.0279  Methionine, D-Glucose,  
Biological oxidations Reactome R-HSA-211859 0.0403  Pyroglutamate, Hippurate, 

Alpha-N-Phenylacetyl-L-glutamine 
Metabolic pathway enrichment analysis was carried by an on-line tool (CPDB, http://cpdb.molgen.mpg.de/). The pathway databases for matching included REACTOME, 
KEGG, SMPDB, and Wikipathways. The minimum overlap with input list was set as 2 and the p-value cutoff was set as 0.05. 

 
 
On the other hand, CRAE related metabolic 

pathways are similar to the CRC related metabolic 
pathways. Pathways including conjugation of 
carboxylic acids, amino acid conjugation, glucose 
homeostasis indicate altered fundamental synthesis 

and catabolism of some of the basic metabolites. 
Pathway such as B12 metabolism indicates that 
abnormal in inflammation response or immune 
system may also be related to the susceptibility of 
CRAE as well.  
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Figure 2. (A) ROC curve analysis of the ability of urinary metabolites including methylhistidine, N-heptanoylglycine, N1,N12-diacetylspermine and hippurate to discriminate 
between CRC patients and non-neoplastic controls. The area under the curve (AUC) was 0.980 (95% CI: 0.953–1.000) for the training set (blue line), and 0.968 (95% CI: 
0.933-1.000) for the testing set (red line). (B) Bar charts of the mean concentrations of methylhistidine, N-heptanoylglycine, N1,N12-diacetylspermine and hippurate between CRC 
patients and non-neoplastic controls. 

Table 4. Metabolic pathway enrichment analysis based on capecitabine-related-adverse-effect related metabolites 

Pathway Source External_id P-value Matched metabolite 
Conjugation of carboxylic acids Reactome R-HSA-159424 0.0007  Hippurate, Alpha-N-Phenylacetyl-L-glutamine,  
Amino Acid conjugation Reactome R-HSA-156587 0.0007  Hippurate, Alpha-N-Phenylacetyl-L-glutamine,  
Glucose Homeostasis Wikipathways WP661 0.0016  Methionine, Hippurate,  
Trans-sulfuration pathway Wikipathways WP4253 0.0027  Methionine, Creatinine,  
Vitamin B12 Metabolism Wikipathways WP1533 0.0077  Methionine, Creatinine,  
Phenylalanine metabolism - Homo sapiens (human) KEGG path:hsa00360 0.0181  Hippurate, Alpha-N-Phenylacetyl-L-glutamine,  
Arginine and proline metabolism - Homo sapiens (human) KEGG path:hsa00330 0.0211  Creatinine, 4-Acetamidobutanoic acid,  
Tryptophan metabolism - Homo sapiens (human) KEGG path:hsa00380 0.0226  Indoleacetic acid, Indoxyl,  
Amino Acid metabolism Wikipathways WP3925 0.0367  Methionine, Indoleacetic acid,  
Phase II - Conjugation of compounds Reactome R-HSA-156580 0.0468  Hippurate, Alpha-N-Phenylacetyl-L-glutamine,  
Metabolic pathway enrichment analysis was carried by an on-line tool (CPDB, http://cpdb.molgen.mpg.de/). The pathway databases for matching included REACTOME, 
KEGG, SMPDB, and Wikipathways. The minimum overlap with input list was set as 2 and the p-value cutoff was set as 0.05. 

 
 

Construction and validation of a diagnostic 
biomarker metabolite system 

Validation of the CRC diagnostic model was 
performed by randomly choosing 50% of the samples 
to create a training-test set. The two sets were 
well-matched between CRC patients and control 
groups in age and sex (Table S1). A training set was 
used to evaluate the validation and predictive ability 
of identified metabolites to construct a diagnosis 
marker system for potential clinical application. Based 
on their high FOC, AUC and VIP values, four 
metabolites were selected as a panel of candidate 
markers: methylhistidine, N-heptanoylglycine, N1, 
N12-diacetylspermine and hippurate. A binary logistic 
regression model was applied to combine the four 
variables into a multivariable model. The ROC curve 
showed that the training set had an AUC value of 
0.980 (95% CI: 0.953–1.000; sensitivity: 94.3%; 
specificity: 92.0%), and the testing set had an AUC 
value of 0.968 (95% CI: 0.933–1.000; sensitivity: 89.9%; 
specificity: 92.0%) (Figure 2A). The relative 

concentrations of these metabolites in urine samples 
of CRC patients and non-neoplastic controls are 
shown in Figure 2B. Spearman’s rank correlation 
coefficient test showed that the concentrations of 
these metabolites were not related to the pathological 
stages (P > 0.05) (Figure 3). 

