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Abstract 

Early detection and accurate evaluation were both critical to improving the prognosis of clear cell Renal 
Cell Carcinoma (ccRCC) patients. More importantly, RNA Binding Proteins (RBPs) play a vital role in the 
tumorigenesis and progression of numerous cancers. However, the relationship between RBPs and 
ccRCC is still unclear. Exploring the potential biological functions of RBPs in ccRCC and establishing a 
prognostic signature to predict the survival probability remains meaningful. In this study, transcriptome 
profiling and the corresponding clinical information were obtained from the TCGA database, GEO 
database, and ICGC database. By using the "edgeR" R package, 200 DERBPs were found, including 128 
up-regulated and 72 down-regulated RBPs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses showed that DERBPs were mainly involved in regulating 
transcriptional processes and metabolism. Furthermore, there were 4 hub genes (RPS2, RPS14, RPS20, 
and RPLP0) were found in the PPI network, which may play vital biological roles among those DERBPs. 
Then we used LASSO regression to construct a prognostic signature and validated the signature in the 
GEO and ICGC cohort. The time-dependent receiver operating characteristic (ROC) curve showed that 
the signature could accurately predict the prognosis of ccRCC patients. Then we established a 
nomogram, and the calibration curve and ROC curve showed that the nomogram could accurately 
predict 1-year, 3-year, and 5-year overall survival (OS) of ccRCC patients (The AUC value: 0.871, 0.829, 
and 0.816). In conclusion, we constructed a 10-RBPs-based prognostic signature integrating clinical 
parameters to predict the prognosis of ccRCC patients. The prognostic signature based on the 
differentially expressed RBPs (DERBPs) might serve as promising diagnostic and prognostic biomarkers in 
ccRCC. 

Key words: clear cell renal cell carcinoma; RNA Binding Proteins; Bioinformatics analysis; Prognostic signature; 
Overall survival. 

Introduction 
Renal cell carcinoma (RCC) is one of the most 

common and deadly cancer worldwide, with an 
incidence rate that is increasing 2% each year. Clear 
cell Renal Cell Carcinoma (ccRCC) is the major 
histological subtype of RCC, accounting for 70%-80% 
cases [1, 2]. Earlier diagnoses of ccRCC could expand 
the life expectancy of cancer survivors and contribute 
to the preservation of the functions of the kidney [3, 
4]. Moreover, the genetic alterations behind ccRCC 
have been widely studied using bioinformatics 

analyses. The bioinformatics analyses have become 
one of the most effective tools for analyzing ccRCC[5, 
6]. According to the previous studies, numerous 
biomarkers are correlated with prognosis or 
diagnosis, such as Aquaporin 9 and RURKB, which 
were reported recently [7, 8]. However, there are still 
fewer biomarkers in ccRCC meaningful to 
personalized treatment or clinical diagnosis. Hence, 
due to the high morbidity of ccRCC, it is still 
important to explore more meaningful biomarkers for 
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early diagnosis and personalized treatment. 
RBPs were firstly identified for their critical and 

conserved roles in RNA binding [9]. Previous studies 
showed that RBPs interacted with mRNA major 
depended on RNA-Binding Domain, such as 
RNA-recognition motif, K-homology domain, Zinc 
fingers, etc. [10]. There are almost 1912 RBPs, 
according to recent studies [11]. To our best 
knowledge, RBPs participated in many vital 
processes, including RNA splicing, translation, and 
stability [12-14]. More importantly, the dysregulated 
expression of some RBPs was associated with disease 
occurrence, including genetic disease and cancer [15, 
16]. In our previous studies, we found that P4HB, as 
an RNA Binding Protein, was up-regulated both in 
mRNA and protein expression levels and correlated 
with poor prognosis in ccRCC patients [17]. Other 
studies had also pointed some of RBPs were 
associated with functions of regulating ccRCC, such 
as ANKHD1 and QKI [18, 19]. 

