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Abstract 

Background: Pancreatic cancer (PC) is an aggressive cancer with worse survival in the world. Emerging 
evidence suggested that the imbalance of alternative splicing (AS) is a hallmark of cancer and indicated 
poor prognosis of patients. Genes-derived splicing events can produce neoepitopes for immunotherapy. 
However, the profound study of splicing profiling in PC is still elusive. We aimed to identification of novel 
prognostic signature across a comprehensive splicing landscape and reveal their relationship with 
tumor-infiltrating immune cells in pancreatic cancer microenvironment.  
Methods: Based on integrated analysis of splicing profiling and clinical data, differentially splicing events 
were filtered out. Then, stepwise Cox regression analysis was applied to identify survival-related splicing 
events and construct prognostic signature. Functional enrichment analysis was performed to explore 
biology function. Kaplan-Meier curves and receiver operating characteristic (ROC) curves were 
performed to validate the predictive effect of predictive signature. We also verified the clinical value of 
prognostic signature under the influence of different clinical parameters. For deeper analysis, we 
evaluated the correlation between prognostic signature and infiltrating immune cells by CIBERSORT. 
Results: According to systematic analyzing, a final six splicing events were identified and validated the 
good prognostic capability in entire TCGA dataset, validation set 1 and validation set 2 by Kaplan-Meier 
curves (P < 0.0001). The area under the curve (AUC) of ROC curves were also confirmed the high 
predictive efficiency of the prognostic signature in these three cohorts (AUC = 0.857, 0.895 and 0.788). 
In order to validate whether prognostic signature highlights a correlation between AS and immune 
contexture, CIBERSORT was performed to analyze the proportion of tumor-infiltrating immune cells in 
PC. Based on prognostic signature, we identified survival-related immune cells including CD8 T cells (P = 
0.0111), activated CD4 memory T cells (P = 0.0329) and resting mast cells (P = 0.0352). 
Conclusion: In conclusion, our study contribute to provide a promising prognostic signature based on 
six splicing events and revealed prognosis-related immune cells which indeed represented novel tumor 
drivers and provide potential targets for personalized therapeutic. 
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Introduction 
Pancreatic cancer is an aggressive disease with 

highly malignancy, poor prognosis and immune 
tolerance and remains one of the deadliest cancers in 
the world [1, 2]. The 5-year survival rate for patients 

merely stands at 9% and the median survival time is 
5-6 months [3]. Tumor resection is the only possibility 
of cure, but the prognosis of patients is unfavorable in 
resected patients [4]. In addition, clinical treatment 
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results for patients are still undesirable because 
individual therapy strategies continue to have great 
challenges. 

Gene expression profiling can provide evidence 
to identify survival-related prognostic biomarkers, or 
suitable therapeutic targets, in cancer [5]. During the 
past few decades, lots of related studies have pointed 
out that the worst prognosis of PC is a difficult and 
strictly regulated process due to the increase of 
various gene alterations through the years. Recent 
whole-genome sequencing studies also pointed for 
genetic alterations in PC [6]. It is understood that gene 
expression disorder serves an extremely important 
role in the course of cancer, which empowers PC to 
have the capacity of invasion, metastasize and 
reduced survival rate [7]. However, many studies are 
mainly focusing gene variation in the process of 
cancer on transcript instead of pre-transcriptional 
level like splicing events. In particularly, systematic 
academic analysis of gene splicing alterations is 
limited in PC. 

The wide studies of RNA-Seq revealed that 
alternative splicing (AS) is a highly pervasive 
mechanism which can produce different isoforms and 
affects more than 90% of human genes [8]. The 
unbalanced expression of these isoforms between 
normal and tumor is changing in a wide range of 
extensive cancers contributing to tumorigenesis and 
the response to clinical therapy [9]. Unbalanced 
expression of splicing variants is one of biological 
process of cancer cell changes [10]. More and more 
reports suggested that differentially expression 
splicing variants is a hallmark of cancer [11]. Splicing 
events of cancer have been involved in multiple 
oncological processes including angiogenesis, 
invasion and immune destruction [12]. Similarly, 
splicing events are excessive in genes involved in 
immune cells of the tumor microenvironment. AS 
events are common in cancer-related immune cells, 
nearly 60 percent of genes previously unreported had 
frequent splicing isoforms in B cells or T lymphocytes 
[13]. Thus, AS is important to achieve diversity and 
specialization of function in immune cells in order to 
improve the level of immune system to dynamically 
direct an effector response to pathogen invasion. 
Splicing events can provide some neoepitopes for the 
study of immune tolerance, proliferation and 
treatment of PC. Therefore, survival-related splicing 
events may be most significant in deciphering the 
underlying mechanisms of tumorigenesis, targeted 
immunotherapy and improving the prognosis of PC 
patients. 