Construction of prediction models for CRAEs 
The ROC curve analysis showed that five 

metabolites had potential to predict HFS (P < 0.05, 
AUC > 0.7): methionine, 5-acetamidovalerate, N1, 
N12-diacetylspermine, 4-pyridoxic acid and indolyl-
acryloylglycine (Table 2). Thirteen metabolites had 
predictive ability for anemia: 5-acetamidovalerate, 
methylhistidine, N-acetylaminooctanoic acid, indole-
acetic acid, 1-methyl-2-nonyl-4(1H)-quinolinone, 3,4- 
methylenesebacic acid, hippurate, aspartylphenyl-
alanine, phenylacetylglutamine, ubiquinone-1, 4- 
pyridoxic acid, creatinine and Indoxyl (P<0.05, 
AUC>0.7). Hydroxyphenylacetylglycine had 
potential for predicting thrombocytopenia (AUC = 
0.700, 95% CI: 0.526–0.874) (Figure 4D), and 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

6932 

4-pyridoxic acid had potential for prediction of 
overall BMS (AUC = 0.739, 95% CI: 0.529–0.948) 

(Figure 4E). 

 

 
Figure 3. Bar charts of the mean concentrations of methylhistidine, N-heptanoylglycine, N1,N12-diacetylspermine and hippurate in urine samples of CRC patients of different 
stages and non-neoplastic controls. 

 
Figure 4. (A) ROC curve analysis of the ability of urinary methionine and 4-pyridoxic acid to predict hand foot syndrome (HFS). The area under the curve (AUC) was 0.884 (95% 
CI: 0.746–1.000). (B) ROC curve analysis of the ability of urinary ubiquinone-1 and 4-pyridoxic acid to predict anemia. The AUC was 0.889 (95% CI: 0.786–1.000). (C) ROC curve 
analysis of the ability of 5-acetamidovalerate and 3,4-methylenesebacic acid to predict neutropenia. The AUC was 0.882 (95% CI: 0.752-1.000). (D) ROC curve analysis of 
hydroxyphenylacetylglycine to predict thrombocytopenia (AUC = 0.700, 95% CI: 0.526–0.874). (E) ROC curve analysis of 4-pyridoxic acid to predict overall bone marrow 
suppression (AUC = 0.739, 95% CI: 0.529–0.948). 
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Logistic regression showed that the combination 
of methionine and 4-pyridoxic acid had high 
discriminatory ability for HFS with AUC = 0.884 
(Figure 4A), and the combination of ubiquinone-1 and 
4-pyridoxic acid had an obvious predicting advantage 
over a metabolite for anemia, with AUC = 0.889 
(Figure 4B). The combination of 5-acetamidovalerate 
and 3,4-methylenesebacic acid showed better 
predictive performance than a single metabolite, with 
AUC = 0.882 (Figure 4C). 

Discussion 
Biochemical functions of CRC-related 
differential metabolites 

Like most other cancers, CRC has an 
uncontrolled cell cycle progression, rapid growth rate, 
loss of contact inhibition, increased glycolysis and a 
triggered host immunological response. As a result, 
CRC patients had a differential plasma metabolic 
profiling compared to the non-neoplastic controls. 
Therefore, metabolic analyses and metabolites can 
indicate potential diagnostic markers and help to 
reveal the underlying mechanisms of cancer 
development and drug metabolism [9, 21, 22, 23, 24, 
25, 26, 27, 28]. 

Some of the differential compounds identified in 
the CRC patients here might result from the rapid 
metabolic rate and altered energy metabolites of 
cancer cells. The CRC patients showed abnormal 
Glucose Homeostasis. The significantly decreased 
urine glucose level (Table 1) is consistent with one 
previously published study [29]. This might indicate 
elevated glucose consumption in CRC patients 
compared to the controls. 

The N1, N12-diacetylspermine is a constituent 
polyamine in human urine [30]. Polyamines are 
indispensable in cell growth, gene expression and cell 
proliferation [31]. Rapidly growing cells, such as 
cancer cells, generally have increased intracellular 
polyamine levels and actively metabolize polyamines. 
An elevated N1, N12-diacetylspermine level may 
indicate rapid proliferation of cancer cells themselves 
[32], and has been reported as a more sensitive 
biomarker than CEA, CA19-9 or CA15-3 for CRC 
diagnosis at early stages [30, 31, 32, 33]. 

