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Abstract 

DNA methylation has been reported to serve an important role in the carcinogenesis and 
development of gastric cancer. Our aim was to systematically develop an individualized prediction 
model of the survival risk combing clinical and methylation factors in gastric cancer. A univariate 
Cox proportional risk regression analysis was used to identify the prognosis-associated methylation 
sites based on the differentially expressed methylation sites between early and advanced gastric 
cancer group, then we applied least absolute shrinkage and selection operator (LASSO) Cox 
regression model to screen candidate methylation sites. Subsequently, multivariate Cox 
proportional risk regression analysis was conducted to identify predictive signature according to the 
candidate sites. Relative operating characteristic curve (ROC) analysis manifested that an 
11-methylation signature exhibited great predictive efficiency for 1-, 3-, 5-year survival events. 
Patients in the low-risk group classified according to 11-methylation signature-based risk score yield 
significantly better survival than that in high-risk group. Moreover, Cox regression analysis combing 
methylation-based risk score and other clinical factors indicated that 11-methylation signature 
served as an independent risk factor. The predictive value of risk score was validated in the testing 
dataset. In addition, a nomogram was constructed and the ROC as well as calibration plots analysis 
demonstrated the good performance and clinical application of the nomogram. In conclusion, the 
result suggested the 11-DNA methylation signature may be potentially independent prognostic 
marker and functioned as a significant tool for guiding the clinical prediction of gastric cancer 
patients’ overall survival. 
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Introduction 
The incidence of stomach cancer in 2018 ranked 

sixth globally with 1,033,701 new cases (5.7% of new 
cases with all cancer types) [1]. However, patients’ 
survival is poor as it is the second leading cause of 
cancer-related death worldwide (8.2%) [1]. The 
pathological type of stomach cancer was 

overwhelmingly stomach adenocarcinoma (STAD, 
90%), which consists of two major types of gastric 
adenocarcinoma (Lauren classification): intestinal 
type or diffuse type [2]. According to the data released 
by National Cancer Institute, “approximately 0.9 
percent of men and women will be diagnosed with 
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stomach cancer at some point during their lifetime” 
[3]. The prognosis and 5 year survival rates for 
stomach cancer remain poor [4].  

Although surgery is the major approach for 
treating stomach cancer, radio- and chemo-therapy 
are important adjuvant therapies to eliminate tumor 
cells from the human body. 5- Fluorouracil (5-FU) and 
cisplatin have been extensively used to cure stomach 
cancers for several decades. 5-Fu can impede 
thymidylate synthase and build in both RNA and 
DNA, inducing DNA damage and cytotoxicity [5, 6], 
while cisplatin can combine the base on a strand of 
DNA, and prohibit the replication and transcription of 
DNA in tumor cells. Although different types of 
chemotherapy agents are deployed against several 
types of cancers, chemo-resistance to anticancer drugs 
reduces the effectiveness of chemotherapy. One 
well-known epigenetic alteration of patients with 
cancer or chemo-resistance is the methylation or 
demethylation of specific DNAs. Several methylation 
alterations in apoptotic genes have been identified 
and used as epigenetic biomarkers in determining 
either chemoresistance or chemosensitivity to 
anticancer drugs [7]. For instance, high expression of 
bone morphogenetic protein 4 (BMP4) was found to 
be correlated with cisplatin resistance and worse 
prognosis in patients with gastric cancer (GC) [8]. 
Methylation of the BMP4 promoter inhibited the 
expression of BMP4. Therefore, targeted genetic 
inhibition of BMP4 expression revealed promising 
target therapy to improve the prognosis of gastric 
cancer. One study also found that methylation of 
CDKN2A (p16) showed a significant correlation with 
longer survival in 38 patients of the 5-FU adjuvant 
chemotherapy group [6].  

