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Abstract 

Purpose: The patients diagnosed with colorectal cancer (CRC) are likely to undergo differential 
outcomes in clinical survival owing to different pathologic stages. However, signatures in association with 
pathologic evolution and CRC prognosis are not clearly defined. This study aimed to identify pathologic 
evolution-related genes in CRC based on both single-cell and bulk transcriptomics. 
Patients and methods: The CRC single-cell transcriptomic dataset (GSE81861, n=590) with clinical 
information and tumor microenvironmental tissues was collected to identify the pathologic 
evolution-related genes. The colonic adenocarcinoma and rectum adenocarcinoma transcriptomics from 
The Cancer Genome Atlas were obtained as the training dataset (n=363) and 5 other CRC 
transcriptomics cohorts from Gene Expression Omnibus (n=1031) were acquired as validation data. 
Graph-based clustering analysis algorithm was applied to identify pathologic evolution-related cell 
populations. Pseudotime analysis was performed to construct the trajectory plot of pathologic evolution 
and to define hub genes in the evolution process. Cell-type identification by estimating relative subsets of 
RNA transcripts was then executed to build a novel cell infiltration classifier. The prediction efficacy of 
this classifier was validated in bulk transcriptomic datasets. 
Results: Epithelial and T cells were elucidated to be related to the pathologic stages in CRC tissues. 
Pseudotime analysis and survival analysis indicated that HOXC5, HOXC8 and BMP5 were the marker 
genes in pathologic evolution process. Our cell infiltration classifier exhibited excellent forecast efficacy in 
predicting pathologic stages and prognosis of CRC patients. 
Conclusion: We identified pathologic evolution-related genes in single-cell transcriptomic and 
proposed a novel specific cell infiltration classifier to forecast the prognosis of CRC patients based on 
pathologic stage-related hub genes HOXC6, HOXC8 and BMP5. 
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Introduction 
Colorectal cancer (CRC) results in as many as 

900,000 deaths each year, accounting for 
approximately 9.2% cancer mortality worldwide [1]. It 
is expected to increase by more than 20% to 1,100,000 

in 2030 [2]. In addition, statistical analysis indicated 
that its incidence substantially increased in patients 
younger than 40s [3, 4]. Although the developments of 
early diagnosis, immunotherapy and chemotherapy 
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remarkably facilitate the detection and curation of 
CRC, the overall survival remains less than 60% in 
developed countries [5]. During the last few decades, 
numerous researches focused on molecular 
heterogeneity in colorectal oncocytes [6, 7], which 
probably contributed to totally divergent clinical 
endings. Explorations on the underlying genetic 
alteration are highly required to benefit CRC patients. 

The pathologic stage exerts a decisive role in 
different therapy strategies as well as clinical 
treatment outcomes [8-10]. However, the signatures of 
pathologic progress and stage promotion remain 
unclear. Surgery is recommended as the preferred 
treatment in stage I colon cancer, and chemotherapy 
composes of the therapeutical strategy as an integral 
part for patients at III or IV stage [5]. Hence, more 
prognostic markers are required to uncover the 
decisive genes in pathologic processes, like RAS 
activation or function loss of TP53 during CRC 
tumorigenesis [6]. Moreover, with the advances in 
single-cell RNA sequencing (scRNA-Seq) technique, a 
novel approach is provided to clarify the strong 
heterogeneity in predominant cell populations and 
profound alteration of key gene expression [11, 12]. 
As is reported, CRC is classified into 4 subtypes based 
on consensus molecular subtypes (CMS) [7]. The 
pathways or genes implicated in each subtype are 
unique: hypermutated, strong immune activation and 
microsatellite unstable in CMS1; striking WNT and 
MYC pathway activation in epithelial in CMS2; 
marked metabolic dysregulation of epithelial in 
CMS3; overt transforming growth factor-β (TGF-β) 
activation, stromal angiogenesis and invasion within 
mesenchymal in CMS4. In brief, dominant gene 
expression alteration in decisive cell populations 
attracted increasing attention. 

In this study, we combined scRNA-seq and bulk 
transcriptomic to identify pathology-related cell 
populations and pathologic progress-related hub 
genes. A novel specific cell infiltration classifier was 
established to forecast pathologic stages and 
prognosis of CRC patients based on the 3 hub genes 
HOXC6, HOXC8 and BMP5. Our study provided a 
potential classification and key biomarkers to screen 
out CRC patients with primary pathology stages that 
were more likely to obtain a better prognosis. 

