

Research Paper

Prognosis for different patterns of distant metastases in patients with uterine cervical cancer: a population-based analysis

Yiran Zhang¹, Ying Guo², Xinzi Zhou¹, Xuena Wang¹, Xiaofei Wang¹

1. International Medical Center, Tianjin First Central Hospital, Tianjin, China.

2. Nursing department, Tianjin First Central Hospital, Tianjin, China.

🖂 Corresponding author: Dr. Xiaofei Wang (wangxiaofei@tmu.edu.cn), address: Tianjin First Central Hospital, 24 Fukang Road, Nankai area, Tianjin 300192, China.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2019.06.07; Accepted: 2019.12.01; Published: 2020.01.14

Abstract

Background: Uterine cervical cancer (UCC) is a common malignant tumor in women. We conducted this work to provide a though description on the patterns of distant metastases and to investigate the relevant factors for prognosis of UCC patients based on a large population.

Patients and methods: UCC patients with FIGO stage IVB, being the study group, were identified from the Surveillance, Epidemiology, and End Result (SEER) database from 2010 to 2016. UCC patients with same inclusion criteria, being validation group, were identified from Tianjin First Central Hospital from 2004 to 2017. Patterns of distant metastases were described according to the number of metastatic sites. Survival of different patterns were calculated and prognostic factors were investigated by Cox hazard regression analysis.

Results: Distant metastases were recorded in 1448 UCC patients among whom 295 patients (30.8%) developed metastases in two or more organs. Compared with the median OS of 8 (95%Cl, 7.07-8.93) months in the patients with the single site, worse survival of 5 (95%Cl, 4.29-5.71) months was noticed in the patients with multiple metastases. Age \geq 65 years, black race, higher grade, higher T stage and more metastatic sites were proved to be the prognostic factors for all the patients in the advanced stage and the results were partly validated in the validation cohort. Moreover, black race and higher T-stage for the patients with the single metastatic sites and age \geq 65, uninsured status, surgical treatment and metastatic pattern for the patients with two metastatic sites were prognostic factors. No independent factor was found in patients with three or more metastases.

Conclusion: Around 70% of the patients suffered one site distant metastasis in UCC patients with IVB stage while 30% with multiple metastases and a significantly reduced survival. Different survivals and prognostic factors were noticed for different patterns of distant metastases.

Key words: Uterine cervical cancer, SEER, distant metastases, prognostic factor

Introduction

Uterine cervical cancer (UCC) is a common cancer in women. The incidence decreased in the developed countries in recent decades due to the HPV prevention strategy and cervical cancer screening [1]. However, as previously reported, the incidence of UCC increased by 2.6% per year (1.1%, 4.2%) in Japan after 1997 [2]. It was also thought to be a crucial problem in other countries [1,3] and the UCC patients lost workdays annually up to 8 years after diagnosis [4].

Distant metastasis was accepted to be one of the significant characteristics in the advanced cancer. Brain metastases were reported in a series of cases after primary diagnosis of UCC [5] or as the initial

presentation [6]. Such distant metastases were further reported in the studies with the limited samples [7,8]. Bone metastases [9,10] and lung metastases [11] were also descripted based on the relatively large population. As to the effect of distant metastases on the survival of patients, around 13% of UCC patients were diagnosed at an advanced stage, leading to the decreased survival [12]. The median survival after bone metastases was reported to be only 5 months [13].

Prognostic factors in the cancer patients with distant metastases have been widely studied [14-16]. In the recent study, some independent factors resulting in poor survival were found in UCC patients including the extra-skeletal metastases, performance status (level 3 to 4), radiation and/or chemotherapy, multiple bone metastases, and a bone metastases-free interval of <12 months [13]. Another study, analyzing 56 UCC patients with lung metastases, revealed the prolonged overall survival (OS) in patients with less lung lesions or after surgical resection [11]. These studies described the survival trend in UCC patients with different distant metastases. However, limited sample size and different data resource made the results difficult to be integrated to analyze the performance of different patterns of distant metastases.

Thus, we conducted the present study based on the Surveillance, Epidemiology, and End Results (SEER) database and our own institution. The patterns of distant metastases were described and the prognostic factors were investigated in patients based on the number and patterns of metastatic sites.