In this study, we used the high-throughput 
expression profiles (HTSeq-counts) to explore the 
prognostic significance of RNA Binding Proteins 
(RBPs) in ccRCC. There are 200 differently expressed 
RBPs (DERBPs) in ccRCC. The biological functions of 
these DERBPs were analyzed by GO and KEGG 
enrichment analyses, and biological hub genes were 
explored by the PPI network. Furthermore, univariate 
Cox regression and LASSO analysis showed that the 
expression of 10 DERBPs was associated with overall 
survival (OS) in the training cohort. Afterward, a 
10-DERBPs-based prognostic signature was built and 
validated. Then patients in the TCGA database were 
divided into low-risk and high-risk groups. The effect 
of the prognostic signature and its clinical significance 
was tested. 

Materials and Methods 
Extraction of Clinical and gene expression data 

The list of 1912 RBPs was obtained according to 
the previous study. The transcriptome profiling 
(HTSeq-counts) of 611 samples, including 539 ccRCC 
samples and 72 normal kidney samples, were 
downloaded from the TCGA database 
(http://portal.gdc.cancer.gov/). Next, gene 
annotation was performed using the Ensemble 
database. Meanwhile, the clinical data were obtained 
from the XENA database (xenabrowser.net/ 
heatmap/). The whole samples were considered as 
the training cohort, and half of the samples were 
randomly selected as the internal validation cohort 
(n=265). Moreover, the expression data and 
corresponding clinical data of the external validation 
cohort were obtained from the GEO database 

(GSE29609, n=39). Meanwhile, the mRNA expression 
and the corresponding clinical information of the 
other external validation cohort were downloaded 
from the ICGC database (https://icgc.org/, n=91). 
Entrez Gene IDs and R studio (version 3.6.1) were 
used for subsequent analyses in the cohorts above. 

Identification of DERBPs 
"EdgeR" package was used to normalize the 

count matrix and identify DERBPs. Those RBPs with 
| Log2Foldchange| >1 and False discovery rate 
(FDR)<0.05 were considered to have statistical 
significance. 

Functional and Pathway Enrichment 
To explore the potential biological functions of 

DERBPs, we performed GO and KEGG enrichment 
analyses using R packages such as "clusterProfiler," 
"enrichplot," "org.Hs.eg.db," and "ggplot2". Moreover, 
the GO enrichment included biological processes (BP), 
molecular functions (MF), and cellular component 
(CC). P-value<0.05 was considered statistically 
significant [20]. 

Protein-protein interaction (PPI) network 
In this study, a protein-protein interaction 

network of DERBPs was constructed by STRING 
(version 11.0). Then Cytoscape 3.7.1 was used to 
analyze and visualize the network. Genes with 
degrees≥20 were screened as biological hub genes, 
and interactions with a combined score of＞0.4 were 
considered significant. MCODE, a plugin for 
Cytoscape, was used to identify the most significant 
module with selections as MCODE score>4 and 
nodes>4. 

Identification of prognostic DERBPs 
Kaplan-Meier survival analyses were performed 

to evaluate the effects of each RBPs for the OS of 
ccRCC patients. We screened out the prognostic RBPs 
by using univariate Cox regression and choosing 
prognostic RBPs with p<0.05. The DERBPs with | 
Log2Foldchange | >1 and FDR < 0.05 were retained 
and intersected with prognostic RBPs with p<0.05. 
The overlapping genes from two sets were used as 
prognostic DERBPs for the subsequent analysis. 

Construction and validation of the prognostic 
signature 

The patients with survival time less than 30 days 
were excluded. Then, we randomly split the samples 
from TCGA into the training group (n=359) and the 
validation group (n=154) at a 7:3 ratio. Hereafter, 
using "glmnet" packages, LASSO Cox regression 
analysis was applied at 1000 maxit cross-validation to 
construct the signatures [21]. Besides, we defined the 
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formula for calculating the prognostic risk score as 
follow: Risk score = coef(gene1)*Exp(gene1) + 
coef(gene2)* Exp (gene 2) + … + coef(genen)* Exp 
(genen). Where "coef" represented the coefficient score 
estimated by multivariate Cox analysis, and "Exp" 
represented the expression value of the individual 
gene. The risk score was used as a measure of 
prognostic risk for each ccRCC patients. Meanwhile, 
according to the formula established in the training 
cohort, we calculated the risk score of the samples in 
the validation cohorts, including TCGA internal, GEO 
external, and ICGC external validation cohorts. We 
then classified the ccRCC patients into high-risk and 
low-risk groups, according to the median risk score as 
the cut-off. Kaplan–Meier survival analyses and the 
time-dependent ROC curve were used to evaluate the 
predictive performance of the prognostic signature. 
The AUC value of 0.75 or higher was considered a 
significant predictive value, and the value of 0.60 or 
higher was regarded as acceptable for prediction. 