Methionine is an essential amino acid, involved 
in the pathways for glucose homeostasis, vitamin B12 
metabolism, amino acid metabolism, central carbon 
metabolism in cancer, one carbon metabolism, and 
folate metabolism. Methionine metabolism is relevant 
for cancer pathogenesis including methylation 
reactions, redox maintenance, polyamine synthesis 
and coupling to folate metabolism to coordinate 
nucleotide and redox status [34]. One carbon 

metabolism and Folate Metabolism are involved in 
regulation of the genetic process from DNA synthesis 
to cell migration, proliferation, differentiation and 
apoptosis [35, 36]. Down-regulation of methionine 
may indicate increased protein biosynthesis in cancer 
cells. Since methionine also plays a role in DNA 
methylation by providing methyl groups, 
overconsumption of methionine for protein 
biosynthesis may cause overall DNA hypo-
methylation, which could reduce DNA stability and 
trigger CRC development [37, 38]. Compared to the 
non-neoplastic controls, CRC patients normally have 
lower methionine levels both in serum [28] and urine 
[25], but higher levels in tissues [21]. High plasma 
concentration of methionine is a marker of low CRC 
risk [39]. Despite the role in protein biosynthesis, 
down-regulated methionine level in CRC may 
indicate a low level of auto-inflammation, which is 
closely related to antioxidant defenses in some organs 
[40, 41, 42]. 

Methylhistidine is a result of excessive protein 
catabolism, and down-regulated methylhistidine may 
also indicate overall increased protein biosynthesis in 
CRC patients. A study of 63 CRC patients’ urine 
metabolites also supported down-regulated histamine 
metabolism [43]; however, one study showed that 
neither urinary 1-methylhistidine nor 3-methyl-
histidine was associated with colorectal adenoma in a 
single urine sample, but worthy of further 
investigation in considering multiple urine samples 
[44]. Similarly, 5-acetamidovalerate is a product of 
lysine catabolism [45]. Both alanylasparagine and 
glutamylproline are dipeptides. They are the products 
of incomplete catabolism of large proteins. All of these 
metabolites are down-regulated in CRC patients 
compared with controls. This indicates the protein 
thesis was elevated by CRC. 

Phenylacetylglutamine (PAG) is a common 
metabolite of fatty acids with low abundance. It is a 
colonic microbial metabolite from amino acid 
fermentation, generated from glutamine conjugation 
of phenylacetic acid almost exclusively derived from 
the microbial conservation of phenylalanine, 
constituting phenylacetate metabolism, which 
provides a route that facilitates the excretion of 
nitrogen for patients with urea-cycle defects. 
Compared to the controls, CRC patients had lower 
PAG in this study, which may derive from 
down-regulated phenylalanine metabolism and 
glutamine metabolism related to gut flora metabolism 
[25]. 

Hippurate and its metabolite hydroxyhippurate 
are normal constituents of endogenous urinary 
metabolites, generated from microbial degradation of 
certain dietary components including phenylalanine. 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

6934 

As a downstream product of phenylalanine, a 
decreased level of hippurate also indicates down- 
regulated phenylalanine metabolism [25]. 

Other differential compounds identified might 
indicate the different inflammatory response and the 
degradation of fatty acids between CRC patients and 
non-neoplastic controls. N-Heptanoylglycine contains 
a C-7 fatty acid group as its acyl moiety, which is a 
minor metabolite of dietary fatty acid. Elevated levels 
of certain acylglycines in urine and blood may 
indicate patients with various fatty acid oxidation 
disorders. 

The lower serum level of coenzyme Q (CoQ) was 
reported and speculated to be associated with CRC 
progression [28]. Ubiquinone-1 is an intermediate in 
CoQ synthesis and could act as an antioxidant. The 
CoQ can suppress fat-induced colon carcinogenesis as 
an antioxidant [46] and the level of CoQ was also 
reported to be negatively correlated with redox status 
[47]. 

As the main catabolic product of vitamin B6, 
urinary 4-pyridoxic acid level is significantly 
associated with the circulating level of vitamin B6 
[48]. Vitamin B6 itself is only modestly associated 
with inflammation; however, the PAr ratio [4- 
pyridoxic acid/ (pyridoxal + pyridoxal 5′-phosphate)] 
is an indicator of vitamin B6 catabolism during 
inflammation, which is also a risk factor for 
carcinogenesis [49, 50]. 

