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Abstract 

The heterogeneity of hepatocellular carcinoma (HCC) commonly leads to therapeutic failure of HCC. 
Cytokeratin 19 (CK19) is well acknowledged as a biliary/progenitor cell marker and a marker of tumor stem 
cell. CK19-positive HCCs demonstrate aggressive behaviors and poor outcomes which including worse overall 
survival and early tumor recurrence after hepatectomy and liver transplantation. CK19-positive HCCs are 
resistant to chemotherapies as well as local treatment. This subset of HCC is thought to derive from liver 
progenitor cells and can be induced by extracellular stimulation such as hypoxia. Besides being a stemness 
marker, CK19 plays an important role in promoting malignant property of HCC. The regulatory network 
associated with CK19 expression has been summarized that extracellular stimulations which transmit into 
cytoplasm through signal transduction pathways (TGF-β, MAKP/JNK and MEK-ERK1/2), further induce 
important nuclear transcriptional factors (SALL4, AP1, SP1) to activate CK19 promoter. Novel noncoding 
RNAs are also involved in the regulation of CK19 expression. TGFβR1 becomes a therapeutic target for 
CK19-positive HCC. In conclusion, CK19 can be a potential biomarker for predicting poor prognosis after 
surgical and adjuvant therapies. CK19-pisitive HCCs exhibit distinctive molecular profiling, should be diagnosed 
and treated as a separate subtype of HCCs. 

Key words: cytokeratin 19; hepatocellular carcinoma; subtype 

Introduction 
Hepatocellular carcinoma (HCC) emerges as a 

major health care problem globally. It is the fifth most 
common malignancy and the third cause of cancer- 
related death worldwide [1, 2]. To date, surgical 
resection, liver transplantation, transcatheter arterial 
chemoembolization (TACE), radiofrequency ablation 
(RFA) and systemic therapies are the main treatment 
options to prolong life expectancy of patients with 
HCC [3]. Unfortunately, 5-year overall survival rate is 
only 30-40% even after surgical resection and 70% of 
patients suffer from tumor recurrence within 5 years 
[3, 4]. Besides that, the effectiveness of chemotherapy, 
molecular-targeted therapy or even immunotherapy 

to HCC is insubstantial [2, 5]. 
HCC is heterogeneous not only not only in terms 

of morphological characteristics and clinical 
behaviors, but also in genetic and molecular patterns 
[6]. The inter-tumor and intra-tumor heterogeneity of 
HCC results in high resistance to therapeutic 
interventions [7, 8]. Several molecular subtypes based 
on transcriptomic analysis have shown significant 
improvement in describing inter-tumor heterogeneity 
of HCC [9-12]. As shown in previous studies, HCCs 
are divided into two groups according to their 
molecular features, namely, the proliferative and 
non-proliferative subtypes [11, 13, 14]. Notably, 
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cytokeratin 19 (CK19) is the vital marker of the 
proliferative subtype which indicates a poor 
prognosis in HCC patients [15]. 

Approximately 10-30% of HCC patients present 
CK19 expression [16-19]. CK19-positive HCC is also 
known as biphenotypic HCC; that is, having the 
pathological features of both HCC and 
cholangiocarcinoma (CC). These group of patients 
often show worse outcomes as compared to the CK19- 
negative HCC patients. Therefore, inhibiting the 
incidence of CK19-positive HCC is of great 
significance. 

As of now, the origin of CK19-positive HCCs, as 
well as the regulation of expression of CK19 in HCC, 
remains uncertain. In this review, we highlight recent 
advances in the overall perspective of CK19 in HCC 
and its relevant therapeutic implications. 

Pathophysiological change of CK19 in 
Liver 

CK19 is an intermediate filament with a 
molecular weight of around 40 kDa. During the 
embryonic development, CK19 was detected in the 
primitive hepatic progenitor cells at the 4-10 weeks’ 
gestation. Along with the development of fetal liver, 
these bipotential progenitor cells differentiate either 
into hepatocytes or biliary epithelial cells [20]. 
However, the expression of CK19 is vanished in 
mature liver hepatocytes while it is constantly present 
in biliary epithelial cells. [20-22]. Therefore, this 
explained the reason why CK19 became a significant 
marker of biliary epithelial cells in pathological 
diagnosis [23-25]. 