In this present study, based on integrated 
bioinformatics analysis, we build prognostic models 
which including six AS events. The AUC of the ROC 

curves and Kaplan-Meier (K-M) survival curves 
showed the valuable predictive efficacy of the model 
in PC. Aims to underlying the potential mechanisms 
between AS and 22 various immune cells, we 
performed CIBERSORT to analyze the proportion of 
tumor-infiltrating immune cells for this model in 
high-risk and low-risk patients. The results indicated 
that the AS model have strongly differential 
expression in many immune cells including memory 
B cells, naive B cells, CD8 T cells, macrophages M1, T 
cells regulatory (Tregs) and mast cells resting which 
are associated with survival in PC patients. Therefore, 
we discuss the relationship between AS and 
tumor-infiltrating immune cells for broaden the 
boundary of related cell-based immunotherapy. 

In conclusion, we identified the prognosis of AS 
events by integrated bioinformatics analysis and 
understand in detail the potential relationship 
between AS and immune cells that regulate PC, which 
is a key step in developing immunotargeted therapy 
and improving the prognosis of PC patients. 

Materials and Methods 
Data curating process 

Alternative splicing data of PC patients (n=176) 
were collected from SpliceSeq (http://bioinformatics. 
mdanderson.org/TCGASpliceSeq) which provide 
transcripts with variable splicing [14]. RNA 
expression data (level 3, n=178) and clinical 
information of PC patients were downloaded from 
The Cancer Genome Atlas (TCGA) database (https:// 
tcga-data.nci.nih.gov/) [15]. After intersection of 
these patients, a total number of 175 patients with 
splicing data, RNA expression data and overall 
survival (OS) were included in the present study for 
further analysis. We also download an independent 
dataset with accession number of GSE28735 (n=90, 45 
normal and 45 patients) from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm. 
nih.gov/geo/) to serve as validation dataset. The 
platform of this dataset is GPL6244. These data were 
normalized by robust multi-array average (RMA) and 
log2-transformed which were used to validate the 
result. 

Identification of differentially AS events and 
construction AS related prognostic signature 

In TCGA splice-seq, we analyzed the percent 
spliced in (PSI) value ranging from zero to one was 
calculated for each detected AS events in a gene to 
evaluate the mRNA splicing patterns in patients with 
PC [16]. We performed a stringent filter of samples 
with PSI value ≥ 0.75. The overlapped AS events were 
visualized with Upset plot by using UpSetR package 
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(R software version 3.5.2) which can depict the 
intersection of more than three sets and rank the 
intersections [17]. 

In order to identify differentially AS events 
between PC and normal tissues, the expression 
differences were characterized by absolute fold 
change (FC) over 2 and adjusted P-value < 0.05. Then, 
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia 
of Genes and Genomes) pathway enrichment analysis 
of these AS events were performed by Bioconductor R 
package clusterProfler. In general, P ≤ 0.05 were 
represented significantly enriched pathways. 
Furthermore, univariate Cox regression analysis and 
multivariate Cox regression were performed to 
construct AS related prognostic model in PC patients 
by survival package in R (n=175). Finally, the 
prognostic signature, risk score, was calculated as 
followed: 

Risk score = �𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝛽𝛽𝛽𝛽
𝑛𝑛

𝑖𝑖

 

In the formula, n, PSI and βi represented the 
number, percent-spliced-in value and regression 
coefficient of splicing events, respectively. 

Validation of the prognostic signature 
First, we performed differential expressed 

analysis of six genes in prognostic signature by GEO 
dataset (GSE28735) and The Human Protein Atlas 
database (HPA, https://www.proteinatlas.org/). 
Then, entire TCGA patients with PC (n=175) were 
randomly separated into two sets (TCGA validation 
set 1, n=88 and TCGA validation set 2, n=87). The 
prognostic signature was identified in entire TCGA 
data set and validated in both three sets. Based on risk 
score, patients were ranked into two (high/low) 
groups by the median cutoff value in three cohorts, 
respectively. K-M survival curves with Log-Rank test 
were applied to compare the OS effect of prognostic 
model in two risky sets. ROC curve was used to 
evaluate the predictive effect of prognostic marker by 
calculating 3-year survival with ROC package in R 
software. Likewise, we used stepwise Cox linear 
regression analysis to investigate the influence of 
clinical parameters in the prognostic signature by 
survival package in R and IBM SPSS 25.0 program. 