Here, the elevated inflammatory status in CRC 
patients is consistent with the changes of metabolites 
arising from bacterial protein catabolism, particularly 
the tryptophan metabolism [51, 52, 53]. Tryptophan 
and its bacterial metabolites play various roles in the 
balance between immune tolerance and gut 
microbiota maintenance. The relationship between 
bacterial tryptophan metabolism and immune 
response has been described in detail by a recent 
review [53]. Indole is formed in intestines from 
tryptophan, and then it is transferred into indoxyl in 
the liver [54, 55]. The serum concentration of indoxyl 
has been found to decrease in azoxymethane/dextran 
sodium sulfate (AM/DSS)-induced colon cancer mice 
[56]. In line with this result, this decreased urinary 
level was observed in our CRC patients. 

Tryptophan can be converted into indole 
pyruvic acid by aromatic amino acid amino-
transferase, which can be further converted into 
indole acetaldehyde, and then into indole acetic acids 
(e.g. indole-3-acetic acid [IAA]). Its level in CRC 
tissues was found to be significantly decreased 
compared with the normal tissues [57]. Consistently, 
the urinary level of tryptophan in our CRC patients 
was also decreased. Pyruvic acid can also be 
converted into indole acrylic acid, and then finally 

into indolylacryloylglycine (IAcrGly) through a few 
enzyme-controlled steps. IAcrGly is one of the 
physiological components in urine. It was 
hypothesized that abnormal gut flora could promote 
the conversion of tryptophan to indolyl propionic 
acid, which could cause an increased IAcrGly level in 
urine [58, 59]. The trans-verse situation might be true 
for patients with bladder or CRC. It has been qualified 
as a part of model of bladder cancer grading 
distinction. As the increase of pathologic stage 
malignant degree of gallbladder, the concentration of 
IAcrGly decreased in high-grade bladder cancer 
compared with low-grade bladder cancer [60]. Herein, 
a significant decrease of urinary concentration of 
IAcrGly in CRC patients was also found. Decreased 
IAcrGly alone is also a sign of elevated inflammation 
response, since it is closely associated with introduced 
oxidative damage by adulterants and elevated 
oxidative damage is one of the CRC’s characteristics 
[61, 62]. Taken together, the urinary levels of IAA, 
indoxyl, and IAcrGly were all down-regulated in our 
CRC patients, which suggested a suppressed 
production of indole pyruvic acid and its derivatives. 
This may also be contributed by overexpressed 
indoleamine 2,3-dioxygenase that depletes 
tryptophan in CRC [63]. Metabolites of indole pyruvic 
acids including IAA, indoxyl, and IAcrGly are ligands 
to aryl hydrocarbon receptor (AHR), a transcriptional 
regulator for intestinal innate immunity and 
inflammation in the colitis-associated tumorigenesis. 
These metabolites are beneficial for colon by 
suppressing inflammation and carcinogenesis [64, 65]. 
The down-regulated IAA, indoxyl, and IAcrGly in our 
CRC patients compared with the controls may 
indicate the elevated inflammation response and 
induced carcinogenesis. 

It is worth mentioning that another bacterial 
tryptophan metabolite N-acetyltryptophan (NAT) 
was found to be up-regulated in our CRC patients 
compared with the controls. Its upregulation was also 
reported in the case of compromised gut microbiota 
[66, 67]. NAT can prevent protein molecules from 
oxidative degradation by scavenging oxygen [68]. In 
this study, the up-regulation of NAT further 
confirmed the development of imbalanced bacteria in 
CRC, but its physiological function in CRC still needs 
to be investigated. 

In conclusion, based on the urinary metabolomic 
profile, the CRC patients showed elevated protein 
metabolism rate, induced inflammation response, and 
possibly increased energy consumption, compared 
with the controls. 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

6935 

Biochemical functions of CRAE-related 
differential metabolites 

The pharmacological process of capecitabine has 
been fully reviewed in both in vivo and in vitro studies. 
DNA polymorphism [69, 70, 71], DNA methylation 
differences [72] and pharmacokinetic measurements 
[73] that could reflect the pharmacological process of 
capecitabine have been used to predict CRAE. Some 
of them have already been proved by prospective 
clinical research [71]. However, the pharmacological 
process only determines the local level of 
capecitabine-related cytotoxicity. In addition to this, 
how DNA replication, cellular proliferation, cellular 
apoptosis and immunology systems of normal tissue 
cells respond to the cytotoxicity may also contribute 
to the susceptibility to CRAE. 

