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Abstract 

N6-methyladenosine (m6A) is the most prevalent modification of RNA in mammals. m6A RNA 
methylation levels are dynamically regulated by m6A RNA methylation regulators. While increasing 
evidence has suggested that m6A RNA methylation is vital in the initiation and progression of human 
carcinoma, little is known about the expression and effect of m6A RNA methylation regulators in 
differentiated thyroid carcinoma (DTC). Herein, we demonstrate that most of the thirteen main m6A 
RNA methylation regulators are differentially expressed in DTC tissues and normal thyroid tissues. Based 
on consensus clustering of m6A RNA methylation regulators, DTC cases were divided into two 
subgroups (TC1 and TC2). Compared with the TC1 subgroup, the TC2 subgroup was associated with a 
poorer prognosis, older age, higher T grade, higher N grade and higher TNM stage. The results indicated 
that alteration of m6A RNA methylation regulators was closely related to DTC. We further established 
a risk signature of four m6A RNA methylation regulators that could evaluate prognosis and 
clinicopathological features in DTC. Finally, the results of the TCGA analysis were verified by other 
cohorts from Gene Expression Omnibus (GEO) database. In conclusion, m6A RNA methylation 
regulators play a crucial part in the progression of DTC and are potentially useful for evaluating the 
prognosis and providing potential novel insights into treatment strategies. 
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Introduction 
Thyroid carcinoma is the most common 

malignant endocrine tumor with an incidence that has 
remarkably increased in the past 10 years [1-5]. 
Thyroid carcinoma ranks ninth in cancer incidence 
worldwide and accounts for 5.1% of the total 
estimated cancer burden in females in 2018 [6]. 
Differentiated thyroid carcinoma (DTC), which 
includes papillary thyroid carcinoma (PTC) and 
follicular thyroid carcinoma (FTC), comprises more 
than 90% of all thyroid carcinomas [7, 8]. Although 
DTC generally presents indolent behavior and has a 
favorable prognosis, approximately 20%–30% of DTC 
patients develop recurrence or distant metastasis after 
primary treatment. Several cases have a poor response 
to conventional treatment, resulting in poor 

prognoses [9-11]. 
RNA modification have widely studied in the 

proliferation and metastasis of human carcinoma [12, 
13]. The importance of messenger RNA (mRNA) 
plays in the post-transcriptional regulation of gene 
expression is well-established. In eukaryotes, 
N6-methyladenosine (m6A) is recognized as the most 
common internal chemical modification in mRNA, 
the process of which has been found to be dynamic 
and reversible [14-16]. During the processes of stem 
cell differentiation, embryo development, neural 
development or stress responses, m6A can regulate 
the key biological process of cells through modulating 
mRNA stability, splicing, intracellular distribution 
and translation [17-20]. m6A modification is 
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dynamically regulated by methyl-transferases 
(‘writers’), binding proteins (‘readers’), and 
demethylases (‘erasers’). The abundance, prevalence, 
and distribution of m6A are regulated by writers and 
erasers, while readers transform the m6A methylation 
information into a functional signal [21, 22]. Writers 
include WT1-associated protein (WTAP), methyl-
transferase like 3 (METTL3), methyltransferase like 14 
(METTL14), RNA binding motif protein 15 (RBM15), 
zinc finger CCCH-type containing 13 (ZC3H13) and 
KIAA1429, and readers include YTH domain- 
containing 1 (YTHDC1), YTH domain-containing 1 
(YTHDC2), YTH N6-methyl-adenosine RNA binding 
protein 1 (YTHDF1), YTH N6-methyladenosine RNA 
binding protein 2 (YTHDF2) and heterogeneous 
nuclear ribonucleoprotein C (HNRNPC). Erasers 
include fat mass- and obesity-associated protein 
(FTO) and α-ketoglutarate-dependent dioxygenase 
alkB homolog 5 (ALKBH5) [23-25]. Increasing 
evidence indicates that alterations of m6A regulatory 
genes are closely associated with obesity, infertility, 
immunological disease and neurological diseases. 
Recent studies have revealed that genetic changes and 
dysregulated expressions of m6A RNA methylation 
regulators play a crucial role in the progression of a 
variety of human cancers [26-28]. Although previous 
studies have found that m6A RNA methylation 
regulators were related to tumor progression in 
different types of cancers, the expression of m6A RNA 
methylation regulators as well as the prognosis value 
in DTC has not been completely explored. 