Materials and Methods

The patterns of distant metastases for UCC patient in both groups were described. The data of the study group were extracted from National Cancer Institute Surveillance, Epidemiology and End Results (SEER) database (https://seer.cancer.gov/), which approximately covers 28% of population in the USA. Since the details of metastases were not available before 2010, UCC patients with International Federation of Gynecology and Obstetrics (FIGO) stage IVB who were diagnosed between 2010 and 2016 in SEER database were collected. The data of the validation group were collected from Tianjin First Central Hospital, diagnosed between 2004 and 2017. The exclusion criteria were as follows: patients diagnosed at autopsy or via death certificate, without detailed information about site-specific metastases (including the bone, brain, liver, and lung). The flow-chart of the selection for study group was listed in Figure 1. After getting the patterns and the prognostic factors in study group, we validated the results based on our own institute data. The procedure for the selection of validation cohort was described as Figure 2.

Figure 1. Flowchart of the patient selection in the study group.

Statistical analysis

The following demographic and clinicopathological variables were collected in the study group: age, race, insurance recode, marital status, tumor grade, histological subtype (including adenocarcinoma, squamous cell carcinoma and other subtypes), T stage, N stage, number of distant metastases and surgical treatment. Aforementioned variables except race and insurance recode were collected in our validation group.

The differences in the incidence of demographic and clinicopathological variables were analyzed by the chi-squared (χ^2) test. The primary outcome of the survival analysis was the overall survival (OS), which was defined from the time of UCC diagnosis to death. Survival duration was obtained using the Kaplan-Meier method, the differences between the curves were tested by Log-rank test. Cox proportional hazard regression analysis was performed for revealing the prognostic factors in UCC patients with FIGO stage IVB. Variables with *P* < 0.05 in the univariate Cox regression analysis were then further analyzed using a multivariate regression analysis.

Ethics statement

The SEER database is a free database, and the data released by the SEER database do not require informed patient consent, because cancer is a reportable disease in every state of the USA. The present study complied with the 1964 Helsinki

Declaration and its later amendments or comparable ethical standards.

Results

Characteristics of the patients

According to the aforementioned inclusion criteria, a total of 1448 UCC patients with FIGO stage IVB were included in the study group. The mean age was 57.53 ± 14.35 years, most patients were white race (72.4%), and unmarried (60.6%). A total of 1305 (90.1%) patients got medical insurance. After excluding 35.4% of the patients whose information on grade were unrecorded, the main grades of primary tumor were grade III - IV (44.8%). The most common histological subtype was squamous cell carcinoma (58.3%). About 51.1% of the patients were diagnosed with T3 and T4 stage, while 29.5% with T1-2 stage and 19.4% with unknown T stage. Besides, only 8.4% of the patients received surgical treatment. Baseline demographic and clinical characteristics of patients in study group were shown in Table 1.

Sites of distant metastases

In the study group, lung was the most common site of distant metastases (n= 941, 65.0%), followed by bone (n=520, 35.9%), liver (n=466, 32.2%), and brain (n=81, 5.6%). A total of 1002 patients (69.2%) showed single distant metastatic site while 446 (30.8%) patients showed two or more distant metastatic sites. The distributions of the sites of distant metastases in

study group and validation group are shown in Table 2.

Survival outcomes in different patterns of metastases

In the study group, the median survival time was 7 months (95%CI, 6.38 - 7.62). The median OS and 95% CI for patients with different metastatic patterns were shown in Table 2. The median OS for patients with the single metastatic site and multiple metastatic sites was 8 (95%CI, 7.07 - 8.93) and 5 (95%CI, 4.29 - 5.71) months, respectively (P < 0.001, Figure 3A). For patients with only bone, brain, liver and lung metastasis, the median OS was 10 (95%CI, 7.78 - 12.22), 6 (95%CI, 1.64 - 10.36), 8 (95%CI, 6.11 - 9.98) and 9 (95%CI, 7.85 - 10.15) months, respectively (P = 0.078, Figure 3B). In patients with two distant metastatic sites, there were significant difference among metastatic pattern (P = 0.013, Figure 3C). No significant difference among metastatic pattern was

found in the patients with three or four distant metastatic sites (P = 0.361, Figure 3D).

Prognostic factors for UCC patients in different patterns of metastases

Prognostic factors for total UCC patients

In the study group, patient with age ≥ 65 years old (HR = 1.35; 95% CI, 1.03 -1.77; P = 0.031), black race (HR = 1.27; 95% CI, 1.03 -1.56; P = 0.028), higher grade (HR = 1.28; 95% CI, 1.08 - 1.53; P = 0.006), higher T-stage (HR = 1.27; 95% CI, 1.08 - 1.51; P = 0.005), and two or more metastatic sites were significantly associated with OS in the Cox regression analysis. The HR and 95% CI for patients with two or more than two metastatic sites were 1.65 (95% CI, 1.37 - 1.99; P < 0.001) and 1.68 (95% CI, 1.19 - 2.39; P = 0.004), respectively. Trend chi-square test confirmed the worse OS in patients with more than two metastatic sites compared with those with two metastatic sites.