Validation the survival correlation between 
prognostic signature and tumor infiltrating 
immune cells in patients with PC 

In order to explore the correlation between 
prognostic model and infiltrating immune cells, we 
need to perform CIBERSORT to identify the 
proportion of 22 different infiltrating immune cells in 
tumor immune microenvironment. CIBERSORT 

(http://cibersort.stanford.edu/), a computational 
framework which can provide detailed cell type 
abundance from tumor RNA profiles of intact tissues 
[18]. In final, a total number of 113 patients with 
complete OS and risk score were included for further 
analysis. Based on risk score of prognostic signature, 
patients were separated into two (high/low) risk sets 
by the median value. Then, differently immune cell 
types between high versus low risky groups were 
tested by GraphPad Prism 8. Furthermore, univariate 
Cox linear regression or multivariate Cox linear 
regression was performed to evaluate the relationship 
between OS and infiltrating immune cells in cancer 
microenvironment. For survival-related immune cells, 
K-M survival curves and Log-Rank test were 
performed in PC patients. 

Statistical analysis 
In this study, all data were used to determine 

independent prognostic factors which can predict 
patients’ survival status by the R package (R software 
version 3.5.2). And the GraphPad Prism 8.0 software 
was performed to plot graphs containing K-M 
survival curve. All statistical analysis was used by 
IBM SPSS 25.0 program. Student t test (for equal 
variances) was performed and statistically significant 
P-value was set as ≤ 0.05 with the purpose of ensuring 
the reliability of the results. 

Results 
AS profiling and identification of differently 
survival-related AS events in PC 

The overall workflow in this study was 
summarized in Figure 1. 

The integrated profiles of AS genes and events 
for 175 PC patients were analyzed using RNA-Seq 
data. The detailed clinical pathological data of 
patients from TCGA are summarized in Table 1. In 
total, we detected 30552 splicing events in 9665 genes 
by using SpliceSeq. All detected differently AS events 
can be classified into seven types: exon skip (ES), 
alternate acceptor site (AA), alternate promoter (AP), 
alternate donor site (AD), alternate terminator (AT), 
mutually exclusive exons (ME) and retained intron 
(RI), which were illustrated in Figure 2A. ES and AP 
events are the most frequent and the Upset plot shows 
the interaction numbers between genes and different 
AS class (Figure 2B). It is worthy that one gene may 
have up to several types of AS events and ES is the 
highest AS events in number instead of ME is the 
rarest. 

Furthermore, in order to study the prognostic 
value of differently AS events, univariate Cox 
proportional hazards regression analysis were 
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conducted in PC patients. As results, 5452 survival 
associated AS events were identified in 3207 
differently expressed genes. UpSet plot of interactions 
between genes and OS associated AS events was 
shown in Figure 2C. One gene can produce more 
types survival-related AS events. AS shown in figure, 
seven AS events are associated with OS in PC patients 
and ES is the highest in number, but AA is the rarest. 
To demonstrate selected AS events have prognostic 
value, the top 20 most significant prognosis- 
associated AS genes of each types are illustrated in 
Supplementary Figure S1A-G. As shown in results, 
we identified the prognostic signature including AP 
in UBA1, S100A13, SH3KBP1 and COPS7A, ES in 
GSE1 and AT in NISCH are included. 

In addition, it was evident that AS is a RNA 

processing pathway, which can change the function of 
protein. For a deeper understanding of the potential 
biological significant of the survival-related AS 
events, GO categories (Supplementary Figure S2A) 
and KEGG pathway (Supplementary Figure S2B) 
were performed. In GO analysis, there are we 
detected that AS events are essential in mRNA 
splicing which mainly enriched in regulation of 
mRNA processing, metabolic process, cytoplasmic 
region, cell-substrate adhesion junction and actin 
binding. The significant KEGG pathways of the AS 
events are including regulation of actin cytoskeleton 
and ErbB signaling pathway. Taken together, above 
results represented that genes with AS events play a 
valuable role in the biological process of PC. 

 

 
Figure 1. Flow diagram of data and analyses presented in this work. 
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Table 1. Summary of clinical characteristics of PC patients in 
entire TCGA set (n=175), TCGA validation set 1 (n=88) and 
TCGA validation set 2 (n=87) 

Characteristic Patients in entire 
TCGA set  
(n=175), n (%) 

Patients in 
validation set 1 
(n=88), n (%) 

Patients in 
validation set 2 
(n=87), n (%) 