When hepatocytes suffer from damage in 
various chronic liver diseases such as chronic 
hepatitis, (non-) alcoholic steatohepatitis and 
haemochromatosis, the normal liver cells which are 
previously quiescent will be activated and 
transformed into progenitor cells [26-28]. That is, 
CK19 re-emerges on hepatocytes anew when the 
resting cells are activated in the presence of 
inflammation or other stimuli. Meanwhile, a large 
number of studies showed that CK19 also appears 
aberrantly in HCC in which the incidence rate varied 
between 10 to 30% [16-19] (Table 1). 

CK19-positive HCC is associated with 
more aggressive behavior and poorer 
prognosis 

CK19-positive HCC cells showed strong 
association with invasion, epithelial-mesenchymal 
transition (EMT) and angiogenesis. It became 
apparent when knockdown of CK19 successfully 
inhibited the invasive capacity and EMT in human 

HCC cells [19, 29, 30]. CK19-positive cells are thought 
to be positively associated with angiogenesis as well 
[29]. Kawai et al. [30] demonstrated that FACS- 
isolated single CK19-positive cells displayed high 
proliferation capacity and these cells are more 
resistant to chemotherapy such as doxorubicin and 5- 
fluorouracil [19, 30]. A considerable number of 
researches have reported that CK19 is closely related 
to cancer stem cells which thus explained the 
resistance of CK19-positive cells to chemotherapy 
[30-32]. 

Patients with CK19-positive HCC have poorer 
prognosis compared with CK19-negative ones. As 
shown in Table 1, a substantial number of studies 
demonstrated that CK19 was associated with early 
tumor recurrence and worse overall survival after 
surgical resection or liver transplantation [18, 19, 21, 
31]. A meta-analysis enrolling 2943 HCC patients also 
demonstrated that CK19 overexpression was 
significantly associated with declined OS rate and 
1-year DFS rate [33]. After treated with TACE or RFA, 
CK19-positive HCC patients were also more inclined 
to early intrahepatic tumor recurrence [34, 35]. 
Furthermore, vascular invasion and lower degree of 
differentiation were more commonly seen in CK19- 
positive HCC patients when compared with the 
negative counterpart [19, 21, 29]. In order to 
comprehensively compare the difference of clinical 
parameters and physio-pathological features between 
CK19-negative and CK19-positive HCC CK19, we 
obtained accessible data from published literatures for 
analysis as shown in Figure 2 [16, 17, 21, 29, 36-39]. 

CK19-positive HCC and CK19-negative HCC 
were compared with intrahepatic cholangiocarcinoma 
(ICC) and combined HCC and cholangiocarcinoma 
(cHCC-CC). The overall survival rate of CK19- 
positive HCC was similar with that of cHCC-CC 
where they were both significantly lower than the 
overall survival rate of CK19-negative HCC but 
higher than that in ICC [17]. This indicated that the 
biological behavior of CK19-positive HCC was close 
to that of cHCC-CC. 

Hoshida (S1-S3), Boyault (G1-G6) etc. have 
depicted several subtypes of HCC based on 
transcriptomics. As a matter of fact, CK19 is 
commonly described as a progenitor feature as it is 
closely associated with several stemness-related 
markers (EPCAM, NOTCH) [15, 40]. Furthermore, 
CK19-positive subtype has been shown to have 
correlation with Hoshida S2, G1, proliferation 
subtype, Cluster A, iClust1 [40, 41], and all these 
subtypes were related to poor differentiation, higher 
serum AFP level, higher frequency of vascular 
invasion and worse outcome [41]. Taken together, 
CK19-positive HCC showed higher malignancy and 
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worse outcome that it should be diagnosed and 
treated as a separate entity of HCCs. 

The origination of CK19-positive HCC 
The molecular expressions of the HCCs are 

highly heterogeneous as they differ even within a 
single nodule of HCC. The heterogeneity of HCC is 
related to the origination of tumor cells which include 
hepatocyte or adult stem/progenitor cells. However, 
the origination of CK19-positive HCC remains 
controversial. Therefore, we illustrate an overview of 
CK19-positive HCC, as shown in Figure 1. 

CK19-positive HCCs originate from 
hepatocytes/liver progenitor cells 

In normal liver, progenitor cell, one primordial 
component, is both positive for hepatocyte- 
differentiated (HEP-PAR) and biliary-differentiated 
(CK19) markers [18]. At the time of liver tissue 
damage, either quiescent progenitor/stem cells are 
activated [42], or hepatocytes are dedifferentiated into 
immature progenitors or biliary-type cells [43, 44]. 
Plentiful evidence suggested that these activated 
progenitor cells can be potential target cell during the 
development of HCC [45-47]. Thus, the origination of 
CK19-positive HCC cells was presumed to be a cluster 
of progenitor cells. 