Table 1. Description of the SEER study population and validation group with uterine cervical cancer by distant metastases at diagnosis.

Subject characteristics	teristics Study group Validation group							
	Bone metastases	Brain metastases	Liver metastases	Lung metastases	Bone metastases	Brain metastases	Liver metastases	Lung metastases
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	(N=520, %)	(N=81, %)	(N=466, %)	(N=941, %)	(N=94, %)	(N=14, %)	(N=68, %)	(N=152, %)
Age								
≤ 40	72 (40.7)	12 (6.8)	67 (37.9)	103 (58.2)	8 (34.8)	2 (8.7)	4 (17.4)	18 (78.3)
41-64	307 (37.2)	54 (6.5)	260 (31.5)	535 (64.8)	65 (49.2)	9 (6.8)	47 (35.6)	85 (64.4)
≥65	141 (31.7)	15 (3.4)	139 (31.2)	303 (68.1)	21 (29.2)	3 (4.2)	17 (23.6)	49 (68.1)
Race								
White	384 (36.6)	61 (5.8)	318 (30.3)	685 (65.3)	NA	NA	NA	NA
Black	87 (32.7)	12 (4.5)	100 (37.6)	164 (61.7)	NA	NA	NA	NA
Others	49 (37.1)	7 (5.3)	48 (36.4)	92 (69.7)	NA	NA	NA	NA
Unknown	0 (0)	1 (100.0)	0 (0)	0 (0)	NA	NA	NA	NA
Insurance Record								
Uninsured	38 (33.3)	8 (7.0)	42 (36.8)	62 (54.4)	NA	NA	NA	NA
Insured	474 (36.3)	72 (5.5)	416 (31.9)	858 (65.7)	NA	NA	NA	NA
Unknown	8 (27.6)	1 (3.4)	8 (27.6)	21 (72.4)	NA	NA	NA	NA
Marital status								
Unmarried	307 (35.0)	49 (5.6)	271 (30.9)	574 (65.4)	53 (40.5)	8 (6.1)	43 (32.8)	84 (64.1)
Married	191 (37.9)	26 (5.2)	165 (32.7)	322 (63.9)	38 (44.2)	4 (4.7)	22 (25.6)	58 (67.4)
Unknown	22 (33.3)	6 (9.1)	30 (45.5)	45 (68.2)	3 (30.0)	2 (20.0)	3 (30.0)	10 (100.0)
Grade								
Grade I-II	94 (32.8)	13 (4.5)	67 (23.3)	184 (64.1)	18 (38.3)	3 (6.4)	10 (21.3)	33 (70.2)
Grade III-IV	241 (37.1)	47 (7.2)	209 (32.2)	438 (67.5)	42 (38.9)	9 (8.3)	35 (32.4)	73 (67.6)
Unknown	185 (36.1)	21 (4.1)	190 (37.1)	319 (62.3)	34 (47.2)	2 (2.8)	23 (31.9)	46 (63.9)
Histology								
AC	87 (36.0)	11 (4.5)	82 (33.9)	157 (64.9)	15 (41.7)	4 (11.1)	11 (30.6)	26 (72.2)
SCC	301 (35.7)	51 (6.0)	230 (27.3)	566 (67.1)	52 (39.7)	7 (5.3)	32 (24.4)	89 (67.9)
Others	132 (36.5)	19 (5.2)	154 (42.5)	218 (60.2)	27 (45.0)	3 (5.0)	25 (41.7)	37 (61.7)
T stage								
T1-2	155 (36.3)	24 (5.6)	147 (34.4)	267 (62.5)	30 (40.0)	5 (6.7)	23 (30.7)	53 (70.7)
T3-4	267 (36.1)	28 (3.8)	221 (29.9)	482 (65.1)	49 (44.1)	4 (3.6)	32 (28.8)	68 (61.3)
Unknown	98 (34.9)	29 (10.3)	98 (34.9)	192 (68.3)	15 (36.6)	5 (12.2)	13 (31.7)	31 (75.6)
N stage								
N0	133 (32.0)	16 (3.8)	140 (33.7)	260 (62.5)	24 (33.3)	1 (1.4)	23 (31.9)	45 (62.5)
N1	325 (39.3)	46 (5.6)	250 (30.2)	539 (65.1)	61 (47.3)	11 (8.5)	36 (27.9)	87 (67.4)
Unknown	62 (30.4)	19 (9.3)	76 (37.3)	142 (69.6)	9 (34.6)	2 (7.7)	9 (34.6)	20 (76.9)
Surgical treatment		. ,		. ,	. ,		. ,	. ,
No Surgery	486 (36.7)	73 (5.5)	424 (32.0)	866 (65.3)	86 (42.4)	13 (6.4)	63 (31.0)	136 (67.0)
Surgery	34 (28.1)	8 (6.6)	42 (34.7)	74 (61.2)	8 (33.3)	1 (4.2)	5 (20.8)	16 (66.7)
Unknown	0 (0)	0 (0)	0 (0)	1 (100.0)	0 (0)	0 (0)	0 (0)	0 (0)
411 · · · · CEED					. /		. /	