Statistical analysis 
Statistical analyses were performed by using R 

studio (version 3.6.1) and SPSS (version 26.0). 
Kaplan-Meier survival analyses were used to estimate 
the survival rate. The time-dependent ROC curve was 
used to evaluate the accuracy of the prognostic 
signature. Besides, the Cox regression model was 

used to explore the independent risk factors for the 
OS in univariate and multivariate analyses. The 
samples with survival time less than 30 days, NX, MX, 
or missing values were excluded. Then a nomogram 
was developed by using the Cox regression model 
and made by the 'RMS' package. Concordance index 
and calibration plot were used to estimate the 
performance of the nomogram. All p-values are based 
on a two-sided statistical analysis, and p < 0.05 was 
considered to indicate statistical significance. 

Results 
Identification of DERBPs between tumor and 
normal in ccRCC tissue 

We compared all the mRNA expression levels of 
RBPs between 72 normal kidney tissue and 539 
kidney renal clear cell carcinoma (KIRC) tissue in the 
TCGA-KIRC dataset. We found that a total of 200 
differentially expressed RBPs (FDR<0.05, 
|log2FoldChange|>1), including 128 up-regulated 
and 72 down-regulated RBPs (Table S1). Moreover, 
the 10 most significant DERBPs in both up-regulated 
and down-regulated groups were shown (Figure 1). 
By using the "pheatmap" R package, an expression 
heatmap for all DERBPs was constructed either 
(Figure 2). 

 

 
Figure 1: Differentially expression of RNA Binding Proteins in ccRCC tissue samples. The differential expression of 200 RBPs was shown in the -log (Adjust-P-value) vs. log 
(Fold-Change) plot. Top 10 most significant RBPs in up-regulated and down-regulated groups were labeled with gene symbol ID. 
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Figure 2: Differentially expression of RBPs in ccRCC. Unsupervised clustering analysis was performed using the R package "Pheatmap," based on log2-transformed count values. 
The columns are samples, and the rows are RBPs. The blue represents down-regulation, while the red represents up-regulation. 

 

Bioinformatics analysis of DERBPs in ccRCC 
To explore the potential biological function and 

mechanisms of DERBPs in regulating ccRCC, we 
performed KEGG and GO enrichment analyses. The 
GO results showed that these DERBPs could 
participate in some vital biological processes such as 
mRNA processing, RNA splicing, and DNA 
modification (Figure 3A). Moreover, KEGG pathway 
enrichment analysis showed that DERBPs were 
mainly involved in Ribosome, Carbon metabolism, 
and RNA transport (Figure 3B).  

Afterward, the PPI network was built 
(confidence=0.7) by using STRING 11.0 better to 
explore the roles of these DERBPs in regulating 
ccRCC. We then used Cytoscape to analyze and 
construct a PPI network, including 117 nodes and 328 
edges, where low degree value is correlated with 
small node size, and low co-expression value is 
related to small edge size. According to the degree 
value, 4 hub RBPs were found with degree>20 (Figure 
4A). This co-expression result showed that RPS2, 
RPS14, RPS20, and RPLP0 might play essential roles 
in ccRCC. The detailed information of 4 biological hub 
genes was shown (Table S2). Then, the MCODE 
plugin was used to explore the critical modules of 

target genes, and two imperative modules were 
selected (Figure 4B,4C). 