Age (years)    
<65 87 (49.71) 47 (53.41) 35 (40.23) 
≥65 88 (50.29) 41 (46.59) 52 (59.77) 
Gender    
Female 80 (45.71) 42 (47.73) 38 (43.68) 
Male 95 (54.29)  46 (52.27) 49 (56.32) 
History type    
PAAD  145 (83.43) 71 (80.68) 74 (85.06) 
Other subtype 29 (16.00) 17 (19.32) 12 (13.79) 
NA 1 (0.57) 0 (0.00) 1 (1.15) 
Vital status    
Alive 87 (49.71) 39 (44.32) 44 (50.57) 
Dead 88 (50.29) 49 (55.68) 43 (49.43) 
Cancer stage    
Stage I 21 (12.00) 14 (15.91) 7 (8.05) 
Stage II  144 (82.29) 71 (80.68) 73 (83.91) 
Stage III-IV 7 (4.00) 2 (2.27) 5 (5.75) 
NA 3 (1.71) 1 (1.14) 2 (2.30) 
Race    
Asian 10 (5.71) 3 (3.41) 7 (8.05) 
Black or African American 6 (3.43) 0 (0.00) 6 (6.90) 
White 155 (88.57) 82 (93.18) 73 (83.91) 
NA 4 (2.29) 3 (3.41) 1 (1.15) 
Pathological stage N    
N0 49 (28.00) 20 (22.73) 29 (33.33) 
N1 121 (69.14) 64 (72.73) 57 (65.52) 
NA 5 (2.86) 4 (4.55) 1 (1.15) 
Pathological stage T    
T1-T2 31 (17.71) 21 (23.86) 10 (11.49) 
T3-T4 142 (81.14) 66 (75.00) 76 (87.36) 
NA 2 (1.14) 1 (1.14) 1 (1.15) 
Pathological stage M    
M0 78 (44.57) 41 (46.59) 37 (42.53) 
M1 4 (2.29) 1 (1.14) 3 (3.45) 
NA 93 (53.14) 46 (52.27) 47 (54.02) 
Cancer Status    
Tumor Free 54 (30.86) 26 (29.55) 28 (32.18) 
With Tumor 71 (40.57) 40 (45.45) 31 (35.63) 
NA 50 (28.57) 22 (25.00) 28 (32.18) 
Grade    
G1 30 (17.14) 19 (21.59) 11 (12.64) 
G2 95 (54.29) 42 (47.73) 53 (60.92) 
G3-G4 49 (28.00) 26 (29.55) 23 (26.44) 
NA 1 (0.57) 1 (1.14) 0 (0.00) 
New event    
No 70 (40.00) 32 (36.36) 38 (43.68) 
Yes 105 (60.00) 56 (63.64) 49 (56.32) 
Radiation therapy    
No 101 (57.71) 51 (57.95) 50 (57.47) 
Yes 31 (17.71) 16 (18.18) 15 (17.24) 
NA 43 (24.57) 21 (23.86) 22 (25.29) 
History of alcohol    
No  63 (36.00) 30 (34.09) 33 (37.93) 
Yes 100 (57.14) 54 (61.36) 46 (52.87) 
NA 12 (6.86) 4 (4.55) 8 (9.20) 
Anatomic neoplasm 
subdivision 

   

Head of pancreas 136 (77.71) 70 (79.55) 66 (75.86) 
Body of pancreas 14 (8.00) 6 (6.82) 8 (9.20) 
Tail of pancreas 14 (8.00) 8 (9.09) 6 (6.90) 
NA 11 (6.29) 4 (4.55) 7 (8.05) 
History of diabetes    
No 106 (60.57) 61 (69.32) 45 (51.72) 
Yes 38 (21.71) 16 (18.18) 22 (25.29) 
NA 31 (17.71) 11 (12.50) 20 (22.99) 

Abbreviations: PC: pancreatic cancer; TCGA: The Cancer Genome Atlas; PAAD: 
pancreatic adenocarcinoma; NA: not available. 

Construction of survival-associated AS 
prognostic model 

Lasso regression (removing genes with high 
correlation) was applied on differently OS-related AS 
events after univariate Cox survival analyses and then 
further multivariate Cox hazards regression analyses 
was carried out to determine independent prognostic 
indicators in PC. Finally, we obtained six genes with 
AS events (AP in UBA1, S100A13, SH3KBP1 and 
COPS7A, ES in GSE1 and AT in NISCH) could be 
recognized as an independent prognostic risk scoring 
system in PC patients (n=175, Supplementary Table 
S1). Based on the formula of risk score, patients were 
divided into two (low and high) risk groups using the 
median risk value in entire TCGA data set (n=175, 
Figure 3A), TCGA validation set 1 (n=88, Figure 3B) 
and TCGA validation set 2 (n=87, Figure 3C), 
respectively. These results showed that risk score may 
exhibit much more prognostic efficiency. 

Furthermore, we performed univariate and 
multivariate survival tests in order to prove the 
predictive ability of the prognostic signature and 
different clinical pathological parameters including 
cancer status, history type, pathological stage-T, 
pathological stage-N, cancer stage, grade, new event 
and radiation therapy (Table 2). Univariate survival 
analyses showed that risk score and the above 
mentioned clinical factors can be prognostic 
biomarker in PC patients (n=175, Figure 3D). As 
showed in Figure 3E, risk score (P<0.0001) and grade 
(P=0.028) were independent prognostic indicators 
with significant differences for PC patients in 
multivariate survival analysis. Although other clinical 
indicators in multivariate survival analysis were less 
powerful, they still have potential value in clinical 
application. It is notable that risk score (P<0.0001) had 
the strongest predictive ability among these 
indicators. 