 

 
Figure 1. Overview for the origin of CK19-positive HCC. CK19 expression vanishes in adults’ hepatocytes. Once the liver is damaged by inflammation, a portion of 
hepatocyte will reverse into progenitor cells which express CK19. These progenitor cells will potentially differentiate into CK19-positive HCC cells. Notably, the hepatocytes 
develop into CK19-negative HCC cells preferentially under normal condition. The hypoxia stimulations including the oxygen-deficient environment in tumor and hypoxic status 
caused by local treatments such as TACE will, however, induce CK19-negative HCC cells to transform into CK19-positive HCC cells. Abbreviation: CK19-, CK19-negative; 
CK19+, CK19-positive. 

 

Table 1. Clinical prognosis comparison between CK19-negative and CK9-positive HCC 

Author Year Source of specimen Cases of CK19+ Prognosis-related indexes Note 
CK19- Ck19+ 

Wu et al. [18] 1996 Needle biopsy/ surgical resection/ autopsy 79 (27.24%) 30.7% 17.6% 1.5y OS 
Lee et al. [17] 2012 Surgical resection 21 (30.00%) 80.4% 28.9% 5y OS 
Fatourou et al. [38] 2015 Surgical resection/ liver transplantation 9 (10.11%) 56% 15% 5y OS $  
Miltiadous et al. [40] 2015 Liver transplantation 58 (43.94%) # 67% 44.9% 5y OS 
Takano et al. [29] 2016 Surgical resection 12 (8.82%) 90% 61% 5y OS $ 
Lee et al. [37] 2017 Liver transplantation 8 (36.36%) 82.3% 55.4% 5y OS 
Yang et al. [36] 2008 Surgical resection 45 (18.75%) 57.2% 37.8% 7y OS 
Yoneda et al [21] 2011 Surgical resection 9 (11.54%) 64% 28% 2y DFS $  
Uenishi et al [39] 2003 Surgical resection 15 (9.55%) 44% 20% 3y DFS 
Durnez et al. [16] 2006 Surgical resection/ needle biopsy/ liver transplantation 18 (16.51%) 95% 50% 3y RFS $ 
Lee et al. [17] 2012 Surgical resection 21 (30.00%) 54.5% 34.3% 3y DFS 

Abbreviation: HCC, hepatocellular carcinoma; CK19, cytokeratin 19; OS, overall survival; DFS, disease-free survival; RFS, recurrence free survival; CK19-, CK19-negative; 
CK19+, CK19-positive. 
#, CK19/S2 + gene expression signature. 
$, the data of overall survival (OS) and disease-free survival (DFS) were measured by computer image-scale comparison. 
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Table 2. The clinical parameters and physio-pathological features 
compared between CK-negative and CK19-positive HCC 

  CK19- CK19+ P value 
Gender    0.007 
 Male 650 (81.4) 100 (71.4)  
 Female 149 (18.6) 40 (28.6)  
Cirrhosis    0.651 
 Yes 414 (58.6) 76 (60.8)  
 No 292 (41.4) 49 (39.2)  
HBV    0.010 
 Yes 331 (43.2) 76 (55.1)  
 No 435 (56.8) 62 (44.9)  
HCV    0.003 
 Yes 269 (35.0) 30 (21.9)  
 No 499 (65.0) 107 (78.1)  
Preoperative AFP (ng/ml)   0.047 
 ≤20 221 (49.6) 30 (37.5)  

 >20 225 (50.4) 50 (62.5)  
Tumor number    0.796 
 Single 509 (78.9) 95 (77.9)  
 Multiple 136 (21.1) 27 (22.1)  
Tumor size (cm)    0.545 
 >5 200 (43.1) 41 (46.6)  
 ≤5 264 (56.9) 47 (53.4)  