Accumulating evidence has shown that 
molecular signatures predicting clinical prognosis in 
diverse kinds of cancers [9-11]. Wang and colleagues 
collected samples from 218 patients with gastric 
cancer and found a methylation of the promoter of 
MDGA2 (MAM domain containing glycosylphospha-
tidylinositol) anchored in cancer samples. 
Multivariate analysis also demonstrated that 
hypermethylation of MDGA2 predicted shortened 
survival in patients with gastric cancer [12]. By 
analyzing the data from 492 cases with advanced 
gastric cancer, one study found that the 
demethylation of L1 and SAT-a was independent 
prognostic factors for shorter overall survival (OS) 
and relapse free survival time in patients with 
advanced gastric cancer [13]. 

Therefore, researches on methylation of DNAs 
are promising in revealing predictive biomarkers for 
treatments response and may help doctors provide 
individualized treatments and improve patients’ 

survival time. Using DNA methylation as a predictor 
has a few advantages over other biomarkers. For 
instance, DNA methylation had a higher stability both 
in vivo and ex vivo [14], the requirement of a smaller 
amount of specimens to obtain enough DNA for 
analyzing methylation [15], and higher accuracy [16]. 
Some study suggested that combinations of DNA 
methylation as predictors may yield higher sensitivity 
and specificity than individual DNA methylation [15]. 
Therefore, intact-genome methylation profiles of 
cancer specimens from patients with gastric cancer in 
The Cancer Genome Atlas (TGGA) databases were 
analyzed and a predictive risk model for overall 
survival based on methylation of DNAs, was 
established and tested in our study.  

Materials and Methods 
DNA methylation data of STAD 

The TCGA level 3 DNA methylation data of 
patients with STAD and their related clinical 
information was downloaded from TCGA database 
with TCGAbiolinks package [17]. Only methylation 
data measured with illumina Human Methylation 450 
BeadChip (illumina Inc, CA, USA) was included.We 
used β values to stand for all of the DNA methylation 
levels which were calculated with M/(M+ U+100). ‘U’ 
represented the signal from unmethylated beads and 
‘M’ represented the signal from methylated beads at 
the targeted CpG site. Only the data containing 
patients for whom clinical survival information was 
available was identified to analyze the association 
between DNA methylation levels and the related 
survival in STAD. Overall, 382 specimens with 
485,577 DNA methylation sites were included in this 
study. These 382 samples were divided into a training 
dataset (first 70%) and a testing dataset (remaining 
30%) based on TCGA series number. The training 
dataset was used for determining and building a 
prognostic signature. While the testing dataset was 
applied for verifying the predictive performance of 
the signature. The LASSO[18] was used to select the 
candidate methylation sites predicting the prognosis 
of patients given the virtues such as the method had a 
smaller mean error (MSE) than conventional 
approaches, handling the multicollinearity issues, 
selecting overall variable and coefficients shrink. A 
publicly available R package glmnet[19] was 
employed to perform LASSO with 1000 iterations. A 
desired solution, that was, a set of methylation sites 
were used to construct a prediction model when the 
training dataset, test dataset, and overall dataset 
yielded a relatively high Area Under The Curve 
(AUC) simultaneously. 
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Data processing, normalization and 
identification of differentially expressed 
methylation sites 

It is necessary to filter and preprocess the data 
before building the prediction model. Methylation 
sites whose beta value was not available (NA) in 
greater than 10% of the total sample were removed 
from the analysis. For methylation sites whose NA 
data was less than 10% of the total sample, the NA 
data assumed by using impute.knn function from 
impute package [20]. Finally, data normalization was 
performed by using betaqn function from 
wateRmelon package [21]. 

In addition, all the samples were divided into 
early gastric cancer group and advanced gastric 
cancer group. The standardized beta was transformed 
to M value based on the formulation: M=log(β/(1-β)). 
M value was used to eliminate the difference caused 
by different probes. Subsequently, M value was 
conducted to identify differentially expressed 
methylation sites between early and advanced group 
by using dmpFinder function from minfi package[22].  