Material and Methods 
Data Preprocessing and Quality Control 

The workflow is exhibited in Figure 1. The 
dataset (GSE81861) consisting of scRNA-Seq and 
clinical information of 11 primary CRC patients [13] 
was obtained from Gene Expression Omnibus (GEO) 
database. A total of 590 single-cell samples derived 

from CRC tissues or matched normal mucosa were 
included in this study. The selected cell samples 
contained different cell populations, including 
epithelial cells (tumor cells), endothelial cells, T cells, 
B cells, fibroblasts, macrophages and mast cells. Only 
cells that possessed at least 10,000 total counts and 500 
expressed genes were included in the following 
analysis. The cell-level and sequencing profile 
diagnosis were executed sequentially. At the same 
time, count-per-million standardization was applied 
to optimize the library size. Quality control of 
scRNA-Seq was conducted with scater package. 

Bulk RNA sequencing (RNA-Seq) of CRC 
cohorts were acquired as independent training 
dataset including colonic adenocarcinoma (COAD) 
and rectum adenocarcinoma (READ) data from the 
cancer genome atlas (TCGA), containing 363 CRC 
patients, Transcripts Per Million (TPM) 
standardization method and Z-score normalization 
were subsequently performed on TCGA RNA-Seq. 
Validation datasets were bulk genome chip data 
acquired from GEO database (GSE39582, n=552; 
GSE37892, n=130; GSE12945, n=62; GSE17537, n=55; 
GSE17538, n=232) [14-16]. All the above 5 datasets 
were processed with robust multi-array average 
(RMA) standardization and Z-score normalization. 
The outlines of the datasets were displayed in Table 1, 
including sample capacity, age, gender proportion 
and survival. The clinical characteristic used in this 
study was the pathologic stage, which was assessed 
based on the standard of American Joint Committee 
on cancer. Stages higher than 2 (including pathologic 
stage 2) were regarded as high pathologic stages and 
stage1 was defined as low pathologic stages. 

Dimensionality Reduction 
Principal components analysis (PCA) was a 

classical linear dimensionality reduction algorithm 
[17, 18]. Eigenvalues and eigenvectors of covariance 
matrix were calculated to estimate correlations 
between variables. After that, several larger 
eigenvectors were extracted from the matrix 
represented as the principal components. 

T-distributed stochastic neighbor embedding 
(t-SNE) was a nonlinear dimensionality reduction 
algorithm [19] used to dispose of the nonlinear 
correlations between variables. In the process of 
dimensionality reduction, instead of Euclidean 
distance, this algorithm selected conditional 
probability of choosing another point as the adjacent 
node to reflect the similarity of 2 nodes [20]. For strict 
quality estimation, both t-SNE and PCA were applied 
to investigate the distribution of cell types and tissue 
types with the log-transformed expression values in R 
software. 
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Figure 1. Workflow of this study. 

Table 1. General property information of validation datasets 

Dataset TCGA (COAD&READ) GSE39582 GSE37892 GSE12945 GSE17537 GSE17538 
Sample capacity 363 552 130 62 55 232 
Data type RNA-Seq Gene chip Gene chip Gene chip Gene chip Gene chip 
Standardization method TPM RMA  RMA  RMA RMA RMA 
Clinical characteristic overall survival overall survival pathologic stage overall survival overall survival& 

pathologic stage 
overall survival& 
pathologic stage 

Median age (IQR) 56.57-76.29 59.00- 76.00 59.25-76.00 59.00-73.75 54.00- 72.00 56.00- 74.00 
Gender ratio (M/F) 1.18 1.22 1.13 1.21 0.90 1.11 
Survival (Median year) 6.94 12.08 NA not arrive median 

survival 
not arrive median 
survival 

11.24 
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Graph-Based Clustering Analysis 
A novel algorithm named shared nearest 

neighbor (SNN)-Cliq was developed combining SNN 
method with quasi-clique-based clustering method 
[21]. In SNN-Cliq, input nodes were the vectors of 
gene expression within an individual cell. Similarity 
(Euclidean distance) between points was utilized as a 
weighted edge to construct SNN graph. In addition, 
graph-theoretic techniques were included to cluster 
the sparse SNN graph [22]. This algorithm not only 
included Euclidean distance as a similarity measure 
but also combined with a quasi-clique-based 
clustering algorithm to accurately identify the highly 
similar nodes in the same cluster. Graph-based 
clustering analysis was implemented to subclassify 
the pathologic stage-related cell populations with 
scran package in R. 