Biological pathway enrichments and 
prognostic value of the biological hub genes 

We further explore the potential biological 
pathways of 4 biological hub genes. The GO analyses 
indicated that 4 biological hub genes were involved in 
some vital biological processes such as protein 
targeting, RNA binding, and ribosomal subunit 
(Figure 5A). Besides, there were just 1 KEGG 
pathways enriched, which is Ribosome. Then, 
according to the median expression of the hub genes, 
the patients in the TCGA database were divided into 
high-risk (n=265) and low-risk (n=265) groups. We 
performed Kaplan-Meier survival analyses to 
examine the survival significance between high- and 
low-risk groups. Patients with high expression of 
RPLP0 (p=0.0267), RPS2 (p=0.0071), RPS20 (p=0.0190) 
were significantly related to the poor prognosis 
(Figure 5B). Then we used ROC curves to evaluate the 
prognostic performance of the hub genes. The 
outcome indicated that none of the 4 hub genes could 
accurately predict the 1-year, 3-year, and 5-year 
prognosis of ccRCC patients (Figure 5C).  
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Figure 3: R packages were used to explore GO and KEGG enrichment pathways among DERBPs. Dot plots for GO (A) and KEGG (B) enrichment pathways were shown. The 
size of the dot represents counts, and the color of the dot represents p-value. 

 
Figure 4: Construction of the PPI network and 4 hub genes were identified(A). Selected important modules of target genes with MCODE score≥4, nodes≥4(B, C). 

 

Identification of prognostic DERBPs 
To explore an optimal model for predicting the 

prognosis of ccRCC patients, we continued to 
implement univariable Cox regression analysis with 
the p-value of <0.05 (n=451). Following this, the 
overlapped RBPs in both prognostic RBPs and 
DERBPs were selected for subsequent analyses 
(Figure 6A). Then, the LASSO Cox regression analysis 

was performed in the training cohort at 1000 maxit 
(Figure 6B, 6C), and we identified 10 DERBPs (ANK3, 
CD44, CGN, CHGA, DQX1, IGF2BP2, IGF2BP3, 
PABPC1L, KIAA1324, and RPL22L1) as potential risk 
genes in OS prognostic signature. Furthermore, the 
detailed information of 10 DERBPs was listed in the 
table (Table 1). 
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Figure 5: Circle plots for 10 most significant GO enrichment of 4 hub genes were shown (A). The size of the dot represents counts, and the color of the dot represents p-value. 
Moreover, Kaplan-Meier survival and time-dependent ROC curve analyses of 4 hub genes were shown (B,C). 

 
Figure 6: Venn diagram of overlapping prognostic DERBPs from prognostic RPBs (OS univariate cox p<0.05) and DEMRGs (|logFC| >1 and padj < 0.05) (A). 1000 maxit 
cross-validation for tuning parameter selection in the LASSO model for OS (B). LASSO coefficient profiles of prognostic DERBPs for OS (C). 

 

Table 1. Detailed information on DERBPs for constructing the 
prognostic signature. 

A 10-DERBPs-based signature for OS 
Gene 
name 

ENSG_ID Chromos
ome 

Description Coef 

ANK3 ENSG000001
51150 

10q21.2 Ankyrin 3 -0.081
289  

CD44 ENSG000000
26508 

11p13 CD44 Molecule  0.0262
41  

CGN ENSG000001
43375 

1q21.3 Cingulin -0.136
891  

CHGA ENSG000001
00604 

14q32.12 Chromogranin A 0.0287
61  

DQX1 ENSG000001
44045 

2p13.1 DEAQ-Box RNA Dependent ATPase 1 0.0064
70  

IGF2BP
2 

ENSG000000
73792 

3q27.2 Insulin-Like Growth Factor 2 MRNA 
Binding Protein 2 

0.0162
86 

IGF2BP
3 

ENSG000001
36231 

7p15.3 Insulin-Like Growth Factor 2 MRNA 
Binding Protein 3 

0.0654
26  

PABPC
1L 

ENSG000001
01104 

20q13.12 Poly(A) Binding Protein Cytoplasmic 1 
Like 

0.1131
94  

KIAA1
324 

ENSG000001
16299 

1p13.3 Estrogen-Induced Gene 121 Protein 0.0158
45  

RPL22
L1 

ENSG000001
63584 

3q26.2 Ribosomal Protein L22 Like 1 0.1284
15  

 