Gene sets enrichment analysis and 
protein-protein interaction analysis 

Mapping a set of genes to the related biological 
annotation in the clusterProfiler package[23] is an 
important foundation for the success of the gene 
functional analysis of any high-throughput data. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis and Gene Ontology (GO) 
enrichment analysis were conducted with 
clusterProfiler package to analyze the genes 
corresponding to the differentially expressed 
methylation sites at the functional level. P<0.05 was 
considered as statistically significant. 

The protein-protein interaction(PPI) was 
evaluated using search Tool for the Retrieval of 
Interacting Genes (STRING) [24] database online. 
STRING (version 11.0) t covers 24,584,628 proteins 
from 5090 organisms. The genes corresponding to the 
differentially expressed methylation sites were 
mapped to STRING to evaluate the interactive 
relationships among them, and we selected the 
experimentally confirmed interactions which 
achieved a combined score >0.4 as significant. Then 
we constructed PPI networks with the CytoScape[25] 
software. The sub-network modules were screened by 
plug-in molecular complex detection (MCODE) in 
CytoScape. The screening criterias were as follows: 
MCODE score > 3 and node number >6. In addition, 
the function and pathway enrichment analysis in the 
sub-modules were also carried out. P < 0.05 was 
considered statistically significant. 

Construction and evaluation of prediction 
model and statistical analysis 

All statistical analyses were performed based on 
the R statistical package (R version 3.6.1) except as 
otherwise noted. The univariate Cox proportional 
hazard analysis of the above screened differentially 
expressed methylation was performed to identify 
methylation sites that were significantly (P < 0.05) 
relevant to patient survival. Subsequently, the LASSO 
Cox regression analysis was performed to further 
select the candidate factors relevant to patient 
survival. After that, methylation sites were identified 
from the candidate signatures using as covariates to 
construct multivariate Cox proportional hazard 
model. Then, AUC was applied to assess the model 
value. The model with a better predictive 
performance was screened base on Akaike 
information criterion (AIC) value, the smaller the AIC, 
the better the model was. The prognostic risk scores 
for each patient were calculated by using the formula. 
The patients were then divided into high- or low-risk 
groups using the median risk score as the cutoff point. 
Then, the Kaplan–Meier (K-M) estimator with 
log-rank test (Mantel–Cox) was applied to test the 
cumulative survival time and evaluate the differences 
in OS between the two groups. Kaplan–Meier curves 
were drawn based on the “survival” package. Finally, 
the ROC analysis was performed using the “pROC” 
package [26] with a categorical variable for utility in 
predicting OS of patients. The greater the AUC was, 
the better the model was for the hazard prediction.  

Construction of the nomogram 
A nomogram was performed based on the ‘rms’ 

R package. Factors that were used to construct the 
final multivariate Cox proportional hazard model 
were applied to conduct nomogram. C-index, ROC as 
well as calibration plots were performed to evaluate 
the prognostic value of the nomogram. The result of 
the nomogram was showed in the calibrate curve, and 
the 45° line implied the best prediction. 

Results 
Clinical characteristics of patients 

The study was performed on 382 patients who 
were clinically and pathologically diagnosed with 
STAD. Of these patients, 246 (64.4%) were male and 
136 (35.6%) were female. The median age at diagnosis 
was 67 years(range 30 years - 90 years) and the 
median overall survival time was 460 days. The 
pathologic stage was defined via the Cancer staging 
manual of American Joint Committee on Cancer. The 
stage of gastric cancer patients ranged from I to IV, 
with 50 (13.08%) patients in stage I, 127 (33.25%) 
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patients in stage Ⅱ,172 (45.03%) patients in stage Ⅲ, 
and 33 (8.64%) patients in stage IV. The histological 
type derived from stomach and intestine was 
combined as unilateral cohorts for the analyse due to 
small numbers of sample. Histological type of the 
study patients included stomach adenocarcinoma 
(204 patients, 53.4%), stomach-intestinal adenocarci-
noma (177 patients, 46.3%), and Discrepancy (1, 
0.26%) , respectively. Twenty-two patients (5.76%) 
developed tumor metastasis and 344 (90.05%) patients 
did not. The metastasis status of the rest samples (16 
patients, 4.19%) was unclear. Anatomic sites were 
located at a few positions of the patients’ body, 
including Antrum/Distal, Cardia/Proximal, Fundus/ 
Body, Gastroesophageal Junction, and other locations. 
Among which, Fundus/Body was the most common 
location (37.17%). The detailed clinicopathological 
characteristics of all the included patients are 
displayed in Table 1. 