Pseudotime Analysis 
Pseudotime analysis was an algorithm to 

construct the development trajectory of a single-cell 
lineage according to the gene expression profile [23]. 
It infers the cell development trajectory from the 
expression level changes of the pre-defined 
phenotype-related gene list and then distributes every 
single cell with its proper pseudotime in this 
trajectory. Cell development processes were exhibited 
on the trajectory plot. The above process was realized 
by monocle package using R to restore the 
development trajectory of pathologic evolution- 
related cell populations. 

Gene Set Enrichment Analysis 
Gene set enrichment analysis (GSEA) was a 

function annotation approach aiming to identify 
probable significant biologic expression-changed 
signatures based on known gene sets [24]. The 
enrichment score was calculated based on whether a 
certain gene belonged to the known gene sets or not. P 
values and normalized enrichment scores of certain 
pathways were obtained via permutation test. GSEA 
was achieved by clusterProfiler package to elucidate 
the key genes among differential pathologic 
evolution-related cell population clusters [25]. 

Cell Infiltration Abundance Estimation 
Cell-type identification by estimating relative 

subsets of RNA transcripts (CIBERSORT) was a 
computational deconvolution approach [26] to 
characterize cell composition of a mixture based on 
bulk gene expression profiles. The expression matrix 
of pre-defined cell markers worked as the reference to 
estimate the relative proportion of specific cell types 
in bulk RNA-seq profiles. A linear support vector 
regression, a machine learning method to denoise, 

was applied to deconvolve the bulk gene expression 
matrix. To establish the specific cell infiltration 
classifier, a gene matrix defining 2 different 
populations (C1 and C2 populations) was created 
using expression quartiles of the pathologic hub genes 
in CRC bulk transcriptome and then was input as the 
reference matrix, representing for 2 pathologic 
evolution-related cell classifications. The concrete 
process was performed using CIBERSORT package in 
R. 

Statistical Analysis 
To identify the hub genes and validate the novel 

cell infiltration classifier, survival analysis was 
performed using both Kaplan-Meier survival 
estimation for classified variables, and Cox 
proportional hazards regression for quantitative 
index by R survival package. Chi-square test was 
implemented to verify the relevance between 
pathologic evolution-related cell classifications and 
realistic pathology stages. Spearman and Pearson 
correlation analysis were calculated respectively via 
the stats package. The above statistical analyses were 
completed with R 3.6.1. In all hypothesis tests, 
P-values less than 0.05 were regarded as statistical 
significance. All the P-values were two-sided. 

Results 
Quality estimation of scRNA-Seq 

The quality of GSE81861 containing 590 single- 
cell samples from 11 primary CRC patients with 
tumor and microenvironmental cell populations were 
first evaluated. The ERCC spike-in and mitochondria 
genes serving as known control signatures were 
detected in each cell to calculate the percentage of 
counts that come from the feature control set (Figure 
2A, Figure 2B). Well-behaved cells, which contained a 
large proportion of expressed features as well as a 
small ratio expression of spike-in and mitochondria 
features, while others were discarded. At the same 
time, the mean expressions of features and coefficient 
of variation in cells were calculated to acquire highly 
expressed features (Figure 2C). Five bins with similar 
expression levels were encapsulated and shown in 
Figure 2D. Genes in bin 3, 4, and 5 that fell below the 2 
* background were excluded. The filtered 1261 genes 
and 590 cells with high quality were preserved to the 
next step. Dimensional reduction results implied that 
cells from CRC tissues and normal mucosa were 
distinctly separated (PCA, Figure 2E; t-SNE, Figure 
S1A). The same results were observed in cell 
populations (PCA, Figure 2F; t-SNE, Figure S1B). The 
quality estimation outcome demonstrated that 
GSE81861 scRNA-Seq had a good performance in the 
strict process of quality control. 
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Figure 2. Quality control of single-cell RNA-Seq from GSE81861 dataset. (A) Respective detection of ERCC spike-in genes as control features in tumors tissues and matched 
normal mucosa. (B) Respective detection of mitochondria genes as control features in tumors tissues and matched normal mucosa. (C) Topographic map of features expression. 
The relationships between gene mean expression and coefficient of variation were displayed in this map with 5 different colors bins representing for corresponding expression 
levels. (D) Histogram of correlation coefficients of each bin calculated by Pearson correlation. Every feature in each bin was correlated to every other feature in the same bin. 
Mean value of the correlations were taken as the vertical axis variable. (E) Principal components extracted from covariance matrix between colorectal tumor tissue and normal 
mucosa. (F) Principal components extracted from covariance matrix between different cell populations. 

