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Abstract 

Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There 
is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In 
recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, 
especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in 
cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to 
tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an 
effective target for novel anticancer treatment. 
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Introduction 
Over the past few decades, numerous published 

studies have focused on cancer cell metabolism and 
have determined that metabolic reprogramming is a 
hallmark of cancer1-6. It is thought that 
reprogramming of catabolic and anabolic metabolism 
to harvest energy and synthesize biomass is critical 
for the survival and growth of cancer cells. Nearly a 
century ago, Otto Warburg observed that cancer cells 
tend to use glucose extensively through aerobic 
glycolysis7. Highly proliferative cancer cells also tend 
to have a high lipid content (fatty acids and 
cholesterol), which is important for providing energy, 
membrane synthesis, and lipid signaling8. Cancer 
cells often exhibit an enhanced ability to synthesize 
lipids and have a higher lipid uptake9. Most studies 
have reported that the upregulation of fatty acid and 
cholesterol related enzymes is required for tumor 
progression9-14. Lipid metabolism involves lipid 
synthesis, storage and degradation. In mammals, 
cholesterol is either absorbed from dietary sources or 
synthesized de novo. The liver and intestinal mucosa 
are the main sites of cholesterol synthesis. Up to 
70-80% of cholesterol in humans is synthesized de novo 
by the liver, and 10% is synthesized de novo by the 
small intestine. Accumulating evidence demonstrates 

that cholesterol plays a critical role in cancer 
progression15-19. Furthermore, intracellular cholesterol 
homeostasis is different among various cancer types, 
and cholesterol itself plays varying roles among 
different cancer types 17. In this review, we describe 
normal cholesterol synthesis and cholesterol meta-
bolic changes in cancer cells. Cholesterol biosynthesis 
pathways could be an attractive therapeutic target for 
cancer therapeutics.  

Total cholesterol and cancer 
Cholesterol is a primary lipid that is essential for 

membrane biogenesis, cell proliferation, and 
differentiation. Cholesterol is also the precursor of 
steroid hormones and sterols that induce specific 
biological responses. Cholesterol is mainly 
synthesized by the liver in humans, and is distributed 
throughout the body via high-density lipoprotein 
(HDL) and low-density lipoprotein (LDL) 
transporters. Acetyl-CoA is a key precursor of de novo 
cholesterol synthesis 20. The reduction of HMG-CoA is 
an important regulatory step in cholesterol synthesis. 
Cholesterol itself is an important metabolic 
intermediate that is converted into cholesteryl esters, 
bile acids, cholecalciferol/vitamin D, and various 
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steroid hormones in the appropriate tissues. 
Cholesterol biosynthesis, regulation of cholesterol 
plasma levels, and conversion to other compounds is 
normally carefully regulated 21. Unlike normal cells, 
tumor cells upregulate intracellular cholesterol 
synthesis and exhibit abnormal aggregation of most 
metabolites.  

Transcription factor and cholesterol de 
novo synthesis enzymes 

Several steps are required to convert acetyl-CoA 
to cholesterol, which then is involved in numerous 
biological roles. These steps involve cholesterol 
synthase (ACAT, HMGCR, SQLE, OSC), acyl 
coenzyme A, cholesterol acyltransferases (SOAT), and 
ATP-binding cassette transporter A-1 (ABCA1). In a 
situation of decreasing cholesterol availability, 
inhibiting these enzymes could influence cancer cell 
growth. Interestingly, many inhibitors of these 
enzymes have effects on cancer treatment (Figure 1). 
SREBPs, which were reported the most transcription 
factors (sterol regulatory element binding proteins,) 
regulate cholesterol de novo synthesis. Also, KLF1422, 
ChREBP23,24, LXRα25 and LRH-126 have very important 
roles in cholesterol metabolism. Due to the limitation 
of words, we just reviewed the role SREBP played on 
it. 

SREBP 
Lipid homeostasis in vertebrate cells is regulated 

by a series of membrane-bound transcription factors, 
the sterol regulatory element-binding proteins 
(SREBPs). SREBPs directly activate more than 30 

genes specific to the synthesis and uptake of 
cholesterol, fatty acids, triglycerides, and 
phospholipids, as well as the nicotinamide adenine 
dinucleotide phosphate cofactor required to 
synthesize these molecules 27. 