Differentiation    <0.001 
 Well/moderate 338 (71.2) 34 (45.3)  
 Poor 137 (28.8) 41 (54.7)  
TNM stage    0.575 
 I–II 399 (67.9) 67 (65.0)  
 III–IV 189 (32.1) 36 (35.0)  
Microvascular invasion    0.099 
 Yes 128 (54.5) 28 (68.3)  
 No 107 (45.5) 13 (31.7)  
Portal vein invasion    0.033 
 Yes 89 (35.0) 16 (55.2)  
 No 165 (65.0) 13 (44.8)  
Metastasis    0.585 
 Yes 52 (11.1) 12 (13.0)  
 No 418 (88.9) 80 (87.0)  
Abbreviation: HCC, hepatocellular carcinoma; CK19, cytokeratin 19; CK19-, 
CK19-negative; CK19+, CK19-positive. 
Note: The data were obtained from published literatures [16, 17, 21, 29, 36-39]. The 
parameters were analyzed using Chi square test. P <0.05 was considered as 
significantly different. 

 
 
Lee et al. [14] integrated the gene expression data 

from rat fetal hepatoblasts and adult hepatocytes with 
HCC from human and mouse models followed by 
subsequent classification of HCCs into two subtypes 
(HB and HC subtype). They demonstrated that HCC 
of the HB subtype arose from bipotential hepatic 
progenitor cells, and found that expression of CK19 
was significantly higher in the HB subtype of HCC. 
This reflected that CK19-positive HCCs might be 
derived directly from liver progenitor cells. 

Researchers from Columbia University [48] 
demonstrated that hepatocytes functioned as a 
cellular source for HCC and these liver progenitor 
cells found in HCC were derived from hepatocytes. 
This suggested that hepatocyte-derived HCC may 
dedifferentiate into a progenitor-like immature 
phenotype. As CK19 is considered as one of the 

progenitor cell markers, this may suggest that 
hepatocyte-derived HCC can dedifferentiate into 
CK19 positive HCC during the development of 
tumorigenesis. 

If all HCC cells were originated from 
hepatocytes, these HCCs would only express 
hepatocyte-related markers (HEP-PAR, CK8 and 
CK18). As CK19 is increasingly regarded as a marker 
of bipotential hepatic progenitor cells, it is reasonable 
to hypothesize that CK19-positive HCCs were 
developed from hepatic progenitor cells. 

CK19-positive HCCs originate from 
environmental stimulation 

The transformation of CK19-negative tumor cells 
into CK19-positive tumor cells is assumed to be an 
adaption to the specific challenges in the environment 
such as hypoxia and physical/chemical stimulation. 
Several studies have illustrated that carbonic 
anhydrase IX (CAIX), a hypoxia marker, was 
positively associated with CK19 after the TACE 
treatment [49, 50]. Also, the incidence of CK19 
positivity was significantly increased as the sessions 
of TACE increased [50]. As shown in Table 3, the 
CK19 positive rate in the patients with TACE was 
higher than that in the non-TACE patients. These 
studies indicated that HCC with CK19-positive 
phenotype might originate from the transformations 
due to the anti-cancer and/or ischemic effects of 
TACE. Yoshida et al. [51] reported that the residual 
tumor due to incomplete RFA could be reactivated in 
the presence of thermal and hypoxic stimulation. 
These reactivated tumor cells usually portray higher 
malignancies and more aggressive invasive 
capabilities. In this study, HCC cell was exposed to 
high temperature which simulated the marginal zone 
of RFA treatment. In vitro cells survived from 
mimic-RFA showed an increase in CK19 expression. 

 

Table 3. The comparison of CK19 positive rate in HCC patients 
receiving TACE treatment before operation 

Author Year Treatment Total 
cases 

Treat group Non-treat group 
Ck19- Ck19+ Ck19- Ck19+ 

Lai et al. [49] 2015 TACE 57 34 6 17 0 
Nishihara et al. [35] 2008 TACE* 226 61 19 128 18 
Zen et al [79] 2011 TACE* 80 32 8 40 0 
Rhee et al. [50] 2016 TACE* 85 38 13 32 2 

Abbreviations: HCC, hepatocellular carcinoma; CK19, cytokeratin 19; TACE: 
transcatheter arterial chemoembolization; CK19-, CK19-negative; CK19+, 
CK19-positive. 
*, p<0.05, Fisher’s Exact Test. 

 
 
Taken these evidences together, a new and 

inspiring hypothesis has been put forward that CK19 
negative HCC may transform into CK19 positivity 
after patients receive several adjuvant therapies (e.g. 
TACE, RFA) as tumor environmental is stimulated. In 
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addition, it provides a potential possibility for tumor 
progression and recurrence after treatment, and 
indicates a potential prevention strategy, that is, the 
CK19 regulatory network should be controlled in 
advance. 