 

Identification of pathologic stage-related cell 
populations 

We selected 375 CRC cells with pathologic stage 
information of patients for downstream analyses. 
First, each cell type was clustered using graph-based 
methods. Tumor epithelial cells were classified into 6 
clusters (Table S1), which distinguished high and low 

stages (P<0.0001, Fisher exact test). At the same time, 
T cells were sorted into 2 clusters respectively (Table 
S2). As expected, the 2 clusters completely 
corresponded to different stages (P<0.0001, Fisher 
exact test). However, other cell populations, including 
endothelial cells, B cells, fibroblasts, macrophages and 
mast cells exhibited no statistically distinct association 
with pathologic stages (all, P>0.05, Fisher exact test). 
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To gain better insight into signature expression 
in heterogeneous cell clusters, we detected maker 
genes of each pathologic stage-related cell cluster in T 
cells and tumor epithelial cells. Several signatures 
were significantly elevated in the clusters of epithelial 
cells with a low pathologic stage (Table S3): tumor 
necrosis factor receptor superfamily member 11b and 
kallikrein-related peptidase 7 in cluster 1, cadherin 
related family member 2 in cluster 5, growth factor 
receptor-bound protein 14, lymphoid enhancer- 
binding factor 1 and dynamin 1 in cluster 6. Within 
the cluster of T cells related to low pathologic stages, 
C-C chemokine receptor type 8, CD27 molecule, cell 
division cycle 34 and cyclin-dependent kinase 4 in 
cluster 2 were overexpressed compared to high 
pathologic stage-related cluster 1 (Table S4). 

Definition of pathologic stage evolution- 
related hub genes 

To identify pathologic stage evolution-related 
hub genes, we next applied pseudotime analysis to 
the 306 cells that belonged to either epithelial or T 
cells in scRNA-Seq. A total of 2356 differentially 
expressed genes in response to pathologic stage 
evolution process were filtered based on the average 
expression level and dispersion empirical across cells 
(Figure 3A). The inferred developmental trajectory 
was demonstrated as a tree-like structure, exhibiting 
different cell states and gene expressions (Figure 3B). 
Pathologic stages presented a divergent distinction 
between high and low stages, with stage 3 located 
distant from stages 1 and 2 in trajectory plot (Figure 
3C). The box plot between pseudotime and stages 
supported our speculation that pathologic stage 
classification was negatively correlated with 
pseudotime (Figure 3D, P<0.0001, variance analysis). 
On the other hand, Spearman correlation analysis was 
applied to 2356 differentially expressed genes to 
determine the potential pseudotime-related 
signatures. According to above analyses, a total of 64 
pathologic stage positive-related genes and 20 
negative-related genes were extracted from the 
single-cell expression profile (Table S5, P<0.05, 
|R|>0.2). Heatmap visualized all the 
pseudotime-dependent genes into 4 clusters based on 
their pseudotemporal expression pattern (Figure 3E). 
Taken together, our results indirectly linked 
pathologic stage to gene expression bridged by 
pseudotime, screening out the 84 pathologic stage 
evolution-related genes at a single-cell level. 
Subsequently, both univariate cox proportional 
hazards regression and Kaplan-Meier survival 
estimation were executed to assess the prognostic 
effect of the 84 genes on primary CRC patients from 
the TCGA bulk transcriptomics database. HOXC6, 

HOXC8 and BMP5 exhibited statistical significance on 
prognosis prediction in both methods (all, P<0.05, 
Table 2). Based on the aforementioned process, the 3 
hub genes with correlation to both pathologic 
evolution and prognosis in CRC were finally 
determined. 