The present study analyzed the expression of 13 
m6A RNA regulators in DTC with RNA sequencing 
data from The Cancer Genome Atlas (TCGA) and 
evaluated the association between m6A RNA 
methylation regulators and clinicopathological 
characteristics in DTC patients. We further 
established a signature with four m6A RNA 
methylation regulators to predict the prognosis of 
DTC. 

Materials and Methods 
Data source 

The RNA-seq transcriptome data and clinical 
information of DTC patients were obtained from the 
Genomic Data Commons Data Portal within TCGA 
(https://portal.gdc.cancer.gov/) in June 2019. First, 
the RNA-seq data files were merged into a matrix file 
using the merge script of the Perl language (http:// 
www.perl.org/). Gene names were converted from 
the Ensembl ID to the matrix of the gene symbol 
through the Ensembl database version 84 (http:// 
asia.ensembl.org/index.html). The downloaded data 
included 509 thyroid carcinoma samples and 58 

normal thyroid samples. The data of 13 m6A RNA 
modification regulators were extracted and analyzed. 
The R (version 3.6.0) package [29] edgeR version 
3.27.6 (r-project.org/) was used to identify genes that 
were differentially expressed between tumor and 
normal thyroid samples, with a false discovery rate 
<0.05 and |log2 fold change| >2 set as the threshold. 
The gene expression level based on microarray data 
was calculated using R package limma (version 3.40.2; 
bioconductor.org/packages/release/bioc/html/lim
ma.html) with robust multiarray average (RMA) 
correction. 

Information of 13 m6A RNA methylation 
regulators and clinicopathological features 

We excluded patients with incomplete 
clinicopathological parameters or those with missing 
prognostic follow-up data. A total of 425 DTC patients 
were enrolled in our study (Table 1). Information of 13 
m6A RNA methylation regulators in DTC and normal 
thyroid were obtained from downloaded data, 
including 425 tumors and 57 normal samples. We 
systematically evaluated the association between 
clinicopathological features and the expression of the 
13 m6A RNA methylation regulators in DTC. 

Prognostic model 
We clustered the DTC patients into different 

groups using R package ConsensusClusterPlus 
(version 1.49.0, resample rate of 80%, 50 iterations and 
Pearson correlation, bioconductor.org/packages/ 
devel/bioc/html/ConsensusClusterPlus.html). To 
discover potential m6A RNA methylation regulators 
that affect the prognosis of DTC patients, least 
absolute shrinkage and selection operator (LASSO) 
Cox regression algorithm [30, 31] was applied using 
the R package survival (version 2.44; 
https://CRAN.R-project.org/view=Survival) and R 
package glmnet (version 2.0-18; https://CRAN.R- 
project.org/view=Glmnet) to identify optimal 
prognostic m6A RNA methylation regulators that 
impact progression-free survival (PFS) of DTC 
patients. An individual’s risk score signature was 
established as follows: 

Risk Score = ∑coefficient (GENEi) × expression 
(GENEi) 

Here, GENEi is the identifier of the ith selected 
gene. The risk score signature was a measure of 
prognostic risk for each DTC patient. 

Risk stratification and ROC curve 
The risk score was calculated according to the 

predictive GENE signature model. Using the median 
risk score as the cutoff, DTC patients were classified 
into the high-risk group and low-risk group. 
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Kaplan-Meier analysis was used to generate PFS 
curves, and log-rank tests were performed to assess 
PFS differences between high-risk and low-risk 
groups. The prediction efficiency of the risk signature 
model was evaluated by calculating the area under 
the curve (AUC) of the receiver operating 
characteristic (ROC) curve using R package survival 
ROC (version 1; https://CRAN.R-project.org/view= 
Survival ROC). Univariate and multivariate analyses 
with Cox proportional hazards regression for PFS 
were performed to determine the prognostic value of 
the risk score and various clinical characteristics. 
Hazard ratios (HRs) and 95% confidence intervals 
(CIs) were estimated. 