Molecular characteristics of 
CK19-positive HCC 

Despite the clinical significance of CK19 in HCC, 
the role of CK19 in tumor is still ambiguous in which 
whether it functions as a phenotype marker or an 
oncogenic factor has yet to be speculated. Over the 
past two decades, CK19-positive cells have gradually 
been regarded as a kind of stem cell [52] as well as an 
important prognostic marker of HCC as described 
above. Recent studies have also showed that CK19 
enhanced the tumorous properties in breast cancer, 
colon cancer and hepatocellular carcinoma [19, 53, 54]. 
These data implied that CK19 plays an important part 
in carcinogenesis. However, the molecular network of 
this phenotype is not unraveled completely. 
Therefore, we summarized and highlighted the vital 
pathways involved in regulating the CK19 expression 
which include the carcinogenic growth factors and 
corresponding receptors, MAKP/JNK and MEK- 
ERK1/2 pathways, transcription factors and 
noncoding RNAs (Figure 2). 

Extracellular stimulation: Carcinogenic 
growth factors 

Belgian researchers [19] previously revealed that 
CK19 was associated with platelet-derived growth 
factor receptor α (PDGFRα). Furthermore, they 
demonstrated that PDGF could elevate CK19 
expression via PDGFRα-La/SSB-LAMB1 axis [55]. A 
study from Kanazawa University [21] showed that 
epidermal growth factor (EGF) had potent effects on 
promoting CK19 expression in vitro. Another Korean 
study showed that hepatocyte growth factor (HGF) 
from cancer-associated fibroblasts (CAF) could 
upregulate CK19 expression based on cross-talk 
between CAF and HCC cells [56]. Apparently, the 
transforming growth factor-β (TGF-β) is another 
important extracellular factor involved in the 
progressive features of CK19-positive HCC cells as 
the inhibition of transforming growth factor-β 
receptor 1 (TGFβR1) could significantly attenuate the 
proliferation capability of CK19-positive HCC [30]. 
Albeit no obvious evidence supporting the direct 
regulation between TGFβ and CK19, TGFβ/Smad 
signaling exhibits enormous association with CK19- 
positive HCC as described above. This collectively 
indicates that these carcinogenic growth factors with 
corresponding receptors engage in regulating the 
CK19 expression. 

Signal transduction: JNK, MEK-ERK1/2 and 
Smads signaling pathway 

Yoneda et al. [21] demonstrated  that c-Jun-N- 
terminal kinase (JNK)/stress-activated protein kinase 
(SAPK) is a downstream signaling pathway involved 
in regulating CK19 expression via EGF-EGFR. In 
another study, HCC tumor specimens with matched 
distal noncancerous liver tissue were divided into two 
subgroupes according to JNK1 activation status. As a 
result, CK19 was over expressed in high JNK1 HCC 
[57]. American investigators [58] evaluated the 
transcriptomic differences between CK19-positive 
and CK19-negative foci through the resistant 
hepatocyte (RH) rat models to select unique genes in 
each group. The connectivity of the top regulatory 
networks showed a dominant enrichment of AP-1/ 
JUN in CK19-positive areas. These data suggested a 
hypothesis that JNK pathway is involved in 
regulating CK19 expression. 

MEK-ERK1/2 pathway is another vital 
intracellular signaling pathway participated in the 
modulation of CK19 expression. Rhee et al. proposed 
that, MET, the receptor of extracellular signal HGF, 
upregulated CK19 expression via activating MEK- 
ERK1/2 pathway [56]. MET is also known to be 
related to poor prognosis and HGF/MET signaling 
axis currently became an emerging therapeutic target 
of HCC [59]. Therefore, CK19-positive HCCs are 
deemed to be accompanied with the activation of 
HGF/MET signaling. In Kawai’s study, TGFβ/Smad 
signaling is activated in CK19-positive cells [30] and it 
is always reasonable to assume that Smad pathway is 
part of the regulatory network of CK19 expression. 