More specifically, the scatter diagrams 
separately depicted the distribution of the 3 hub genes 
in high and low pathologic stages, varying with 
pseudotime in scRNA-Seq (Figure 4A-C). The results 
confirmed that highly expressed HOXC6 and HOXC8 
as well as downregulated BMP5 were associated with 
higher pathologic stages. In addition, survival 
analysis suggested that both HOXC6 and HOXC8 
were associated with poor prognosis (both HR=1.90, 
P<0.005, Table 2), whereas BMP5 played a positive 
role in better clinical outcome (HR=0.57, P=0.012, 
Table 2). Mean expression value calculation indicated 
that HOXC6 and HOXC8 were expressed only in 
epithelial cells, while BMP5 was activated in both cell 
populations (Figure S2A). The detailed expression 
levels of the 3 hub genes in different cell populations 
were displayed in Figure S2B-D. Moreover, 
correlation analysis validated the statistically 
significant relationship between pseudotime and 
expression levels again, separately in both cell 
populations (Table 3). Finally, T cell immune 
infiltration portraits of hub genes in COAD and 
READ were explored in Tumor Immune Estimation 
Resource database [27] (Figure 4D-F). 

 

Table 2. Results of prognosis analyses with the 3 hub genes in 
TCGA colorectal cancer 

Gene symbol P-value (KM) HR (KM) P-value (COX) HR (COX) 
HOXC6 3.00E-03 1.90  3.12E-04 1.16  
HOXC8 2.90E-03 1.90  2.92E-04 1.23  
BMP5 1.20E-02 0.57  3.70E-04 0.83  

 

Table 3. Results of correlation analysis between pseudotime and 
expression levels of hub genes 

Gene symbol Cell population P value R 
HOXC6 epithelial cells 1.95E-02 -0.14 
HOXC8 epithelial cells 7.50E-03 -0.16 
BMP5 epithelial cells 1.33E-05 0.26 
BMP5 T cells 4.10E-03 0.48 

 

Cell infiltration classifier construction, 
evaluation and validation 

According to the differential expression pattern 
of hub genes, we defined 2 cell classifications as the 
reference matrix. C1 population represented a cell 
category, in which HOXC6 and HOXC8 were highly 
expressed, while BMP5 was downregulated while C2 
cells behaved oppositely (Table S6). Based on the 
support vector regression algorithm, CIBERSORT 
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accurately calculated the relative proportions of 
distinct cell classifications in TCGA CRC bulk 
transcriptomics (Table S7). To confirm the efficiency 
of the 2 cell classifications on prognosis prediction, 
survival analysis was applied to these patients. 
Patients with C1/C2 cell infiltration coefficients larger 
than 1 were considered as high C1 infiltration group, 
and results suggested that patients in higher C1/C2 
ratio group suffered from a significantly unfavorable 
survival (Figure 5A, P=0.0029). Meanwhile, the 
outcome of univariate Cox regression with the same 
TCGA dataset supported the above conclusion 
(P=0.002). Correlation analysis implied that the lower 

C1/C2 ratio exhibited a statistical correlation with the 
lower pathologic stage in CRC patients (P=0.028, 
Spearman correlation test). Of note, all the 3 hub 
genes were involved in the TGF-β signaling pathway. 
GSEA results suggested that cellular response and 
regulation to TGF-β stimulus contributed to the 
distinct clinical results of the 2 infiltration groups 
(Table S8). Thus, a practical cell infiltration classifier 
based on the expression level of HOXC6, HOXC8 and 
BMP5 was eventually established to predict 
prognosis, as well as pathologic stage differences in 
primary CRC patients. 

  

 
Figure 3. Negative correlation between pseudotime and pathologic stage. (A) The identification of 2356 differentially expressed features based on the average expression level 
and unusually variable expression across cells. (B) Trajectory analysis colored by cell types. (C) Trajectory analysis colored by pathologic stages. Stage 3 was located far distant 
from stage 1 and 2. (D) Box plot between pseudotime and stage. Stages 1 and 2 showed similar pseudotime levels while stage 3 exhibited lower pseudotime compared to other 
stages. (E) Heatmap of gene expression level varying with pseudotime in 4 clusters. Enhanced genes (in red) with lower pseudotime in cluster 1 represented for the higher 
pathologic stages, while upregulated signatures (in red) in cluster 2 performed completely the opposite. 
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Figure 4. Portraits of the 3 hub genes. (A) The pseudotime-expression scatter diagrams of HOXC6. Cells with higher pathologic stage possessed smaller pseudotime and higher 
HOXC6 expression level. (B) The pseudotime-expression scatter diagrams of HOXC8. Cells with higher pathologic stage possessed smaller pseudotime and higher HOXC8 
expression level. (C) The pseudotime-expression scatter diagrams of BMP5. Cells with higher pathologic stage possessed smaller pseudotime and lower BMP5 expression level. 
(D) Immunocyte infiltration map of HOXC6 in COAD and READ. (E) Immunocyte infiltration map of HOXC8 in COAD and READ. (F) Immunocyte infiltration map of BMP5 
in COAD and READ. 