GEO database verification 
The datasets of DTC patients were obtained from 

the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/). Three mRNA 
datasets of DTC (GSE33630, GSE35570, GSE60542) 
were selected in the present study and the expression 
profiles were normalized by log2‐conversion. 

Statistical analysis 
Statistical analyses were performed using SPSS 

v21.0 software (IBM Corp.). The edger function was 
used to analyze 13 m6A RNA modification regulators 
in DTC and normal thyroid tissues. Patients were 
clustered into different groups by consensus 
expression of m6A RNA methylation regulators. Chi- 

square tests were used to evaluate the distribution of 
clinicopathological characteristics between the two 
risk groups. In addition, the association between risk 
groups and the prognosis of patients with DTC was 
evaluated with the Kaplan-Meier method and log- 
rank test. Prognostic performance was estimated by 
ROC analysis. Univariate and multivariate Cox 
regression analyses were used to identify factors that 
were independently related to the prognosis of DTC 
patients. The Student’s t-test were performed to 
calculate the results of GEO datasets. P<0.05 was 
considered statistically significant. 

Results 
Differentially expressed m6A RNA 
methylation regulators in DTC and normal 
thyroid 

While m6A RNA methylation regulators play a 
crucial role in the evolution and progression of 
malignant tumors, little information is available on 
their expression in DTC. We thus systematically 
investigated the expressions of 13 m6A RNA 
methylation regulators in DTC tissue and normal 
thyroid tissue using gene expression information 
from TCGA database profiles. The results showed 
that the expressions of 12 m6A RNA methylation 
regulators were significantly different between 
normal thyroid and DTC tissue (P<0.001) (Figure 1). 

 

 
Figure 1. The expression of 13 m6A RNA methylation regulators in DTC and normal thyroid. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 2. Consensus clustering cumulative distribution feature. (A) Consensus clustering cumulative distribution feature for k = 2 to 5. (B) Consensus clustering cumulative 
distribution feature for k = 6 to 9. 

 

Table 1. Clinical features of 425 DTC patients 

Variables DTC patients (N=425) 
n % 

Gender   
Male 118 27.76 
Female 307 72.24 
Age (year)  0.689 
<55 281 66.12 
≥55 144 33.88 
TNM stage   
Stage I 236 55.53 
Stage II 43 10.12 
Stage III 99 23.29 
Stage IV 47 11.06 
Focus type   
Unifocal 223 52.47 
Multifocal 202 47.53 
Vital Status   
Free 360 84.71 
Recurrence 65 15.29 
DTC: Differentiated Thyroid Carcinoma. 

 

Consensus clustering of m6A RNA 
methylation regulators 

Based on the expression similarity of m6A RNA 
methylation regulators, high intra-group correlation 

and low inter-group correlation, k=2 was the most 
appropriate selection with clustering stability 
increasing from k=2 to 9 in our study (Figure 2A and 
2B). Therefore, we divided DTC patients into TC1 or 
TC2 groups by applying consensus cluster k=2 and 
analyzed the clinicopathological characteristics 
between these two subgroups. The TC2 subgroup was 
significantly associated with an older age at diagnosis 
(P<0.05), higher T stage (P<0.05), lymph node 
metastasis (P<0.001), higher TNM stage (P<0.001) and 
disease-progression state (P<0.05). There were no 
correlations with other characteristics including 
gender, focus type, or metastasis stage (P>0.05) 
(Figure 3). We also investigated the prognosis of DTC 
patients in TC1 and TC2 subgroups using Kaplan- 
Meier and log-rank test and found that the TC2 
subgroup had a shorter PFS compared with the TC1 
subgroup (Figure 4; P=0.045). 

Risk model with four selected m6A RNA 
methylation regulators 

To identify potential prognostic m6A RNA 
methylation regulators, we examined the expression 
data of the twelve difference-expressed genes using 
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the LASSO Cox regression algorithm. According to 
the minimum criteria, we selected four genes to build 
the risk signature. The signature was developed as a 
linear combination of the expression levels of the four 
genes weighted by their relative regression 
coefficients in the LASSO algorithm as follows: RS = 
(0.0341 × expression value of HNRNPC) + (-0.0184 × 
expression value of ZC3H13) + (-0.0128 × expression 
value of ALKBH5) + (-0.0877 × expression value of 
WTAP). We calculated the risk score for each DTC 
patient based on the risk score model and separated 
them into high-risk (n = 212) and low-risk groups (n = 
213) using the median risk score as the cutoff point. 
The PFS of the two groups was significantly different; 
patients in the high-risk group had a shorter PFS 
compared with patients in low-risk group (Figure 5A; 
P=4.741e−04). The ROC curve was used to measure 
the predictive performance of the four-gene 
prognostic risk model. The AUC of the ROC for the 
four-gene prognostic model was 0.747 at 5 years of 
PFS (Figure 5B). These results indicate that the 
four-gene risk model can accurately predict the 

outcome of DTC patients. 