In 2016, Zhao et al. demonstrated that the 
hepatitis B X-interacting protein (HBXIP) upregulates 
SREBP-1c/SREBF1, which activates the transcription 
of fatty acid synthase by directly interacting with 
nuclear receptor coactivators and LXR. Over-
expression of SREBP-1c can also activate HBXIP 
transcription. HBXIP enhances fat production, leading 
to the growth of breast cancer cells in vitro and in vivo 
28. Therefore, direct inhibition of SREBPs, resulting in 
cholesterol depletion, may be an effective cancer 
therapeutic strategy 29. 

HMGCR 
The 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR) enzyme is the rate-limiting enzyme of the 
cholesterol synthesis pathway. In 2016, two reports 
showed that autoantibody-positive anti-HMGCR 
myopathies and HMGCR-positive inflammatory 
myopathies were association with cancer 30,31. In a 
clinical study, positive cytoplasmic HMGCR 
expression was associated with colon cancer with 
distant metastasis-free disease at diagnosis. Positive 
HMGCR expression was significantly associated with 
prolonged cancer-specific survival in an unadjusted 
Cox regression analysis in the entire cohort and in 
stage III-IV disease 32. Increased HMGCR expression 
was also observed in gastric cancer tissues. 
Overexpression of HMGCR promoted the growth and 

migration of gastric cancer cells, while 
HMGCR knockdown inhibited growth, 
migration and tumorigenesis 33. 
Upregulation of HMGCR was also 
observed in clinical glioblastoma 
samples. Forced expression of HMGCR 
promoted the growth and migration of 
U251 and U373 cells, while knockdown 
of HMGCR inhibited their growth, 
migration and metastasis 34. HMGCR 
was overexpressed in prostate cancer 
(PC) stroma, especially in early-stage 
PC. These results provide insights into 
the molecular mechanisms underlying 
PC invasion 35. Another study found 
that ectopic expression of hsa-miR-195 
in MCF-7 and MDA-MB-231 cells, 
resulting from targeting HMGCR, 
significantly altered cellular cholesterol 
and triglyceride levels as well as 
reduced proliferation, invasion and 
migration 36.  

 

 
Figure 1. Cholesterol biosynthesis pathway in cancer cells. Inhibitors of HMGCR, statins could exert 
anti-cancer effects through AKT, p53, BMP, ROS. And OSC through PI3K promoted cancer growth. To sum 
up, HMGCR, SQLE, OSC, ACAT1, SOAT and ABCA1 are the contributing factors in cancers. Statins, 
ACAT2 and ABCA1 are inhibitors in cancers. SREBP, sterol regulatory element binding protein; ACAT1/2, 
acetyl-CoA acetyltransferase 1/2; SOAT, sterol-o-acyltransferase; HMGCR, 
hydroxy-3-methylglutaryl-coenzyme a reductase; SQLE, squalene epoxidase; OSC, oxidosqualene cyclase; 
ABCA1, ATP-binding cassette transporter A-1; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; 
ROS, reactive oxygen species; BMP, bone morphogenetic protein. 
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Statins are often used to lower cholesterol by 
inhibiting HMGCR. The multipotency of statins has 
been associated with cancer risk. Several studies have 
also found that statins play an important role in the 
treatment of several cancers 37. In 2012, Gazzerro et al. 
reviewed statin pharmacology, elucidating the 
prospect of utilizing statins in cancer treatment for 
hepatocellular carcinoma (HCC), colorectal carcinoma 
(CRC), and acute myelocytic leukemia 38. A recent 
Danish study correlated the use of statins in cancer 
patients. They observed reduced cancer-related 
mortality for 13 cancer types among statin users. 
Statin use in patients with cancer is also associated 
with reduced cancer-related mortality 39. In epithelial 
ovarian cancer, a retrospective study reported that the 
use of statins was associated with improved clinical 
outcomes 40. Statin use prior to a cancer diagnosis was 
correlated to a reduction in all-cause and 
cancer-specific mortality. Consistent with these data, 
patients with CRC with pre-diagnosis statin use had 
prolonged cancer-specific survival, but no benefits 
were observed for patients with post-diagnosis statin 
use 41. Additionally, the risk of CRC was lower in 
statin users versus nonusers 42. The anticancer effect of 
simvastatin through the induction of apoptosis is 
related to AKT signaling-dependent downregulation 
of survival in A549 lung cancer cells 43. In an analysis 
of 999 colon cancer patients, statin use was correlated 
with a reduced risk of death from any cause or from 
cancer. The benefit of statin use was greater for 

patients whose tumors had intact bone morpho-
genetic protein signaling independent of KRAS 
mutation status 44. Simvastatin also affected OCM-1 
cell growth, apoptosis and cell cycle. In addition, 
simvastatin resulted in increased ROS levels and 
significantly increased apoptosis and the expression 
of the mitochondrion-related apoptosis protein p53 in 
OCM-1 cells 45. In 2016, a surprising report found that 
statins preferentially inhibited the growth of cancer 
cells that express mutations, and p53 status impacted 
statin-dependent efficacy of cancer therapy 46. 