 
To validate the efficiency of our cell infiltration 

classifier, a set of independent primary CRC bulk 
genome chip datasets (GSE39582, GSE33113, 
GSE37892, GSE12945, GSE17537, and GSE17538) was 
collected from the GEO database. The 3 hub gene 

expression profiles were relatively extracted out as the 
input data of our classifier and the cell infiltration 
estimation classifications of each patient were defined 
based on C1/C2 proportion. Subsequent survival 
analysis exhibited the lower C1/C2 proportion were 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

6869 

statistically linked to better prognosis of CRC patients 
(HR= 1.48, P=0.0077, GSE39582; HR=3.36, P=0.096, 
GSE12945; HR= 1.52, P=0.072, GSE17538; HR= 3.16, 
P=0.1, GSE17537; Figure 5B-D, Figure 6A). Variance 
analysis was applied to the sample to validate the 
association between the infiltration C1/C2 ratio and 
pathologic stages. Box plot implied lower pathologic 
stages were associated with lower C1/C2 ratio 
(P=0.0024; P=0.0027; P=0.016; Figure 6B-D). These 
results validated the prediction efficiency of our novel 
constructed cell infiltration classifier based on the 
expression of the 3 hub genes, confirming that CRC 
patients with upregulated BMP5 and downregulated 
HOXC6/8 were related with lower pathologic stages 
and better prognosis. 

Discussion 
With the iteration of cell sequencing technology, 

more details about differentiation map and 
transcriptional heterogeneity have been clarified [28, 

29]. The application of scRNA-Seq facilitates the 
excavation of tumorigenesis and molecular 
classifications compared to bulk sequencing [30-32]. 
By combining scRNA-Seq with clinical characteristics, 
we revealed the hub genes in the course of CRC 
pathologic stage evolution and clarified the impact of 
differential cell infiltration classifications on CRC 
prognosis based on hub gene expression. A novel 
classifier to estimate specific cell infiltration was 
established, which might indicate the pathologic 
stages and clinical outcomes. 

Based on the application of scRNA-Seq, 2 
distinct subtypes of cancer-associated fibroblasts 
associated with prognosis and an mRNA-miRNA 
regulatory network of CRC were identified in 
previous studies [13, 33]. However, in this study, 
tumor epithelial and T cells were discovered to exert 
an essential role in the evolution of CRC pathologic 
stage for the first time by graph-based clustering. 
Besides, the 3 hub genes were later identified 

 

 
Figure 5. Evaluation and validation of efficiency of the cell infiltration classifier on prognosis.(A) Prognosis analysis with TCGA CRC training dataset. Patients in low C1 cells 
infiltration group had significantly better survival than those in the high group. (B-D) Prognosis analysis with independent validation datasets GSE39582, GSE12945 and 
GSE17538. 
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(HOXC6, HOXC8 and BMP5) via pseudotime, 
correlation and survival analysis. Importantly, instead 
of Multi-Omics Matrix Factorization [34], a more 
stable and effective algorithm CIBERSORT was 
performed to construct the cell infiltration classifier, 
which divided cells in bulk tumor tissue into 2 
classifications (C1: HOXC6 high, HOXC8 high, BMP5 low; 
C2: HOXC6 low, HOXC8 low, BMP5 high). Independent 
GEO datasets strongly validated that patients in C2 
group with upregulated BMP5 and downregulated 
HOXC6/8 were related to lower pathologic stage and 
better clinical survival. Our study demonstrated that 
HOXC6, HOXC8 as well as BMP5 were implicated in 
the pathologic evolution and a classifier on the basis 
of the expression of the 3 genes could serve as a 
prognostic factor, which would facilitate the clinical 
survival forecast for CRC patients. 