Association between prognostic risk scores 
and clinicopathological features of DTC 

Next, χ2 and Fisher exact tests were performed to 
evaluate whether the prognostic risk scores were 
connected with clinicopathological features in DTC 
patients. We found significant differences between the 
high- and low-risk groups in relation to N grade 
(P<0.001), T grade (P<0.01), and TNM stage (P<0.001). 
However, there was no association with other 
clinicopathological features including gender, age, 
focus type or M grade (P>0.05). Furthermore, the 
expression of the four selected m6A RNA methylation 
regulators in high- and low-risk groups was shown in 
our study (Figure 6). 

The four-gene risk signature is an independent 
prognostic indicator 

To determine whether the risk signature can 
independently predict the outcomes of DTC patients, 
univariate and multivariate Cox analyses were 

 

 
Figure 3. Heatmap and clinicopathologic features of the two clusters (TC1/2). 
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performed. Univariate analysis showed that age, T 
grade, N grade, M grade, TNM stage and the risk 
score were all related to PFS (Figure 7A). Including 
these factors into the multivariate analysis showed 
that the M grade, TNM stage and the risk score were 
significantly associated with PFS (Figure 7B). 
Moreover, DTC patients with high-risk scores had a 
shorter PFS than those with low risk scores in M grade 
0 group (Figure 8A) and TNM stage III groups (Figure 
8B). These results confirmed that the four-gene risk 
signature can predict prognosis of DTC patients 
independently. 

GEO verification 
In order to further confirm the previous findings 

from TCGA analysis,we selected three datasets from 
GEO to verify the accuracy of the above results. The 
expression profile of these three mRNAs is showed in 
Table 2. The expression of HNRNPC was significantly 
higher in DTC than that in normal thyroid tissues as 
shown in GSE33630, GSE35570 and GSE60542. 
Furthermore, the results from these three GEO 
datasets also indicated that the expression of ZC3H13, 
ALKBH5 and WTAP were all evidently lower in DTC, 
compared with that in normal thyroid tissues (Figure 

9A-L; P<0.05). The outcomes of GEO datasets were 
consistent with results of the abovementioned TCGA 
profiles. Unfortunately, no survival information of 
HNRNPC, ZC3H13, ALKBH5 and WTAP in DTC 
could be obtained from GEO datasets. 

 

 
Figure 4. The progression-free survival of DTC between TC1 and TC2. Log-rank 
test, P<0.05. 

 

 
Figure 5. Risk model with four selected m6A RNA methylation regulators. (A) Kaplan–Meier curve analysis of progression-free survival in high-risk and low-risk DTC patients. 
(B) Time-dependent ROC curve analysis of the four-gene prognostic risk model.  

 

Table 2. Expression data of three mRNA in GEO datasets 

GEO datasets Year Country Platform Sample N Relative expression of mRNA 
HNRNPC ZC3H13 ALKBH5 WTAP 
X±S P X±S P X±S P X±S P 

GSE33630 2012 Belgium GPL570 Normal 44 8.568±0.1152 0.0272 7.746±0.1695 <0.0001 8.108±0.2046 <0.0001 7.549±0.1431 0.0003 
DTC 47 8.625±0.1229 7.596±0.1549 7.863±0.1880 7.403±0.2190 

GSE35570 2015 Poland GPL570 Normal 48 8.263±0.1357 0.0332 6.705±0.1896 <0.0001 6.615±0.3214 <0.0001 6.653±0.1673 <0.0001 
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GEO datasets Year Country Platform Sample N Relative expression of mRNA 
HNRNPC ZC3H13 ALKBH5 WTAP 
X±S P X±S P X±S P X±S P 

DTC 65 8.324±0.1558 6.513±0.1935 6.370±0.2733 6.477±0.1909 
GSE60542 2015 Belgium GPL570 Normal 32 8.540±0.1142 <0.0001 7.051±0.2058 0.0016 7.861±0.1845 <0.0001 7.331±0.2567 0.0118 

DTC 57 8.657±0.1343 6.894±0.2241 7.702±0.1441 7.216±0.1650 
GEO: Gene Expression Omnibus; DTC: Differentiated Thyroid Carcinoma. 