ACAT 
Acetyl-CoA acetyltransferase 1 (ACAT1) is a 

tetrameric enzyme in the ketogenesis pathway that 
converts two acetyl-CoA molecules into acetyl-CoA 
and CoA 47-49. Fan et al. found that knockdown of 
ACAT1 attenuated tumor growth 50. The inhibition of 
tetrameric ACAT1 by abolishing Y407 phos-
phorylation, or eliminating arecoline hydrobromide 
treatment, resulted in suppressed ACAT1 activity 51. 
This lead to increased pyruvate dehydrogenase 
complex flux and oxidative phosphorylation, with 
attenuated cancer cell proliferation and tumor 
growth. These findings suggested that ACAT1 could 
be an effective anticancer target. Acetyl-CoA 
acetyltransferase 2 (ACAT2) also plays an important 
role in lipid metabolism. ACAT2 downregulation has 
been associated with a poorer cancer-specific survival 
prognosis in clear cell renal cell carcinoma 52. 

 

 
Figure 2. Role of cholesterol synthesis enzymes in different kinds of cancers. In glioblastoma, SOAT1 and HMGCR are up-regulated. In melanoma, ABCA1 and SOAT1 
are up-regulated. In lung cancer, SOAT1 is up-regulated. And in breast cancer, SOAT1, SOAT2, HMGCR, SQLE and OSC are up-regulated. In gastric cancer, HMGCR is 
up-regulated. In hepatocellular carcinoma, SOAT2 and SQLE are up-regulated. In pancreatic adenocarcinoma, SOAT1 is up-regulated. In colon cancer, SOAT1, HMGCR and 
OSC are up-regulated. However, ABCA1 is down-regulated. In prostate cancer, SOAT1, HMGCR, SQLE and OSC are up-regulated. ABCA1 is down-regulated. In renal cell 
carcinoma, ACAT2 is up-regulated. In ovarian cancer, ABCA1 is up-regulated. 
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SOAT 
Sterol-o-acyltransferase (SOAT), also called 

Acyl-CoA cholesterol acyltransferase (ACAT), is an 
integral membrane protein of the rough ER that 
catalyzes the formation of cholesteryl esters from 
cholesterol and long-chain fatty acids. The solubility 
characteristics of cholesteryl esters make them the 
ideal molecule for cholesterol storage, which occurs 
mostly in cytoplasmic lipid droplets inside cells. Thus, 
SOAT is a key enzyme involved in the control of 
intracellular cholesterol storage and in determining 
free cholesterol levels 53. SOAT plays an important 
role in the homeostasis of cell cholesterol metabolism 
and is a drug target for treatment intervention in 
various diseases, such as atherosclerosis, Alzheimer’s 
disease and cancer 54. 

In 2019, through proteomic and phosphor- 
proteomic profiling, he’s group found that SOAT1 
expression was higher in HCC and was associated 
with a poor prognosis. In addition, inhibiting SOAT1 
markedly suppressed cell proliferation and migration 
55. SOAT1 was also overexpressed in human 
castration-resistant metastatic PC tissues. These 
results indicate that the enzymes involved in the 
ketogenic pathway are upregulated in high-grade PC 
and could act as potential tissue biomarkers for the 
diagnosis or prognosis of high-grade disease 56. Li et 
al. found an abnormal accumulation of cholesteryl 
ester in human pancreatic cancer specimens and cell 
lines, which was mediated by SOAT1. SOAT1 
expression was associated with poor outcomes. By 
using an SOAT1 inhibitor or shRNA knockdown, 
abrogated cholesterol esterification significantly 
suppressed tumor growth and metastasis in an 
orthotopic pancreatic cancer mouse model. SOAT1 
inhibition was found to increase intracellular free 
cholesterol levels, which was associated with ER 
stress and apoptosis 57. Furthermore, the availability 
of cholesteryl esters increased the proliferation and 
invasiveness of normal cells, indicating that 
cholesteryl esters may contribute to a tumor- 
promoting phenotype. Another study showed that 
breast cancer cell lines treated with auraptene, a 
naturally occurring SOAT1 inhibitor, also had 
decreased cellular proliferation, invasion, and colony 
formation 58. Treatment of human prostate, 
pancreatic, lung, and colon cancer cell lines with 
avasimin, a potent SOAT1 inhibitor, significantly 
reduced cholesteryl ester storage in lipid droplets and 
increased intracellular free cholesterol levels. This led 
to apoptosis and the suppression of proliferation. 
Systemic treatment of avasimin notably suppressed 
tumor growth in mice and prolonged survival time 59. 
Similarly, SOAT1 inhibition decreased cell 
proliferation and invasion in two tumor cell lines 60. 