Abbreviations: SEER = Surveillance, Epidemiology, and End Result; AC = adenocarcinoma; SCC = squamous cell carcinoma.

Figure 3. Kaplan–Meier analysis of overall survival for UCC patients in the study group (A), single site of distant metastases (B), two sites of distant metastases (C), and patients with three or more sites of distant metastases (D).

Table 2. Patterns of distant metastases and overall survival time for uterine cervical cancer patients in the study and the validation group.

Sites of distant metastases	Study gro	up	Validation group			
	N (%)	Median OS (95%CI)	N (%)	Median OS (95%CI)		
One site of distant metastases						
Bone	236 (16.3)	10 (7.78 - 12.22)	39 (17.2)	11 (5.30 - 16.70)		
Brain	20 (1.4)	6 (1.64 - 10.36)	2 (0.9)	6 (-)		
Liver	177 (12.2)	8 (6.11 - 9.89)	20 (8.8)	8 (1.97 - 14.04)		
Lung	569 (39.3)	9 (7.85 - 10.15)	90 (39.6)	8 (5.24 - 10.76)		
Two sites of distant metastases						
Bone + Brain	13 (0.9)	3 (1.37 - 4.63)	3 (1.3)	4 (2.40 - 5.60)		
Bone + Liver	57 (3.9)	6 (4.71 - 7.29)	10 (4.4)	3 (0 - 6.10)		
Bone + Lung	114 (7.9)	6 (4.43 - 7.57)	20 (8.8)	9 (3.52 - 14.48)		
Brain + Liver	2 (0.1)	1	0	-		
Brain + Lung	19 (1.3)	4 (2.99 - 5.01)	1 (0.4)	2 (-)		
Liver + Lung	132 (9.1)	4 (3.06 - 4.94)	17 (7.5)	3 (0 - 6.36)		
Three sites of distant metastases						
Bone + Brain + Liver	2 (0.1)	-	1 (0.4)	0 (-)		
Bone + Brain + Lung	11 (0.8)	5 (0.48 - 9.52)	4 (1.8)	6 (5.15 - 6.85)		
Bone + Liver + Lung	82 (5.7)	4 (2.04 - 5.96)	17 (7.5)	8 (4.22 -11.78)		
Brain + Liver + Lung	9 (0.6)	8 (5.08 - 10.92)	3 (1.3)	8 (0 - 20.80)		
Four sites of distant metastases						
Bone + Brain + Liver + Lung	5 (0.3)	3 (0.51 - 5.49)	0	-		

Abbreviations: FIGO=International Federation of Gynecology and Obstetrics, OS=Overall Survival

However, the factor of two metastatic sites was the only independent prognostic factor for all patients in the validation group. The aforementioned prognostic factors were shown in Table 3.

Patients with single distant metastatic site

As shown in Table 4, for patients with one metastatic site, univariate Cox regression analysis showed that the following factors were significantly associated with overall survival: patient with age ≥ 65 (HR = 1.61; 95% CI, 1.25 - 2.07; *P* < 0.001), black race (HR = 1.28; 95% CI, 1.07 - 1.53; P = 0.006), married status (HR = 0.81; 95% CI, 0.69 - 0.94; P = 0.007), higher grade (HR = 1.23; 95% CI, 1.02 - 1.49; P = 0.029), higher T-stage (HR = 1.44; 95% CI, 1.21 - 1.70; P < 0.001), surgical treatment (HR = 0.60; 95% CI, 0.45 - 0.79; P < 0.001). Although the variable of metastatic site was not significant in univariate analysis, it was included in further multivariate analysis. The multivariate analysis identified the following variables as independent factors for prognosis: black race and higher T-stage. Metastatic site was not the independent prognostic factor in patients with the single distant metastatic site. In the validation group, N-stage was the only independent prognostic factor for patients with one site metastasis. The aforementioned prognostic factors were shown in Table 4.

Table 3. Univariate	and Multivariate	Cox regression	analysis o	f prognostic	factors fo	r all FIGO	stage IVB	UCC patients	s in study and
validation group.									