Endonuclear activation: Nuclear transcription 
factors 

Regulatory pathways relay the signal to 
transcription factors and further activate the CK19 
promoter. Two important transcription factors, 
namely activator protein 1 (AP1) and specificity 
protein 1 (SP1), have been identified as regulators that 
bind directly to the CK19 promoter site [56]. Besides 
that, AP1 and SP1 are also known as the downstream 
transcriptional activators of ERK1/2. JUN and FOS 
proteins which belong to the AP1 family can be 
dimerized to form JUN homodimers or JUN/FOS 
heterodimers in order to become valid transcriptional 
factors [60]. As mentioned above, JNK pathway is also 
involved in regulating CK19 expression via 
EGF-EGFR while FOSL1, a protein of FOS family, can 
be activated by ERK1/2 pathway [56]. In short, we 
conclude that AP1 serves as the downstream 
transcriptional factor of both JNK and ERK pathway 
for CK19 regulation. 
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Figure 2. Diagrammatic sketch of the regulatory network of CK19. Abbreviation: CK19, cytokeratin 19; TGFβ, transforming growth factor beta; TGFβR, transforming 
growth factor beta receptor; HGF, hepatocyte growth factor; MET, MET proto-oncogene receptor tyrosine kinase or hepatocyte growth factor receptor; EGF, epidermal growth 
factor; EGFR, epidermal growth factor receptor; PDGF, platelet derived growth factor; PDGFRα, platelet derived growth factor receptor alpha; Smad, drosophila mothers 
against decapentaplegic protein; MEK, mitogen-activated protein kinase kinase 7; ERK, mitogen-activated protein kinase 1; JNK, mitogen-activated protein kinase 8; JUN, Jun 
proto-oncogene AP-1 transcription factor subunit; FOS, Fos proto-oncogene AP-1 transcription factor subunit; AP1, activator protein 1; SP1, specificity protein 1; KLF4, Krüppel 
like factor 4; KLF10, Krüppel like factor 10; SALL4, spalt-like transcription factor 4; CDH17, cadherin 17; LamB1, laminin subunit beta 1; Src, SRC proto-oncogene non-receptor 
tyrosine kinase; miR-642, microRNA 642a; miR-141, microRNA 141; miR-200c, microRNA 200c; Lin00974, long intergenic non-protein coding RNA 974. 

 
Recently, overexpression of Sal-like 4 

(Drosophila) (SALL4) was reported to upregulate 
CK19 expression at both the mRNA and the protein 
level [61]. SALL4 is an important transcription factor 
in HCC which correlates to stemness, 5-FU resistance 
and differentiation [62]. We suggest that SALL4 might 
bind to the promoter site of CK19. 

Two members from Krüppel-like Factors (KLF) 
family, which are also DNA-binding transcriptional 
regulators, have shown an association with CK19. 
Brembeck from University of Pennsylvania verified 
that the CK19 gene is regulated by the interplay of 
Krüppel-like factor 4 (KLF4) and SP-1 through a 
critical cis-regulatory element in the proximal 
promoter [63]. On the other hand, Andersen et al. [58] 
examined the functional connectivity among the 
significant genes and found that the most 
predominant feature in the CK19 negative focal 
lesions was the overexpression of Krüppel-like factor 
10 (KLF10) in rat model. As murine CK19 gene 
exhibits high homology to human counterpart [64], 
we can translate these findings to human being. 

Besides, KLF10 has been validated as a tumor 
suppressor gene and shown association with 
TGFβ/Smad signaling pathway [65]. Therefore, we 
hypothesize that KLF10 may inhibit CK19 promoter 
activity by suppressing TGFβ/Smad signaling. Above 
all, transcription factors such as AP-1, SP-1, SALL4 
and KLF family (KLF4, KLF10) might regulate the 
expression of CK19 either directly or indirectly by 
interacting with its promoter binding site. 

Non-coding RNA and others 
Tang et al. [66] showed that long noncoding 

RNA (lncRNA), Linc00974, presented positive 
regulation of CK19 via posttranscriptional 
modification. It functions as a sponge to 
endogenously compete with the suppressive effect of 
miR-642 to CK19. Moreover, miR-200 family (miR- 
141/miR-200c) especially miR-141 was identified to 
have strong linkage with CK19 expression [19]. That 
is, overexpression of miR-141 and miR-200c 
significantly upregulated the expression of CK19 in 
CK19-negative or CK19-low HCC cells. Lee et al. [67] 
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detected 20 patients with hepatitis B virus (HBV)- 
HCC through Affymetrix U133A oligonucleotide 
microarray. It was shown that cadherin 17 (CDH17) 
was positively correlated with CK19 expression and 
CDH17 could enhance the expression of CK19 
through EGF/EGFR-CDH17-CK19 pathway. 