Gene sets enrichment analysis and PPIanalysis 
 In total, 1737 differential methylation sites were 

identified between early and advanced STAD groups 
based on differential analysis. Figure 1 displayed the 
workflow of the present study. 

We conducted gene sets enrichment analysis for 
genes located at those differentially expressed 
methylation sites, which included GO analysis and 
KEGG pathway analysis. Figure 2A and Figure 2C 
displayed the top 10 enriched GO terms and 
significantly 8 enriched KEGG pathways, 

respectively. Accordingly, Figure 2B and Figure 2D 
presented the top GO terms, KEGG pathways and 
relevant genes. The top 3 enriched GO terms were 
homophilic cell adhesion through plasma membrane 
adhesion molecules, cell−cell adhesion by 
plasma−membrane adhesion molecules, and negative 
regulation of mitotic cell cycle (Table S1). The top 3 
enriched KEGG pathways were endocytosis, viral 
carcinogenesis, and hedgehog signaling pathway 
(Table S2). 

 Besides, the genes corresponding to the 400 most 
significant differentially methylation sites were 
imported into the STRING database to build the 
interactive relationship between proteins. Only the 
genes with a combined score greater than 0.4 were 
selected to build the network. Finally, 458 pairs of 
protein relationships were identified after removing 
the unmatched genes. Genes with interactions more 
than 10 were considered as hub genes. Then 6 hub 
genes were identified: NHP2, NUP35, FBXW7, 
MDM2, BRCA1, RUVBL1 (Figure 2E).  

 A total of 250 nodes and 458 edges were 
analyzed using plug-ins MCODE. The top 4 
significant sub-modules were selected for the gene 
functional annotation. Enrichment analysis showed 
that the genes in those 4 sub-modules were mainly 
associated with G-protein coupled receptor protein 
signaling pathway, mRNA transport, establishment of 
protein localization, and GTP biosynthetic process 
(Figure 2F). 

 

Table 1: Clinical characteristics of included patients with gastric cancer 

Characteristics Total Training dataset (n=268) Testing dataset (n=114) 
Sex    
Female 136(35.6) 97(36.19) 39(34.21) 
Male 246(64.4) 171(63.81) 75(65.79) 
Histological type   
Stomach Adenocarcinoma 204(53.4) 139(51.9) 65(57.0) 
Stomach- Intestinal Adenocarcinoma 177(46.3) 128(47.8) 49(43.0) 
Other 1(0.26) 1(0.37)  
Stage    
Stage I 50(13.1) 30(11.2) 20(17.6) 
Stage II 127(33.2) 94(35.1) 33(28.9) 
Stage III 172(45.0) 121(45.1) 51(44.7) 
Stage IV 33(8.64) 23(8.58) 10(8.77) 
Metastasis status   
M0 344(90.05) 243(90.67) 101(88.6) 
M1 22(5.76) 13(4.85) 9(7.89) 
MX 16(4.19) 12(4.48) 4(3.51) 
Age    
<=65 178(46.6) 120(44.78) 58(50.88) 
>65 201(52.62) 145(54.1) 56(49.12) 
NA 3(0.79) 3(1.12)  
Anatomic sites    
Antrum/Distal 141(36.91) 104(38.81) 37(32.46) 
Cardia/Proximal 52(13.61) 34(12.69) 18(15.79) 
Fundus/Body 142(37.17) 101(37.69) 41(35.96) 
Gastroesophageal Junction 38(9.95) 20(7.46) 18(15.79) 
Other 9(2.3) 9(3.3)  
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Figure 1. Flow chart of the present study. 