Construction and validation of the prognostic 
signature 

We used these 10 DERBPs above to construct a 
prognostic signature for predicting the OS of ccRCC 
patients. Then, according to the median risk score, the 
patients in the training cohort were divided into 
high-risk (n=179) and low-risk (n=180) groups for OS. 
The high-risk group has a worse prognosis than the 
low-risk group by using Kaplan-Meier survival 
analyses (Figure 7A). We found that the 1-year, 

3-year, and 5-year survival rate in the high-risk group 
were 84.2%, 64.5%, and 46.9%, while the 1-year, 3-year 
and 5-year survival rate in the low-risk group were 
96.2%, 87.8%, and 80.7%. Then we used 
time-dependent ROC curves to predict the 
performance of the prognostic signature. The 1-year, 
3-year, and 5-year AUC values were 0.784, 0.742, and 
0.771 (Figure 7B). Furthermore, the distribution of risk 
score, survival status, and the heatmap of risk RBPs 
were shown (Figure 7C-7E). 

Afterward, we validated the accuracy of the 
prognostic signature in the internal and external 
validation cohorts. Following this, we calculated the 
risk score of each patient based on the expression of 
the risk genes. The patients in the validation cohort 
were divided into high- and low-risk groups. 
Kaplan-Meier survival analyses showed significant 
differences between the high- and low-risk groups 
(p<0.05) in the TCGA internal (n=154), GEO external 
(n=39), and ICGC external (n=) validation cohorts 
(Figure 8A-8C). Meanwhile, time-dependent ROC 
curve analyses were performed at 1-year, 3-year, and 
5-year OS of ccRCC patients in the TCGA internal, 
GEO external, and ICGC external validation cohorts 
(Figure 8D-8F). 

The prognostic signature is independently 
associated with OS of ccRCC patients 

Then, we analyzed the correlation between the 
prognostic signature and clinical parameters of ccRCC 
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patients. The information of 530 ccRCC patients in the 
TCGA database was shown (Table 2). Cox regression 
analysis was conducted by using the TCGA database, 
including signature, age, gender, grade, stage, 
pathologic T, pathologic M, and pathologic N. As it is 
shown, in univariate analysis, risk, grade, pT, pM, pN, 
and stage were significantly correlated with OS of 
ccRCC patients (Table 3, p<0.05). Meanwhile, 
multivariate analysis showed that age, pT, pM, and 
risk were significantly related to OS (Table 3, p<0.05). 
The outcome indicated that the prognostic signature 
could be independently used to predict OS in ccCC 
patients. 

 

Table 2. Clinical information of 530 ccRCC patients 

Clinical parameters Variable Total (530) Percentages (%) 
Age ≤60 263 49.62 
 >60 267 50.38 
Gender Male 344 64.91 
 Female 186 35.09 
Pathological T T1 271 51.13 
 T2 69 13.02 
 T3 179 33.77 
 T4 11 2.08 
Pathological M M0 420 79.25 
 M1 78 14.72 
 MX 32 6.04 
Pathological N N0 239 45.09 

Clinical parameters Variable Total (530) Percentages (%) 
 N1 16 3.02 
 NX 275 51.89 
AJCC stage Stage I 265 50.00 
 Stage II 57 10.75 
 Stage III 123 23.21 
 Stage IV 83 15.66 
 Unkonwn 2 0.38 
ISUP grade G1 14 2.64 
 G2 227 42.83 
 G3 206 38.87 
 G4 75 14.15 
 GX 8 1.51 
Survival status Dead 173 32.64 
 Alive 357 67.36 

 

Table 3. Univariate and Multivariate analyses of ccRCC patients 
in the TCGA database 
Variables Univariate analysis Multivariate analysis 