Make a brief summary, as CK19 has been 
regarded as a marker of progenitor- and stem-cells, 
previous publications have done a body of studies to 
clarify how to regulate the expression of CK19 as 
shown in Figure 2. The internal regulatory network, 
however, is more complex and intricate than what we 
have seen so far. Govaere et al. also reported that 
CK19 showed a robust positive correlation with other 
‘aggressive’ phenotypes and signatures including 
‘poor survival HCC subtype’, ‘proliferation HCC 
subtype’, ‘S1 signature with aberrant Wnt activation 
subtype’ and so on [19]. Therefore, attention should 
not be focused solely on CK19 as a target that function 
as a biomarker and oncogenic factor. CK19-positive 
HCC should be regarded as a completely different 
phenotype and an independent entity with its own 
characteristics. 

The detective and therapeutic strategy for 
CK19 positive HCC 
Non-invasive detection method for CK19 
expression 

The current detection accesses of CK19 are 
mostly dependent on the post-operative 
immunochemistry. Advanced acquisition of CK19 
expression level can guide clinical physicians to 
choose optimal therapeutic methods before surgery or 
locoregional treatment. CYFRA 21-1 is a soluble 
fragment of CK19 in peripheral circulation. In fact, 
serum CYFRA 21‐1 has been detected in various 
malignancies including non‐small cell lung cancer, 
esophageal cancer, breast cancer and pancreatic 
cancer [68-71]. Therefore, serum CYFRA 21‐1 is 
considered as a useful biomarker to indicate CK19 
expression in HCC [72]. 

More recently, radiological examination has 
become a novel non-invasive diagnostic method for 
CK19-positive HCC. Choi et al. [73] determined the 
preoperative magnetic resonance (MR) imaging 
characteristics of HCC potentially related to CK19 
expression. Another study illustrated that MR 
features combining with elevated AFP were able to 
distinguish CK19-positive HCCs from CK19-negative 
HCC [74]. Therefore, application of these non- 
invasive detection methods will be conducive to 
monitor the CK19 expression status. 

The therapeutic strategy for CK19-positive 
HCC 

Considering the different molecular features and 
the distinct invasive properties of CK19-positive 
HCCs, this subtype of HCCs should be regarded as a 
separate entity which is different from the CK19- 
negative HCCs [19]. We would like to regard the 
presence of CK19 as a therapeutic-phenotype to guide 
individualized treatment in clinical context as it is of 
utmost important to deliberate the strategies 
thoroughly to overcome the highly tortuous CK19- 
positive HCCs. 

As aforementioned, Japanese researchers 
discovered that TGFb/Smad signaling was activated 
in CK19-positive HCC cells. In other words, TGFβR1 
inhibitor (LY2157299) could effectively inhibit the 
proliferation of CK19-positive HCC [30]. Therefore, 
TGFbR1 inhibitor should be considered as a new 
targeted-therapy against CK19-positive HCC. 

A Chinese study enrolling 280 HCC patients 
who were either treated with or without sorafenib 
after surgical resection showed no difference between 
two groups in terms of overall survival. Intriguingly, 
patients who have received sorafenib treatment after 
surgery exhibited superior overall survival compared 
to those who have not received sorafenib treatment 
after surgery in CK19+OV6+ subgroup [75]. This 
implied that patients with CK19-positive HCC could 
benefit from sorafenib administration after surgery. 
As Govaere et al. [55] demonstrated that CK19 could 
be progressed through PDGFRα-LAMB1-CK19 axis, 
inhibitors of PDGFRα such as imatinib [76], 
regorafenib [77] and lenvatinib [78] might exert 
specific effect on CK19-positive HCC. Therefore, the 
above-named first-line or second-line multi-targeted 
tyrosine kinase inhibitors (TKI) approved by FDA for 
HCC are supposed to have therapeutic priority to 
CK19-positive HCC. There is no doubt that more 
clinical trials are needed to validate the most 
efficacious drug in dealing with CK19-positive HCC. 

Conclusions 
CK19-positive HCC demonstrates more 

aggressive behaviors and poorer prognosis. The 
complex internal regulatory network makes CK19- 
positive HCC an independent entity with its own 
characteristics, which should be diagnosed and 
treated as an independent subtype. Clarification of the 
internal molecular mechanisms is urgently needed to 
prevail over CK19-positive HCCs in the clinical 
management. 
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