Notably, the 3 hub genes were all involved in 
TGF-β signaling pathway [35-38]. Recent researches 
emphasized that TGF-β signaling inhibited 
proliferation and proceeded apoptosis in CRC 
epithelial cells [39-41]. Escaping the growth-inhibiting 
effect of TGF-β signaling in tumor epithelial cells 

promoted CRC development [7]. This signaling was 
also involved in epithelial-mesenchymal transition 
(EMT) to induce CRC metastasis [42] as well as T cell 
exclusion and immune failure in tumor immune 
microenvironment [43]. A Pan-Cancer Analysis 
highlighted that gene alteration in TGF-β pathway 
was carried by 39% cancers, especially gastrointestinal 
(GI) cancer, and BMP5 was one of the 6 recurrent 
hotspot mutations in GI cancers [44]. In fact, BMP5 
was identified as a tumor suppressor in sporadic CRC 
and the loss of BMP5 happening at early stages of 
CRC was linked to the poor survival of patients [45]. 
In addition, Romagnoli M revealed that BMP5 was 
repressed by Blimp-1 during EMT process via TGF-β1 
in breast cancer and that the poor prognosis of breast 
cancer was associated with BMP5 low expression [46]. 
HOXC6 was overexpressed in multiple solid tumors, 
like hepatocellular carcinoma, cervical carcinoma 
(CC), head and neck cancer and GI carcinoids [47-50]. 
In CC, HOXC6 silencing repressed the activation of 
TGF-β signaling pathway via blocking smad-4 
phosphorylation, thus inhibiting cell proliferation and 
EMT in CC cells [51]. A human tissue microarray 

 

 
Figure 6. Validation of efficiency of the cell infiltration classifier on prognosis and pathologic stages. (A) Patients in low C1 cells infiltration group in GSE17537 had better 
survival tendency. (B-D) Box plot between pathologic stage and C1 cell infiltration with independent validation datasets GSE37892, GSE17537 and GSE17538. Lower pathologic 
stages were associated with lower C1 cell infiltration scores. 
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containing 462 samples from CRC patients detected 
significantly higher HOXC6 expression in tumor 
tissues compared to matched normal mucosa 
(P<0.001), which also acted as an independent 
prognostic marker to poor overall survival [52]. 
Moreover, HOXC6 deregulation decreased CRC cell 
growth mediated by the suppression of autophagy 
directly or indirectly [52]. HOXC8, in the same 
homeobox family with HOXC6, was reported to serve 
as a transcription activator to boost the expression of 
TGFβ1, leading to an increase of the proliferation, 
anchorage-independent growth and migration in 
NSCLC [53]. In CRC, BMP signaling functioned as a 
crucially inhibitory element in tumorigenesis [54], 
where HOXC8 was discovered to be a negative 
regulator together with smad6 [55]. Moreover, GSEA 
results of high and low C1/C2 ratio groups implied 
the contribution of TGF-β signaling pathway in 
clinical prognosis of CRC patients. Hence, it made 
sense to elucidate that the 3 genes were recruited in 
our cell infiltration classifier and performed well in 
pathologic stage and prognosis forecast. In terms of 
the differential expression in epithelial and T cells, it 
was revealed that highly transcriptional BMP family 
signatures including BMP5 promoted T cell 
infiltration in estrogen receptor-positive breast cancer 
[56]. However, the effect and mechanism of BMP5 
expressed in T cells remained unclear. 

There were still some limitations in our current 
study that should be considered when elucidating the 
results of our findings. First, an essential step might 
be verification with clinical single-cell data, taking 
into account of the distinction between bulk 
sequencing and single-cell technique. In addition, 
although the function of HOXC6 has been verified in 
clinical CRC patients [52], further experiments in vivo 
and in vitro are still required. More explorations 
aimed at the crosstalk of the 3 hub genes might shed 
light on the underlying mechanism. 

Collectively, technology advance toward single- 
cell sequencing enhances our recognition of tumor 
heterogeneity. The excavation of pathologic stage- 
related genes facilitates the discovery of novel 
therapeutic targets. Our study provided a CRC 
classifier of pathologic stage and survival with 
potential clinical significance. 

Conclusion 
In this study, we identified pathologic evolution 

related genes in scRNA-Seq and proposed a novel 
specific cell infiltration classifier to prognosis 
prediction of CRC patients. Patients with upregulated 
BMP5 and downregulated HOXC6 and HOXC8 were 
related to lower pathologic stages and better 
prognosis. These hub genes also suggested the 

potentially crucial role of TGF-β signaling pathway in 
CRC tumorigenesis and progression. 
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