 

Identification of 11 methylation sites signature 
Univariate regression analysis of 1737 

methylation sites showed that 51 methylation sites 
(Table S3) were significantly correlated with 
prognosis (p<0.01). The methylation expression 
profile of these 51 methylation sites was used to 
construct the LASSO Cox regression model and 17 
methylation sites were identified as the candidate 
prognostic factors for predicting OS of patients. Of the 
382 samples, 70% were randomly selected as training 
dataset, which was applied to build the model, and 
the other 30% as a testing dataset. When lambda was 
set as the lambda.min, the minimum mean cross test 
error was the minimum (Figure 3A, 3B). Then, 
multivariate Cox proportional hazard regression 
model was constructed base on those 17 candidate 
methylation sites and a risk score formula of 11 
methylation sites was identified finally: Risk score = 
3.416*cg04109661 + 6.877*cg14286665 + 1.549*cg033 
98002 - 1.036*cg01890417 + 18.806*cg20013021 + 
1.859*cg12094029 + 2.427*cg00133204 + 132.771*cg0 
7638282 - 2.093*cg10471794 + 93.113*cg17100207 + 
26.244*cg07851057. As a result, high-risk patients 
exhibited significantly higher methylation levels for 
cg04109661, cg14286665, cg03398002, cg20013021, 
cg12094029, cg00133204, cg07638282, cg17100207 and 
cg07851057, and significantly lower methylation 
levels for the other two methylation sites (Figure 4D) 
(Figure S1-S2). 

Association between 11 DNA-methylation 
signature and STAD patients’ OS in training, 
test and overall dataset  

The K-M analysis was performed in the training 
and testing datasets as well as the overall dataset to 
determine the underlying predictive value of 
the11-methylation signature in the overall survival. 
According to the median risk score, gastric cancer 
patients were divided into high-risk patients and 
low-risk patients. The median survival time of 
high-risk patients and low-risk patients was 383 and 
574 days, respectively. As expected, patients with low 
risk score have better prognosis base on K-M survival 
curve in training dataset. Similar results were 
obtained in testing dataset and entire dataset. (Figure 
5A, 5C, 5E). These results confirmed that the 11-DNA 
methylation signature could stratify patients into 
high- and low-risk groups, implying its promising 
value in predicting STAD prognosis. 

Evaluation of predictive performance of the 
11-DNA methylation signature 

The AUC of ROC curve was used to assess the 
predictive accuracy of the 11-DNA methylation 
signature in training, testing, and entire dataset. The 
5-year AUC of the 11-DNA methylation signature was 
0.788, 0.741, 0.751, respectively (Figure 5B, 5D, 5F), 
indicating that this model had high accuracy in 
predicting survival status in patients with STAD. This 
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finding showed important significance in clinical 
gastric cancer treatment. 

In addition, patients were ranked according to 
their risk scores (Figure 6A), and the dot plot was 
drew according to their survival status (Figure 6B). 
Result indicated that the low-risk group had a lower 
mortality rate than the high-risk group. Heatmap of 
11 methylation sites sorted by risk score were 

presented in Figure 6C, which was consistent with 
our previous boxplot. 

 Besides, Subgroup analysis was performed by 
various clinicopathological factors including gender, 
age, stage, pathological type, metastasis status, 
anatomic site, which also yielded a relatively high 
performance in most of sub-groups (Figure S3-S8).  

 

 
Figure 2. Gene sets enrichment analysis and protein-protein interaction analysis. (A) The top 10 GO enrichments for genes located in 1737 differentially expressed 
methylation sites. The original P value was transformed to ‘-log (P value)’ in order to plot the bar chart. (B) The top 5 GO enrichments with its gene linkages. (C) The top 8 
enriched KEGG pathway. (D) The top 3 KEGG pathway with its gene linkages. (E) Construction of protein-protein interaction network of genes corresponding to the 400 most 
significant differentially methylation sites. The big nodes represent the hub genes. (F) The top 4 sub-module from PPI network. 
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Figure 3. Candidate methylation sites selection using the LASSO Cox regression model. (A) 10-fold cross-validation for tuning parameter selection in the LASSO 
model via minimum criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 51 methylation sites. A coefficient profile plot was produced against log (lambda) sequence. 
Vertical line was drawn at the value selected using 10-fold cross-validation, where optimal lambda resulted in 17 non-zero coefficients. 