According to the literature [74, 75] and our 
ongoing observational clinical trial [15], BMS and HFS 
are the two most frequent CRAEs, which severely 
limit the usage of capecitabine. The BMS contains 
three sub-types of AEs: anemia, thrombocytopenia 
and neutropenia. The direct cause of BMS is 
suppressed blood cell formation, which is a multistep 
process that starts from differentiation of 
hematopoietic stem cells and ends with the formation 
of types of blood cells [76, 77]. It is tightly regulated 
by signaling mediators, growth factor receptors and 
transcriptional factors involved in cell proliferation 
and differentiation [78]. The direct cause of 
capecitabine-related-HFS is a type of inflammation 
response mediated by COX-2 over-expression in the 
palm and plantar [79]. Therefore, differential 
metabolites related to cell proliferation, differentiation 
and immunological response might be potential 
markers of CRAE. 

To date, there are only a few published 
literatures that apply metabolomics to investigate 
markers for CRAE. One previous study showed that 
higher levels of low-density lipoprotein prior to 
treatment could predict higher grade toxicity for 
advanced CRC patients who received single-agent 
capecitabine [80]. Abnormally high level of low- 
density lipoprotein alone is a hazard factor for 
immunological response [81]. 

Consistent with our theory, levels of N1, N12- 
diacetylspermine were down-regulated in patients 
who developed HFS compared to those had not. This 
may indicate faulty DNA synthesis. In addition, a 
number of indicators and mediators of inflammation 
response were consistently altered in patients with 
CRAEs. These included up-regulated 4-pyridoxic acid 
and down-regulated methionine and methylhistidine. 
Interestingly, the differential inflammation responses 
were also revealed by metabolites from bacterial 
tryptophan catabolism. We observed relatively lower 

levels of IAA and indoxyl in CRC patients susceptible 
to anemia, and lower levels of IAcrGly in CRC 
patients susceptible to HFS. Since both IAA and 
IAcrGly can activate AHR that exert protective effects 
on autoimmune inflammation [82, 83, 84, 85], the 
urinary levels of which are mediated by tryptophan 
metabolism and gut microbiota, we speculate that the 
altered gut microbiota may also be an important 
factor for the susceptibility to CRAE. In summary, 
urinal metabolomics is affected by the health 
condition of individual, including proliferation, 
differentiation, and inflammation. It suggests that 
CRC patients who are susceptible to CRAEs may have 
faulty proliferation, differentiation, and induced 
inflammation. 

Summary and future directions 
The main strength of this study is that it explored 

CRAE-related metabolites for the first time. A number 
of metabolites were identified and a potential CRAE 
predicting model was generated. We also identified 
CRC-related metabolites. Based on these metabolites, 
a diagnostic model was generated and verified. 

However, several limitations of this study have 
to be mentioned and considered for future analysis. 
First, the sample population was small. Our patients 
were exclusively enrolled from one clinical center and 
the majority were from the south-east part of China. 
Second, although the patients and controls had 
equivalent age and sex, other intrinsic and 
environmental factors with possible influence were 
not assessed. Third, because of the small sample size 
of the CRC patients, internal replication was not used 
for CRAE prediction models. The reliability of these 
models will need to be tested using a larger 
population. Fourth, only positive results were 
compared with other positive results from the 
literature. Ideally, we should have also compared our 
results with other negative results; however, since not 
many studies report negative results, there is no 
symmetrical way to do this. Therefore, our results 
may be found to be negative by others. For example, 
in our study, methylhistidine was not associated with 
CRC, unlike the report by Cross et al. [44]. 

In summary, comparing CRC patients and 
non-neoplastic controls, and CRC patients with and 
without CRAEs, differential metabolites revealed 
changes in cell differentiation and immune response. 
We speculate that induced proliferation of cancer cells 
and altered immune response were associated with 
the specialized metabolic profile of CRC patients. 
However, faulty cell proliferation, cell differentiation, 
potential metabolic pathways and excessive immune 
response may make the CRC patients more 
susceptible to CRAEs. 
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Conclusions 
Based on urinary metabolic profiles, we 

identified a number of metabolic pathways associated 
with CRC and CRAE. Most of these differential 
metabolites have important roles in cell proliferation, 
differentiation and immune response. We also 
constructed a series of biomarker systems for CRC 
diagnosis and CRAE prediction. 
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