The SOAT1 inhibitor CP-113818 reduced proliferation 
of breast cancer cells and specifically inhibited 
LDL-induced proliferation of ERα- cells. A greater 
ability to take up, store and utilize exogenous 
cholesterol conferred a proliferative advantage in 
basal-like ERα- breast cancer cells as well 61.  

Revitalizing the cytotoxic potential of CD8+ T 
cells is of great clinical interest in the cancer 
immunotherapy field. A novel mechanism to enhance 
the antitumor response of CD8+ T cells in mice by 
regulating cholesterol metabolism has been reported. 
The inhibition of cholesterol esterification in T cells, 
either by genetic ablation or by pharmacological 
inhibition of SOAT1, resulted in enhanced effects and 
proliferation of CD8+ T cells but not CD4+ T cells. In 
the absence of SOAT1, CD8+ T cells performed better 
than wild-type CD8+ T cells in controlling the growth 
and metastasis of melanoma in mice. In addition, 
combination therapy with avasimibe, SOAT inhibitors 
and anti-PD-1 antibodies had a superior effect on 
controlling tumor progression than single agent 
therapy 62. 

Human SOAT2 is mainly expressed in the 
intestine and fetal liver. Inhibiting SOAT2 leads to the 
intracellular accumulation of unesterified oxysterols 
and suppresses the growth of both HCC cell lines in 
vitro and as xenograft tumors. Further mechanistic 
studies have revealed that HCC-linked promoter 
hypomethylation is a major mechanism for SOAT2 
gene expression induction. Specifically blocking the 
cholesterol metabolism pathway established in HCC 
may have therapeutic effects in HCC patients 63. The 
inhibition of SOAT2 expression significantly 
decreased leptin-induced proliferation, migration and 
invasion of MCF-7 and T47D cells. Additionally, 
leptin may enhance the proliferation, migration and 
invasion of breast cancer cells in an SOAT2- 
dependent manner through the PI3K/AKT/SREBP2 
signaling pathway 64.  

SQLE 
Squalene epoxidase (SQLE) is involved in the 

first oxygenation step in the cholesterol synthesis 
pathway, and is therefore a good target for controlling 
the cholesterol synthesis process 65. Liu et al. 
sequenced RNA from nonalcoholic fatty liver disease 
(NAFLD)-induced HCC samples and revealed SQLE 
as the top metabolic gene overexpressed in NAFLD- 
induced HCC patients. In human NAFLD-induced 
HCC and HCC, SQLE was overexpressed and its 
expression was associated with poor patient 
outcomes. Terbinafine, an SQLE-targeting drug, 
markedly inhibited SQLE-induced cell growth in 
NAFLD-induced HCC and HCC cells and attenuated 
tumor development in xenograft models and SQLE 
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transgenic mice 66,67. These findings are consistent 
with observations from Stopsack et al. and Brown and 
his colleagues. In breast cancer and PC, SQLE over-
expression is more common and is an independent 
prognostic factor for poor prognosis 68,69. Given that 
SQLE may be oncogenic in a growing number of 
cancers, molecules targeting the SQLE signaling axis 
may be effective therapeutics for the treatment of 
malignancies. 

OSC 
Oxidative squalene cyclase (OSC) catalyzes the 

transformation of the linear triterpene (3S)-2,3-oxidos- 
qualene into cyclic compounds 70. A previous study 
investigated the role of this post-squalene enzyme, 
which is involved in the cholesterol biosynthesis 
pathway, in regulating tumor angiogenesis and 
metastatic dissemination in mouse models of cancer. 
The authors showed that Ro 48-8071, a selective 
inhibitor of OSC 71, inhibited tumor growth in a 
spontaneous mouse model of pancreatic cancer and 
two metastatic mouse models. Remarkably, OSC 
inhibition suppressed metastasis formation in both 
the HCT116 and HPAF-II models. OSC inhibition 
specifically interfered with the PI3K pathway 72. Ro 
48-8071 also potently reduced breast cancer cell 
viability, especially in human breast cancer cells. The 
administration of Ro 48-8071 to mice with tumor 
xenografts prevented tumor growth with no apparent 
toxicity. Ro 48-8071 had no effect on the viability of 
normal human mammary cells 73. In vivo, Ro 48-8071 
effectively inhibited the growth of human PC 
xenograft cells in an anti-castration setting, without 
any signs of toxicity in experimental animals. 
Importantly, Ro 48-8071 did not decrease the survival 
rate of normal prostate cells in vitro 74. Ro 48-8071 is a 
potent inhibitor of cancer cell proliferation. 