Validation of the prognostic signature in PC 
patients 

In order to verify the expression of six genes in 
prognostic signature is significantly different between 
normal and patients, we conducted the validation in 
GSE28735 and HPA database, respectively. As shown 
in Supplementary Figure S3A, all six genes were 
differentially expressed in GSE28735 and the 
difference was statistically significant (P<0.05). 
Immunohistochemical results (Supplementary Figure 
S3B) in HPA database also showed that the moderate 
or high staining intensity and cell quantity (>75%) of 
these four genes (UBA1, S100A13, SH3KBP1 and 
NISCH) in PC tissues contrasted sharply with the lack 
or low staining intensity and small quantity (<75%) in 
normal tissues, while COPS7A presented high 
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expression level in both normal and tumor tissue. For 
GSE1, the staining intensity and quantity in normal 
tissue is higher than which in tumor tissue. These 
results indicated that the expression of most of the six 
mRNAs is significantly different between normal and 
PC tissues. Furthermore, in order to validate the 
predictive capability of prognostic signature, survival 
curves were generated by K-M survival analysis in 
three cohorts. The time-dependent ROC curves were 
applied to assess the prognostic efficiency and 
accuracy of patients with this prognostic model. In 
entire TCGA data set (n=175), the K-M survival curve 
showed that the prognostic signature indeed can well 
distinguish patients into high or low survival rate 

(P<0.0001, Figure 4A). ROC curve (AUC) for 
predicting patients survival confirmed that the 
identified prognostic signature has the robust 
efficiency to predict the OS for PC patients 
(AUC=0.857, Figure 4B). In TCGA validation set 1 
(n=88), the K-M curve (P<0.0001, Figure 4C) and ROC 
curve (AUC=0.895, Figure 4D) also showed that the 
prognostic signature indeed have robust predictive 
ability in PC patients. In TCGA validation set 2 
(n=87), the K-M survival curve also showed evident 
gaps between low-risk and high-risk patients 
(P<0.0001, Figure 4E) and the ROC curve (AUC=0.788, 
Figure 4F) again validated that the prediction model 
can be good prognostic indicator in patients with PC. 

 

 
Figure 2. Splicing events profiling in PC. (A) Seven different AS types of genes including alternate acceptor site (AA), exon skip (ES), alternate donor site (AD), alternate 
terminator (AT), alternate promoter (AP), mutually exclusive exons (ME) and retained intron (RI). (B) Upset plot of interactions between different AS types in PC (n=175). One 
gene may have six AS types. (C) The Upset plot of different survival-associated AS types by performing univariate Cox regression in PC. One gene can produce more than four 
types survival-related AS events. 
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Figure 3. Identification of prognostic AS model and construction a prognostic risk score system in PC. Distribution of risk stratification based on prognostic 
signature was validated in three cohorts including (A) entire TCGA set (n=175), (B) TCGA test set (n=88) and (C) TCGA validation set (n=87). The top part displays and sorts 
the patients’ survival data based on risk score, the middle part shows the risk score’s distribution curve and the bottom part (heat map) presents of the PSIs value of each 
prognostic signature. Forest plot visualizing hazard ratios of significantly survival-related clinical pathological parameters including cancer status, history type, pathological stage 
T, pathological stage N, cancer stage, grade, new event, radiation therapy by performing univariate (D) and multivariate (E) Cox regression analysis. A two‐sided Log‐Rank and 
Wilcoxon P<0.05 were considered significant. 

 

Validation independent prognostic indicator of 
the six-AS events from clinical pathological 
factors in entire TCGA set 

Based on the previous univariate survival 
analysis, we know that clinical parameters were 
effective prognostic predictors in patients with PC. 
Thus, we performed the K-M survival curves to 
validate the predictive value of clinical parameters 
including cancer status (P<0.0001, Figure 5A), history 

type (P=0.0018, Figure 5B), pathological stage-T 
(P=0.0156, Figure 5C), pathological stage-N (P=0.0017, 
Figure 5D), grade (P=0.0340, Figure 5E), cancer stage 
(P=0.0157, Figure 5F), new event (P=0.0011, Figure 
5G) and radiation therapy (P=0.0039, Figure 5H). 
Obviously, patients who were with tumor, pancreatic 
adenocarcinoma (PAAD), in pathological stage- 
(T3-T4), in pathological stage-N1, in grade-(G2-G4), in 
stage II-IV, with new event and without radiation 
therapy had worse prognosis in entire TCGA set. 
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These results further validated that these clinical 
indicators indeed have good prognostic value in 
patients of PC. 