HR (95%CI) p-value HR (95%CI) p-value 
Risk model (High vs Low) 3.516 (2.175,5.686) <0.001 2.953 (1.796,4.854) <0.001 
Age (>60 vs. ≤60) 1.519 (0.992,2.327) 0.054  1.806 (1.175,2.776) 0.007 
Gender (Male vs. Female) 0.734 (0.703,1.649) 0.939    
Grade (G3+G4 vs. G1+G2 ) 2.618 (1.639,4.180) <0.001   
pT (T3+T4 vs. T1+T2) 3.002 (1.965,4.587) <0.001 1.799 (1.137,2.847) 0.012 
pM (M1 vs. M0) 4.210 (2.716,6.524) <0.001 3.043 (1.904,4.864) <0.001 
pN (N1 vs. N0) 3.103 (1.602,6.011) 0.001    
Stage (III+IV vs. I+II) 3.430 (2.220,5.346) <0.001   

 

 
 

 
Figure 7: Construction of the prognostic signature. Analysis of OS prognostic signatures in ccRCC patients. Kaplan-Meier survival curve of OS in high-risk (red line) and low-risk 
(blue line) in ccRCC patients(A). Time-dependent ROC curve show area under curve (AUC) values at 1years(green), 3 years (blue) and 5 years (red) in ccRCC(B). Risk score 
distribution of high-risk (red) and low-risk (green) ccRCC patients in the OS model(C). A Scatter plot shows the survival status of ccRCC patients in the OS model. Red dots 
denote patients that are dead, and green dots denote patients that are alive(D). Expression of risk genes in the high-risk (blue) and low-risk (pink) training group ccRCC patients 
in the OS model(E). 
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Figure 8: Validation of the prognostic signature. Kaplan-Meier survival analyses showed significant differences between the high- (red line) and low-risk groups (blue line) in the 
TCGA internal(A), GEO external(B), and ICGC external (C) validation cohorts. Meanwhile, time-dependent ROC curve analyses were performed at 1-year, 3-year, and 5-year 
OS of ccRCC patients in the TCGA internal (D), GEO external (E), and ICGC external (F) validation cohorts 

 
Figure 9: The Nomogram was constructed for OS(A). Its calibration curve showed that 1-year(red), 3-year(green) and 5-year(blue) effects of prediction(B). Meanwhile, the 
ROC curve showed the 1-year(red), 3-year(green), and 5-year(blue) OS prediction of the nomogram (C). 

 
Furthermore, to better predict prognosis at 

1-year, 3-year, and 5-year survival of ccRCC patients, 
we constructed a nomogram integrating riskscore and 
clinical parameters that have significance with OS in 
multivariate analysis (Figure 9A). Moreover, we used 
a calibration curve to assess the accuracy of the 
nomogram (Figure 9B). The AUC values for 1-year, 
3-year, and 5-year OS were 0.871, 0.829, 0.816 (Figure 
9C). Those data showed that the nomogram could 
accurately predict 1-year, 3-year, and 5-year OS of 
ccRCC patients. 

Discussion 
Clear cell Renal cell carcinoma, especially 

metastatic ccRCC, is associated with high morbidity 

and mortality [22]. Although some therapeutic targets 
have been found in recent years, such as VEGF and 
mTOR, the outcome of treatment was varied, and the 
majority of ccRCC patients eventually got poor 
prognosis [23]. Besides, almost 25%-30% of ccRCC 
patients are found metastasis at initial diagnosis. 
Hence, finding diagnostic biomarkers or therapeutic 
targets for ccRCC is still meaningful. To our best 
knowledge, post-transcriptional regulation has been 
shown a correlation with tumorigenesis, such as RNA 
splicing and polyadenylation. Post-transcriptional 
regulation also means potential therapeutic 
opportunities [24]. RNA Binding Proteins (RBPs) play 
important roles in all processes of post-transcriptional 
regulation, which significantly regulate the 
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expression and function of oncoproteins and tumor 
suppressor proteins [25]. However, the relationship 
between RBPs and ccRCC is still unclear.  