 

Nomogram development 
To investigate whether the 11-DNA methylation 

signature was an independent prognostic predictor of 
patient OS, univariate and multivariate Cox model 
was conducted on methylation associated risk score 
and several other clinicopathological factors. Hazard 
ratios (HRs) suggested that the 11-DNA methylation 
signature was significantly relevant to the OS of 
patients (P<0.001, HR 2.55, 95% CI 1.99–3.27) by the 
outcome of Cox regression analysis (Table 2), 
suggesting that the 11-DNA methylation signature 
was an independent prognostic predictor. To predict 
the prognosis of patients with STAD based on a 
quantitative method, we developed a nomogram 
(Figure 7) that combined both the 11-DNA 
methylation signature and the conventional 
clinicopathological factors which yielded significant P 
value in multivariate Cox model to predict OS. The 
importance of each factor was displayed in Figure 8A. 
The evaluative indicator such as C-index (0.760, 
95%CI: 0.722-0.797), AUC (1-, 3-, 5- year: 0.810, 0.793, 
0.810) (Figure 8B) and calibration plot yielded a high 
value simultaneously (Figure 8C, 8D, 8E).  

 The above data showed that the 11-DNA 
methylation signature could offer a better reference 

for different regrouped cohorts because of the 
effectiveness of risk stratification. The results 
indicated that the 11-DNA methylation signature 
showed better applicability when patients were 
regrouped based on different clinicopathological 
characteristics, suggesting that the 11-DNA 
methylation signature was an independent prognostic 
predictor of STAD patients survival.  

Discussion 
The expression of specific DNAs has been shown 

a promising value in detecting the gastric cancer and 
predicting survival in patients with gastric cancer. A 
previous study reported that DNA hypomethylation 
was relevant to the progression of carcinoma and 
might contribute to chromosomal instability and 
genome rearrangement [27]. In addition, It has been 
reported that the methylation status of particular 
genes was associated with a worse prognosis [28, 29], 
suggesting that alterations of methylation status may 
be related to the cancerous development. One study 
also used the methylation of specific DNAs to detect 
gastric cancer. The study investigated 51 candidate 
genes from 7 gastric cancer cell lines. They examined 
methylation status of these genes in a training 
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population, which included 131 gastric neoplasia, 
then validated their findings in a test population 
consisting of 40 primary gastric cancer samples. The 
study found that six genes (MINT25, RORA, GDNF, 
ADAM23, PRDM5, MLF1) presented differential 
methylation between gastric cancer and normal 
mucosa in the training and test population. Among 
the six genes, MINT25 methylation was a sensitive 
(90%) and specific (96%) marker for screening in 
gastric cancer [30].  

Tanaka Tomokazu and colleagues found that 
low expression of Trefoil factor 1 (TFF1) was relevant 
to poor survival in gastric cancer patients who were 
treated by surgery alone, while the expression of TFF1 
was silenced by DNA methylation and was also 

associated with tumor invasion [31]. Other studies 
also showed that high methylation status of IGF2 and 
LINE1 was associated with invasion of gastric cancer 
[32] and hypermethylation of GFRA3 promoter may 
predict poor overall survival in gastric cancer patients 
who underwent surgery [33]. Besides, Li et al. 
reported that integrative analysis of DNA methylation 
and gene expression identified a six epigenetic driver 
signature for predicting prognosis in hepatocellular 
carcinoma [34]. Nassiri revealed a DNA methylation 
profiling to predict recurrence risk in meningioma 
[35]. All of above studies suggested that DNA 
methylation models displayed good performance for 
predicting prognosis for cancers, which have 
promising clinical application value.  