In order to fully understand the clinical value of 
prognostic signature, stratified survival analysis was 
performed to validate whether the prognostic model 
is indeed significant in clinical application. For clinical 
parameters of cancer status (tumor free or with tumor, 
Figure 6A), history type (other types or PAAD, Figure 
6B), pathological stage-T (T0 or T1, Figure 6C), 
pathological stage-N (N0 or N1, Figure 6D), grade (G1 
or G2-G4, Figure 6E), cancer stage (stage I or stage 
II-IV, Figure 6F), new event (no or yes, Figure 6G) and 
radiation therapy (yes or no, Figure 6H), risk score 
based on the integrated six-AS events signature can be 
confirmed as independent prognostic indicator and 
have great value in clinical application of patients in 
PC. 

Revealing the relationship between prognostic 
signature and tumor-infiltrating immune cells 
in tumor microenvironment 

More studies has been reported, infiltration of 
immune cells in tumor microenvironment was 
accompanied by cancer initiation and progression. 
Further investigation indicated that the presence of 
infiltrating immune cells can be used as biomarker for 
immunotherapy response [19]. Therefore, in order to 

valid whether our prognostic signature in PC patients 
highlights a correlation between tumor invasion and 
immune contexture, we applied CIBERSORT 
algorithm to discuss the proportions of distinct 
immune cell types with gene expression profiles from 
TCGA-PC. CIBERSORT algorithm can assess the 
infiltration of different immune cells by assigning 
different P-value to each sample [20]. In final, we got a 
data cohort with 113 PC patients with CIBERSORT P ≥ 
0.05. As shown in Figure 7A, we firstly tested the 
percentage of 22 immune cells in each patient with 
PC. Then, these patients were classified into two 
(low/high) risk groups based on prognostic 
signature. Distribution of immune cell-type fractions 
in low-risk groups compared with high-risk were 
shown in Bar charts (Figure 7B). In addition, we 
investigated the correlation between each cell type 
which showed that naive CD4 T cells were highly 
correlated with B cells memory in PC patients (Figure 
7C). Furthermore, as shown in the results, the 
fractions of macrophages M1 (P=0.0137, Figure 7D) 
and resting mast cells (P=0.0433, Figure 7E) were 
significantly higher in higher risk group than that one, 
whereas the fraction of CD8 T cells (P=0.0071, Figure 
7F), T cells regulatory (P=0.0392, Figure 7G), naive B 
cells (P=0.0127, Figure 7H) and memory B cells 
(P=0.0319, Figure 7I) were indeed lower in high-risk 
group. There indeed have huge differences in 

 

 
Figure 4. Validation of prognostic model for PC patients with Kaplan-Meier survival curves and ROC curves. Kaplan-Meier survival curves of prognostic 
signature for PC patients in (A) entire TCGA set (n=175), (C) TCGA test set (n=88) and (E) TCGA validation set (n=87). A two‐sided Log‐Rank P<0.05 were considered 
significant. ROC curves were applied to validate prognostic efficiency of prognostic biomarker for PC patients at 3 years in (B) entire TCGA set (n=175), (D) TCGA test set 
(n=88) and (F) TCGA validation set (n=87). Abbreviation: ROC: receiver operating characteristic. 
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immunological filtration composition, which are 
probably critical factors in clinical immune-targeted 
therapy and patients’ prognosis in PC. Furthermore, 
univariate and multivariate survival analysis were 
applied based on the study of the relationship 
between the proportion of different immune cells in 
PC patients and their survival (Supplementary Table 
S2). The results of univariate survival analysis 
indicated that signature representing risk score, CD8 
T cells, activated memory CD4 T cells and resting 
mast cells which were associated with OS could be 
prognostic indicators in PC patients. Importantly, risk 
score and mast cells are more consistently predicted 

OS than did other signatures in multivariate survival 
analysis. K-M curves also confirmed that risk score 
(P<0.0001, Figure 8A), CD8 T cells (P=0.0111, Figure 
8B), activated memory CD4 T cells (P=0.0329, Figure 
8C) and resting mast cells (P=0.0352, Figure 8D) have 
prognostic benefit for patients with PC. All above 
results show that the infiltrating immune cells in 
tumor microenvironment were associated with 
prognostic signature. What we identified in the study 
could provide prognostic biomarker for PC patients 
and eventually for personalized immune-targeted 
therapy. 