ABCA1 
Adenosine triphosphate (ATP)-binding cassette 

(ABC) transporters are drug efflux pumps that can 
lead to multidrug resistance and to tumor treatment 
failure 75,76. ATP-binding cassette transporter A-1 
(ABCA1) mediates the export of cholesterol and 
phospholipids to apolipoprotein A-I for HDL 
assembly 77. In addition, ABCA1 is involved in 
bidirectional sterol movement through the plasma 
membrane, and regulates cell cholesterol homeostasis 
78. 

Compared with the sensitive MDA-MB-231 
breast cancer cells, the overexpression of ABCA1, a 
gene involved in the lipid removal pathway in 
drug-resistant M14 melanoma 79. In human PC biopsy 
specimens, the expression of ABCA1 mRNA was 
approximately twice as high in the androgen-depleted 

treatment group than in benign prostatic hyperplasia 
or PC 80. Suppression of the cholesterol transporter 
ABCA1 inhibited ovarian cancer cell growth and 
migration in vitro. Additionally, the expression of 
ABCA transporters is correlated with poor outcomes 
in serous ovarian cancer 81. JNJ-26854165 is a new type 
of chemotherapy with p53 activation abilities 82,83. 
Interestingly, ABCA1 depletion increased sensitivity 
to JNJ-26854165 84.  

ABCA1 exhibits anticancer activity that inhibits 
the expression of the ABCA1 gene through functional 
mutations in oncogenes or cancer-specific ABCA1. In 
2012, one excellent study by Smith et al. revealed that 
the anticancer activity of ABCA1 efflux is impaired 
after ABCA1 gene expression is inhibited by either an 
oncogenic mutation or cancer-specific ABCA1 
functional deletion mutation. ABCA1 deficiency in 
conjunction with the high cholesterol synthesis found 
in cancer cells can lead to increased mitochondrial 
cholesterol, thereby promoting cancer cell survival 19. 
In LNCaP cells, a DNA methylome analysis revealed 
that the promoter of ABCA1 is markedly 
hypermethylated. These findings suggest that the loss 
of cancer-specific ABCA1 hypermethylation and 
protein expression directly leads to elevated levels of 
cholesterol in cells, thereby contributing to tumor 
development 85. ABCA1 is also aberrantly expressed 
in colon cancer tissues and cells. Silencing ABCA1 or 
miR-183 promoted proliferation and inhibited 
apoptosis in colon cancer cells 86.  

Conclusions 
In summary, cancer cells rely on cholesterol as a 

cellular building block for membrane formation and 
for the production of signaling molecules. This review 
highlights the importance of cholesterol, cholesterol 
transporters and metabolites, and key enzymes of 
cholesterol metabolism in cancer (Figure 1). The 
requirement of cholesterol for cancer cell proliferation 
reveals a potential cancer therapeutic target at 
multiple points within the cholesterol metabolism 
pathway to inhibit proliferation. Numerous chemical 
inhibitors for specific steps in the metabolism 
pathway already exist. Targeting cholesterol 
metabolism could be more a selective therapeutic 
modality for highly proliferative cells. Alternatively, 
cholesterol metabolism inhibitors could be utilized in 
a cell-specific and targeted manner. Cancer is a 
diverse set of diseases with various genetic changes. 
Cholesterol metabolism is also complex, with many 
different feedback mechanisms and regulatory points. 
In addition, most cholesterol metabolism enzymes 
have multiple isoforms, which may be connected to 
different lipid metabolism processes, cellular 
localization, or tissue distribution.  
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Successful treatments may depend on 
understanding specific metabolic abnormalities in 
certain types of cancer 87,88 (Figure 1). While some 
cholesterol metabolites contribute to cancer 
development and resistance, others have therapeutic 
potential. Further insight on cholesterol metabolism 
in cancer cells will allow us to take advantage of new 
and effective targets to improve the survival rate of 
cancer patients.  
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