In this study, we integrated high-throughput 
transcriptome profiling from the TCGA database and 
identified 200 DERBPs, including 128 up-regulated 
RBPs and 72 down-regulated RBPs. Furthermore, we 
analyzed biological pathways by using GO&KEGG 
and constructed a protein-protein interaction 
network. Firstly, for the biological process, DERBPs 
mainly occurred in mRNA processing, RNA splicing, 
translation, and location. Recent studies showed that 
RBPs could promote the malignant phenotypes of 
various cancers by regulating the mRNA process 
[26-28], consistent with DERBPs biological process. 
Secondly, for molecular functions, DERBPs could 
influence the binding of mRNA, mRNA 3'-UTR, and 
double-stranded RNA. Meanwhile, numerous 
activities of the transcriptional process were regulated 
by DERBPs. Next, the cell components showed that 
DERBPs were mainly located in the Ribosome. 
Dysregulation of ribosome biogenesis played a vital 
role in the development and progression of most 
spontaneous cancers [29]. Moreover, KEGG showed 
that DERBPs were involved in metabolism and 
transcriptional processes such as carbon metabolism 
and RNA transport. 

Last but not least, by constructing a PPI network, 
we found that 4 biological hub genes with degree>20, 
including RPLP0, RPS2, RPS14, RPS20. The hub genes 
played critical roles in regulating the processes of 
tumorigenesis and progression of ccRCC. However, 
the ROC curve indicated that all the hub genes lacked 
the prognostic value. Additionally, all hub genes were 
associated with ribosomal protein, which 
corroborated GO&KEGG results. 

Then we used univariable and LASSO Cox 
regressions and established a prognostic signature 
based on the 10 DERPBs to predict the prognosis of 
ccRCC patients. The outcome showed that the 
prognostic signature of 10 DERBPs could provide an 
accurate prognosis of ccRCC patients. The outcome 
indicated that the prognostic signature could be 
independently used to predict OS in ccCC patients. As 
shown in Table 3, in univariate analysis, risk, grade, 
stage, pT, pM, and pN were correlated with OS of 
ccRCC patients. Meanwhile, multivariate analysis 
showed that age, pT, pM, and risk were related to OS. 
Combined with significant clinical parameters and 
risk score, the nomogram was built to predict 1-year, 
3-year, and 5-year survival probability. Moreover, the 
calibration curve was performed with 300 bootstraps 
resamples and showed that the prognostic signature 
conducted with the ideal model [30]. Besides, the 
time-dependent ROC curve showed the accuracy of 

the nomogram. 
Our study has demonstrated that the 

10-DERBPs-based signature was strongly correlated 
with the overall survival of ccRCC patients. Some of 
the RBPs in our signature have been explored in the 
previous studies. CD44 was implicated in poor 
prognosis, cancer cell invasion, metastasis, and 
resistance to the sunitinib treatment [31]. It could be 
regulated by NF-kB inhibitors, which influenced the 
cancer stem-like cells [32]. IGF2BP3 were shown a 
strong association with the survival of ccRCC, which 
could activate the NF-kB pathway and promote RCC 
progression [33, 34]. These genes should be further 
explored in the future, especially concerning ccRCC. 

The major limitation of this study was that all 
data were obtained from several public databases, 
without the validation of prospective clinical trials. 
Moreover, some important clinical information, such 
as the treatment of ccRCC patients, was not available 
in the TCGA database. Besides, the mechanism of 
RBPs in the prognostic signature required detailed 
examinations in the future. Despite these limitations, 
our results showed that the prognostic signature 
based on RBPs could be a reliable predictive tool of 
ccRCC survival. 

Conclusion 
In our current study, we explored the biological 

functions and prognostic value of RBPs in ccRCC. 
Bioinformatics analysis showed that DERBPs might 
regulate transcriptional processes to influence 
tumorigenesis and progression. Furthermore, the 
prognostic signature of DERBPs might serve as 
promising diagnostic and prognostic biomarkers in 
ccRCC. More studies should be performed to confirm 
the findings of our studies. 

Supplementary Material  
Supplementary table.  
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