 
 

 
Figure 6. The clinicopathological features and the expression levels of the four m6A RNA methylation regulators in low- and high-risk groups. *P<0.05, **P<0.01, ***P<0.001. 

 

 
Figure 7. The association between clinicopathological factors and PFS of DTC patients. (A) Univariate Cox regression analyses of the association between clinicopathological 
factors and PFS of DTC patients. (B) Multivariate Cox regression analyses of the association between clinicopathological factors and PFS of DTC patients. 
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Figure 8. Prognostic value of the risk signature in patients with M grade 0 and TNM grade III. (A) Kaplan–Meier PFS curves for patients with M grade 0. (B) Kaplan–Meier PFS 
curves for patients with TNM grade III. 

 

 
Figure 9. Expression of m6A RNA regulators in different GEO datasets. (A-D) The expression levels of four m6A RNA regulators in normal and DTC tissues from the 
GSE33630. (E-H) The expression levels of four m6A RNA regulators in normal and DTC tissues from the GSE35570. (I-L) The expression levels of four m6A RNA regulators 
in normal and DTC tissues from the GSE60542.  
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Discussion 
Thyroid carcinoma is the most common 

endocrine malignancy, with an increasing incidence 
around the world [32, 33]. Even though most thyroid 
carcinomas are DTCs with favorable prognosis, DTCs 
display heterogeneity in patients [34, 35]. Therefore, 
novel molecular indicators that could effectively 
predict and monitor the response to treatment and 
disease progression of DTCs should be identified to 
help improve patient care. Recent studies have 
revealed that m6A modification plays an essential role 
in various biological processes, including the 
initiation and progression of cancers [36-38]. 
However, little information has been available 
regarding the role of m6A in DTCs. 

In this study, we found that most known m6A 
RNA methylation regulators were dysregulated in 
DTCs. Using consensus cluster, we classified DTC 
patients into two subgroups (TC1 and TC2). The 
prognosis and clinicopathological features were 
significantly different between TC1 and TC2 
subgroups. We further developed a risk signature 
with four m6A RNA methylation regulators that 
categorized DTC patients into high- and low-risk 
groups with significantly different PFS. 

In eukaryotes, m6A is the most abundant and 
evolutionarily conserved modification in mRNA and 
plays a crucial role in several aspects of RNA 
metabolism [39, 40]. Increasing numbers of studies 
have shown that m6A modifications are controlled by 
dynamic changes of m6A RNA methylation 
regulators. Furthermore, dysregulated expression of 
m6A RNA methylation regulators has been associated 
with several types of cancers [41-43]. For instance, the 
m6A writer protein METTL3 is a reported oncogene 
for liver cancer [44], bladder cancer [45] and acute 
myeloid leukemia [46], but a tumor suppressor for 
breast cancer [38]. Downregulation of the m6A eraser 
protein ALKBH5 was correlated with poor prognosis 
in pancreatic cancer [47]. However, Zhang et al [48] 
reported that ALKBH5 maintains tumorigenicity of 
glioblastoma stem-like cells. These findings suggested 
that m6A RNA methylation regulators may likely 
have different pathological implications in different 
diseases. 