 

 
Figure 4. Boxplots of methylation β values against risk group in the entire dataset. “High Risk” and “Low Risk” represent the high-risk and low-risk group, 
respectively. The median risk score was taken as a cutoff. Y-axis represent the β-value of 11-DNA methylation sites respectively. The differences between the 2 groups were 
estimated by Mann-Whitney U test. 
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Figure 5. Kaplan-Meier and ROC analysis of patients with STAD in training, testing and entire dataset, respectively. (A, C, E) Kaplan-Meier analysis with 
two-sided log-rank test was performed to estimate the differences in OS between the low-risk and high-risk patients. (B, D, F) 1-, 3-, 5-year ROC curves of the 11-DNA 
methylation signature were used to demonstrate the sensitivity and specificity in predicting the OS of STAD patients. “High” and “Low” represent the high risk score group and 
low risk score group, respectively. The median risk score was taken as a cutoff. 

 
By analyzing gene sites in 382 samples, we found 

that the methylation of 11-DNA was associated with 
prognosis in patients with STAD. Higher levels of 
2-DNA methylation (ZNF644, cg10471794) were 
associated with better survival, while, higher level of 
13 DNA methylation was associated with worse 
survival (MGC16121, KIAA1026, FBXO11, BDP1, 
CCDC126, XPO7, STX2, IPO5, cg12094029) in patients 
with STAD. A risk prediction model constituted by 
the 17 DNAs was established and showed good 
accuracy in evaluating the overall survival of patients. 

A series of researches have revealed that the 
methylation of DNAs involved in risk prediction 
model was associated with cancer development and 
prognosis. One study found that the expression of 
ZNF644 was changed in patients with peripheral 
blood leukocytes who underwent chemotherapy [36]. 
The expression of KIAA1026 was down-regulated in 
breast tumors and metastases [37]. FBXO11 is a 

member of the F-box protein family. Previous studies 
revealed inconsistent findings on the role of FBXO11 
in the process of cancerogenesis and in predicting 
cancer survival. Three studies showed that higher 
expression of FBOX11 was independent predictors of 
poor OS of patients with different types of cancer such 
as renal cell carcinoma, breast cancer, and 
hepatocellular carcinoma [38-40]. However, other 
studies showed that FBXO11 acted as a tumor 
suppressor and higher expression of FBXO11 was 
associated with better patient survival [41-43]. Our 
study found that methylation of FBOX11 was 
associated with worse survival which supported that 
FBXO11 acted as a tumor suppressor. Syntaxin2 
(STX2) was associated with colorectal cancer (CRC) 
invasion and metastasis, as well as poor patient 
survival. The potential mechanism may be that STX2 
may activate the nuclear transcription factor-κB 
(NF-κB) signaling pathway, and in turn, NF-κB 
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increased STX2 expression. The positive signaling 
loop eventually enhanced CRC metastasis [44]. IPO5, 
one of the karyopherin nuclear transport receptor 
family members, could contribute to the development 
of CRC by bounding to the NLS sequence and 
mediating RASAL2 nuclear translocation [45].  

Apart from the desired results, limitations still 
existed in the present study. Firstly, the methylation 
data was divided into training set and internal 
validation set, lacking of external validation set, 
which may lead to some kinds of biases. Secondly, 
quite a long time was required for applying it 
clinically due to a high methylation testing charge. 
Despite the limitations mentioned above, there were 
still various valuable implications. In the present 
study, a 11-DNA methylation signature was 
established and could separate GC patients into two 

groups and predict OS with robust performance in 
not only training, testing and entire datasets but also 
in most of the sub-groups. Besides, we employed 
LASSO method to filter variables between univariate 
and multivariate Cox analysis, which perfectly solved 
the multicollinearity problem and made our results 
more reliable. Furthermore, few previous studies 
have combined methylation signature with clinical 
indicators to predict OS and no study was performed 
as above for gastric cancer yet. Our work 
demonstrated the transformative utility of integrating 
clinical and molecular factors for use beyond simple 
classification into the realm of individualized 
prognostication for GC and determined an 
individualized probability of OS for patients with GC, 
which represents a major advance in the field of 
personalized medicine for gastroenterology. 