 

 
Figure 5. Validation prognostic indicators in clinical pathological parameters in patients. The Kaplan-Meier survival curves of prognostic biomarker in clinical 
pathological parameters including (A) cancer status, (B) history type, (C) pathological stage T, (D) pathological stage N, (E) grade, (F) cancer stage, (G) new event, (H) radiation 
therapy. A two‐sided Log‐Rank and Wilcoxon P<0.05 were considered significant. 
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Table 2. Univariable and multivariable Cox regression analyses for risk score and different clinical pathological parameters in PC patients 

Clinical feature Number (n) Univariable  analysis Multivariable  analysis 
HR 95% CI P-value HR 95% CI P-value 

Risk score (Low risk/High risk) 88/87 4.917 2.949-8.199 <0.0001 4.746 2.135-10.551 <0.0001 
Cancer status (Tumor free/with tumor) 54/71 3.405 1.882-6.162 <0.0001 1.804 0.724-4.496 0.206 
History type (PAAD/other subtype) 146/28 3.095 1.488-6.439 0.003 1.404 0.462-4.270 0.550 
Pathological stage-T (T1+T2/T3+T4) 31/142 2.272 1.169-4.416 0.016 1.224 0.434-3.454 0.703 
Pathological stage-N (N0 / N1) 49/121 2.217 1.301-3.780 0.003 1.262 0.593-2.685 0.546 
Cancer stage (Stage I/II/III-IV) 21/144/7 1.689 1.004-2.840 0.048 1.077 0.350-3.308 0.897 
Grade (G1/G2/G3-G4) 30/95/97 1.505 1.095-2.069 0.012 1.620 1.052-2.496 0.028 
New event (No/Yes) 70/105 2.257 1.377-3.699 0.001 1.638 0.631-4.256 0.311 
Radiation therapy (No/Yes) 101/31 2.708 1.339-5.476 0.006 1.799 0.754-4.294 0.186 
Abbreviations: PC: pancreatic cancer; HR: hazard ratio; 95%CI: 95% confidence interval.

 

 
Figure 6. Stratified analyses and validate prognostic signature in clinical pathological parameters for PC patients. The Kaplan-Meier survival curves of 
prognostic biomarker in the subtype of (A) cancer status, (B) history type, (C) pathological stage T, (D) pathological stage N, (E) grade, (F) cancer stage, (G) new event, (H) 
radiation therapy. A two‐sided Log‐Rank and Wilcoxon P<0.05 were considered significant. 
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Figure 7. Assessment of prognostic signature from 22 immune infiltration cells in PC. (A) The summary of 22 immune cells’ subpopulations in 113 samples. (B) 
Composition of infiltrating immune cells in different risk (high/low) groups. (C) Correlation analysis of all 22 immune infiltrating cells. Differently fractions of (D) macrophages M1, 
(E) resting mast cells, (F) CD8 T cells, (G) T cells regulatory, (H) naive B cells and (I) memory B cells in low-risk and high-risk groups, respectively. A two‐sided Log‐Rank and 
Wilcoxon P<0.05 were considered significant. 

 

Discussion 
PC is one of the critical causes of cancer-related 

deaths worldwide. Its incidence rate and mortality 
rate increase year by year, which are obliged to attract 
the attention of scientists [21]. Increasing evidence 
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demonstrated that isomers, formed after AS of genes, 
can clearly contribute to tumor progression. These 
genes were proved to be the determinant of scientists' 
research [22]. Splicing events of cancer-related genes 
have the potential to gain oncogenic activity may 
potentially be used as candidate genes for prognostic 
biomarkers in various cancers [23]. For example, 
Kahles et al. systematic analyzed splicing landscape 
across 8,705 cancer patients [24]. Yu and his 
colleagues identified of differential AS genes by 
expression profiling in gliomas [25]. Novel signature 
(seven genes) indicated clinical reaction and platinum 
sensitivity of serous ovarian carcinoma [26]. Xie et al. 
studied prognostic splicing signatures and revealed 
regulatory network in esophageal carcinoma [27]. 
Similarly in PC, lots of studies revealed the role of 
statistic aberrant splicing events. For instance, Choi et 
al. revealed the clinical application of RHAMM 
isoforms in the process of pancreatic tumor 

progression [28]. In another study, Yang et al. 
identified of potential AS prognostic indicators in 
Pancreatic Ductal Adenocarcinoma [29]. Moreover, 
gene of MALT1 with splicing events can activate 
CD4+ T cells [30]. In addition, the pattern of hMENA 
isoforms is regulated by TGF-beta1 in PC and may 
predict patient outcome [31]. Thus, the potential 
significance of AS in clinical application and tumor 
biology has been revealed with each passing day. 
Therefore, it is urgent to identify AS related 
biomarkers to predict prognosis in PC. 