To explore the role of m6A RNA methylation 
regulators in DTC patients, we comprehensively 
analyzed the expression of thirteen regulators in our 
study. All writers (WTAP, METTL3, METTL14, 
RBM15, ZC3H13, KIAA1429) were downregulated in 
DTC compared with normal thyroid tissues. The m6A 
methylation readers YTHDC1, YTHDC2, and 
YTHDF1 were expressed significantly lower in DTCs, 
but the expression of HNRNPC was increased. Both 

FTO and ALKBH5 m6A methylation erasers were 
decreased in DTCs. Furthermore, we identified four 
m6A RNA methylation regulators (WTAP, ZC3H13, 
HNRNPC and ALKBH5) that were related to the 
prognosis of DTCs and used these to develop a 
prognostic signature. In addition, we found that the 
high-risk group was associated with high N grade, 
high T grade and high TNM grade, which indicated 
poor outcomes of DTCs. Univariate and multivariate 
Cox regression analyses suggested that the four-gene 
risk signature was an independent prognostic factor 
for PFS in DTCs. We also found that DTCs with M 
grade 0 were categorized into high-risk group with 
shorter PFS or low-risk groups with longer PFS. A 
similar situation was found in DTCs with TNM stage 
III, and PFS was significantly different between high- 
and low-risk groups. 

Zinc finger proteins are involved in the 
regulation of transcription or translation by specific 
binding of the target molecules. Different combined 
with DNA, RNA, DNA-RNA, protein, or zinc finger 
motifs, which result in zinc finger proteins present 
multifunctional in biological processes [49, 50]. 
ZC3H13 is a classical CCCH zinc finger protein and 
the encoding gene is located in human chromosome 
13q14.13 [51]. Increasing evidence has shown that 
ZC3H13 plays an important role in inhibiting tumor 
progression. In previous research, it has been reported 
that somatic frame-shift mutation in ZC3H13 gene is 
detected in colon carcinoma, which suggests that 
ZC3H13 may be a tumor suppressor [52]. Zhu et al [53] 
found that ZC3H13 acts as a tumor suppressor by 
regulating activation of the Ras-ERK signaling 
pathway. ALKBH5 is a demethylase that is associated 
with the regulation of mRNA translation and mRNA 
metabolism. ALKBH5 is a demethylase that is 
associated with the regulation of mRNA translation 
and mRNA metabolism. Increasing evidence indicate 
that ALKBH5 is implicated in the development of 
multiple cancers. Overexpression of ALKBH5 has 
been reported in glioblastoma stem cells and it by 
stabilizing FOXM1 to promote the proliferation of 
glioblastoma [48, 54]. Zhang C et al [55] found that 
ALKBH5 enhances m6A stability, which increases the 
levev of m6A in breast carcinoma. Moreover, the 
number of breast cancer ctem cells can be reduced by 
ALKBH5 knockdown in breast cancer. He et al [47] 
revealed that ALKBH5 inhibits the motility of 
pancreatic cancer by downregulating long non-coding 
RNA KCNK15-AS1 methylation. In our study, we 
revealed that the expression of ALKBH5 was lower in 
DTC compared with that in normal thyroid tissues, 
suggesting that further research is needed to 
understand the role of ALKBH5 in DTC. WTAP is a 
nuclear protein widely expressed in cells and tissues, 
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plays an essential role in cellular function and cancer 
progression, which was first been found for its 
specific interaction with Wilms’ tumor 1 [56, 57]. 
WTAP is a conserved nuclear protein that shows 
decreased expression in breast cancer [38]. The 
reduced expression of WTAP correlated with the 
accelerated proliferation and invasion of breast 
cancer. However, a number of recent studies have also 

shown that WTAP was act as an oncogene and was 
associated with malignant tumors closely. WTAP 
negatively regulate WT1.9 to promote tumorigenesis 
in colorectal cancer [58]. HNRNPC is an RNA-binding 
protein located in the nucleus and the cytoplasm. It is 
closely related to mRNA metabolism [59], including 
mRNA splicing, mRNA stabilization and translation.

HNRNPC is aberrantly up-regulated in 
melanoma [60], glioblastoma [61] and breast cancer 
[62]. In the present study, we demonstrated that the 
expression of HNRNPC was increased and that of 
m6A methylases (ZC3H13, ALKBH5 and WTAP) 
were significantly decreased in DTC tissues compared 
with normal thyroid tissue. Additionally, we 
developed a risk signature that divided DTC patients 
into high-risk and low-risk groups with significantly 
different PFS times. These results may allow clinicians 
to determine individualized treatment for DTC 
patients with different clinical features. 

In conclusion, here we revealed the expression 
and prognostic value of m6A RNA methylation 
regulators in DTC. This study also provides crucial 
evidence supporting further research of the role of 
RNA m6A methylation in DTC. 
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