 
 

 
Figure 6. Methylation risk score analysis of 382 GC patients in the entire dataset. (A) Methylation risk score distribution against the rank of risk score. Median risk 
score is the cut-off point. (B) Survival status of GC patients. (C) Heatmap of 11 methylation sites expression profiles of GC patients. 
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Figure 7. Methylation nomogram for the prediction of GC’s OS. The nomogram was developed in the entire cohort, with the methylation risk score, sex, age, and 
positive lymph node numbers. 

 

Table 2. Univariate Cox regression analysis and multivariate Cox regression analysis outcome based on methylation risk score and other 
clinical factors. 

 Univariate Cox analysis Multivariate Cox analysis 
Characteristics HR HR.95L HR.95H P value HR HR.95L HR.95H P value 
Score 2.718282167 2.16171357 3.418148473 1.18E-17 2.552291593 1.990295974 3.272976713 1.54E-13 
Sex 1.21780532 0.857126589 1.730257605 0.27149398     
Age at initial 
pathologic 
diagnosis 

1.022889192 1.007768508 1.038236749 0.002897625 1.026042322 1.008775545 1.043604647 0.002987916 

Histological type 1.096262962 0.788648413 1.523863438 0.584410769     
Tumor 1.376148414 1.109495583 1.706887784 0.003666749 1.35521211 1.016922667 1.806036903 0.03803348 
Lymph node 
status 

1.362646347 1.178750091 1.575232171 2.87E-05 0.977914047 0.76106433 1.256550656 0.861394092 

Metastasis status 1.418931078 1.052366548 1.913178833 0.021750423 1.128545617 0.792286856 1.607517783 0.502861885 
Stage 1.60885934 1.302363986 1.987484608 1.03E-05 0.958739204 0.653299624 1.406982076 0.82953355 
Grade 1.154911618 0.974517914 1.368698127 0.096496554     
Pylori infection 0.963926203 0.737620758 1.2596632 0.787844008     
Reflux history 0.924983022 0.724883645 1.180318519 0.530665644     
Residual tumor 1.63205323 1.328798901 2.004515313 3.01E-06 1.17339795 0.922264043 1.492916004 0.193131887 
Anatomic 
neoplasm 
subdivision 

0.951290227 0.841094269 1.075923507 0.426631743     

Ethnicity 1.019005844 0.741051981 1.401214674 0.907767476     
Race  1.084867725 0.885392834 1.329283382 0.432000455     
Number of lymph 
nodes positive 

1.048322314 1.032019933 1.064882217 3.60E-09 1.033726554 1.008532457 1.059550024 0.008417234 

 
 
Although the clinical value of these 11 DNA 

methylation sites still remained to be fully 
investigated, those methylation sites had crucial 
connection with the prognosis of patients with STAD 
and may be an underlying therapeutic target for 
STAD. In addition, we developed a nomogram that 

combined both the 11-DNA methylation signature 
and the conventional clinicopathological factors to 
predict 1-, 3- and 5-year OS. The results might 
contribute to the development of effective molecular 
markers in the clinical routine.  
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Figure 8. Validation of methylation nomogram in the entire dataset. (A) Barplot of importance of each clinical factor. (B) 1-, 3-, 5-year ROC curves for the 
methylation nomogram. (C, D, E) represent the 1-, 3-, 5-year nomogram calibration curves, respectively. The closer the dotted line fit is to the ideal line, the better the 
predictive accuracy of the nomogram is. 

 

Conclusion  
Therefore, the methylation of the 11-DNA 

signature may potentially be used as a novel 
independent prognostic biomarker to predict the OS 
of patients with gastric cancer. Further clinical studies 
on the functional mechanism of the 11 DNA 
methylation signature should be explored for the 
possibility of its involvement in the carcinogenesis.  
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