Integrated prognostic splicing biomarker 
identified in the present study is including UBA1, 
S100A13, SH3KBP1, COPSTA, GSE1 and NISCH. The 
signature model has robust effect to predict prognosis 
in PC patients. According to NCBI, Ensemble and 
SMART database, UBA1 has been understood as the 
ubiquitin-activating enzyme E1 which involved in 
protein homeostasis. Inhibitors of UBA1 represent an 

 

 
Figure 8. Validation the prognostic efficiency of infiltrating immune cells in patients. The Kaplan-Meier survival curves of OS of (A) risk score, (B) resting mast cell, 
(C) CD8 T cells and (D) activated memory CD4 T cells. A two‐sided Log‐Rank P<0.05 were considered significant.  
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effective target spot for cancer therapy [32]. 
Demonstrated in mouse models also showed the E1 
inhibitor can regulate the nuclear factor-κB (NF-κB) 
and tumor suppressor p53, that strongly represented 
the value of E1 inhibitors as tumor therapeutic drugs 
[33]. S100A13 can act on the regulation of FGF-1 and 
participate in the regulation of VEGF-A, which is 
related to tumor grading and promotes tumor to be 
more invasive and aggressive. S100A13 has been 
investigated as a new angiogenesis biomarker in 
human melanoma [34] and astrocytic gliomas [35]. 
SH3KBP1 can encode an adapter protein and its 
splicing can make multiple transcript variants with 
distinct function. Study demonstrated that SEPT9 
competes with the ubiquitin ligase Cb1 for binding to 
SH3KBP1 and inhibits ubiquitylation of epidermal 
growth factor receptors in cells which can induce or 
support the development of cancers [36]. COPSTA has 
not been identified clearly yet and it should go further 
study. GSE1 encodes a proline-rich protein with 
coiled coil domains, can predict poor survival 
outcome in gastric cancer [37]. Previously, it also 
reported that GSE1 can make breast cancer deteriorate 
rapidly under the action of upstream mir-489-5p [38]. 
NISCH encodes a non-adrenergic imidazoline-1 
receptor protein, which is mainly located in the inner 
layer of plasma membrane. This protein has different 
functions in different cancers. The increased 
expression in human breast cancer can promote 
tumor metastasis and invasion. The mechanism may 
be achieved by controlling the expression of α-5 
integrin. However, in ovarian cancer, the decreased 
expression of NISCH can make cancer cells 
deteriorate rapidly including proliferation and 
metastasis. [39]. Therefore, it is possible to formulate 
the hypothesis that changes in these genes could be 
involved with cancer and the role of their splicing 
events should be investigated in the future. 

Studies have been reported that AS events have 
been involved in a variety of tumor processes, 
including angiogenesis, invasion and immune 
destruction [40]. Genes-derived splicing events can 
produce neoepitopes for immunotherapy to improve 
patients’ survival [41]. But there is a lack of 
bioinformatics analysis of alternative splicing and 
immunity in pancreatic cancer. We first discovered 
the correlation between alternative splicing and 
immunity, and revealed differential distribution of 
immune cells in different groups of patients separated 
by identified splicing signature. In our study, we 
found the differential distribution of more immune 
cells including macrophage M1, resting mast cells, 
CD8 T cells, regulation of T cells (Tregs), naive B cells 
and memory B cells in high- and low-risk groups of 
patients divided by splicing signature. We also found 

that CD8 T cells, activated memory CD4+ T cells and 
mast cells have prognostic effect in PC. Among them, 
high densities of mast cells are clearly related to poor 
prognosis. This view has indeed been reported in the 
investigation of skin cancers [42] and malignant 
melanoma [43]. In general, our study suggested that 
there are great correlation between splicing signature 
and immune cells in PC. 

Immunotherapy based on immune cells can 
provide effective treatment for some previously 
untreatable cancers including PC. However, one of 
the difficulties and urgency in the immunotherapy is 
to search appropriate target antigens [44]. Notably, in 
the process of searching for new antigens of tumor 
mutations, neoantigen epitopes produced by mRNA 
splicing events has been paid enough attention. 
Recently, study has shown that peptides produced by 
mRNA splicing events have the potential to bind to 
MHC class I molecules where they serve as 
neoepitopes [45]. So hypothetically the splicing events 
identified in our study can generate neoepitopes for 
CD8+ or CD4+ T cells, cancer immunotherapy targets 
will be largely expand. In terms of clinical sense, using 
the neoantigen peptide to prepare personalized 
vaccine and inject it into patients to produce T cells 
responses. This will relieve or eliminate cancer cells 
and improve patients’ prognosis. 

Conclusions 
In conclusion, we demonstrated the robust 

prognostic value of AS events in PC, which can 
provide basis for clinical application. Furthermore, we 
indeed provide novel insights into the correlation 
between AS and immune cells. This result has 
far-reaching significance for immunotherapy in the 
future. Moving forward, the profound study of 
splicing events and immune cells can indeed 
represent novel tumor drivers and provide potential 
targets for personalized therapeutic intervention. 
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