Variable	Study g	group					Validat	ion group				
	Univariate analysis			Multiva	riate analysis		Univari	ate analysis		Multiva	iate analysis	
	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI	P-value
Age												
≤ 40	1			1			1			-		
41-64	1.05	0.87 - 1.27	0.614	0.97	0.75 - 1.25	0.794	0.75	0.46 - 1.23	0.256	-	-	-
≥65	1.51	1.23 - 1.84	<0.001	1.35	1.03 - 1.77	0.031	1.42	0.85 - 2.37	0.185	-	-	-
Race												
White	1			1			NA					
Black	1.25	1.07 - 1.44	0.004	1.27	1.03 - 1.56	0.028	NA	NA	NA	NA	NA	NA
Others	0.87	0.70 - 1.07	0.177	0.97	0.72 - 1.30	0.813	NA	NA	NA	NA	NA	NA
Insurance Recode												
Uninsured	1			-			NA			NA		
Insured	0.87	0.70 - 1.08	0.201	-	-	-	NA	NA	NA	NA	NA	NA
Marital status												
Unmarried	1			1			1			-		
Married	0.86	0.76 - 0.97	0.014	0.89	0.75 - 1.05	0.160	0.93	0.68 - 1.27	0.635	-	-	-
Grade												
Grade I- II	1			1			1			-		
Grade III- IV	1.31	1.12 - 1.53	0.001	1.28	1.08 - 1.53	0.006	0.951	0.65 - 1.39	0.796	-	-	-
Histology												
AC	1			-			1			-		
SCC	1.01	0.86 - 1.18	0.945	-	-	-	0.694	0.46 - 1.05	0.081	-	-	-
Others	1.17	0.98 - 1.41	0.087	-	-	-	0.966	0.61 - 1.52	0.880	-	-	-
T stage												
T1-2	1			1			1			-		
T3-4	1.29	1.12 - 1.47	< 0.001	1.27	1.08 - 1.51	0.005	0.903	0.65 - 1.26	0.552	-	-	-
N stage												
N0	1			-			1			-		
N1	1.00	0.88 - 1.15	0.984	-	-	-	0.892	0.64 - 1.24	0.496	-	-	-
Number of metastasis sites												
1	1			1			1			1		
2	1.56	1.36 - 1.79	< 0.001	1.65	1.37 - 1.99	<0.001	1.508	1.07 - 2.13	0.021	1.48	1.05 - 2.10	0.026
≥3	1.70	1.36 - 2.13	< 0.001	1.68	1.19 - 2.39	0.004	1.542	0.96 - 2.47	0.070	1.46	0.91 - 2.34	0.119
Surgical treatment												
No Surgery	1			1			1			1		
Surgery	0.63	0.50 - 0.79	<0.001	0.76	0.58 - 1.00	0.053	0.592	0.35 - 1.01	0.053	0.62	0.37 - 1.06	0.083

Patients with two or more distant metastatic sites

As shown in Table 5, univariate Cox regression analysis suggested that the following factors being significantly associated with the survival of patients who developed two distant metastatic sites: age, race, insurance, metastatic pattern and surgical treatment. The multivariate analysis suggested that age \geq 65, uninsured status, surgical treatment and metastatic pattern were the independent prognostic factors in patients with two distant metastatic sites. In the validation group, N-stage was the only factor associated with overall survival in patients with two distant metastatic sites.

For patients with three or four distant metastatic sites in study group, no factors were significantly associated with overall survival and metastatic site was not the independent prognostic factor in patients with three or more distant metastatic sites. In the validation group, marital status was the only factor associated with overall survival. The results of Univariate Cox regression analysis for patients with three or more distant metastatic sites in both study group and validation group were shown in Table 6.

Validation of the survival and for prognostic factors in the validation group

In the validation group, from 2004 to 2017 in Tianjin First Central Hospital, 227 UCC patients were included. The baseline demographic and clinical characteristics for patients in validation group were shown in Table 1.

In our validation cohort, lung was also the most common site of distant metastases (n=152, 67.0%), followed by bone (n=94, 41.4%), liver (n=68, 30.0%), and brain (n=14, 6.2%). A total of 151 (66.5%) patients showed single distant metastatic site while 76 (33.5%) patients showed two or three distant metastatic sites. No patient showed both lung, bone, liver and brain metastasis at the same time. The distribution of the distant metastatic sites for two groups was listed in Table 2.

In the validation group, the median survival time was 7 months (95%CI, 5.70 - 8.30). The median OS for patients with the single metastatic site and multiple metastatic sites was 8 (95%CI, 5.43 - 10.57) and 6 (95%CI, 4.72 - 7.28), respectively with significant difference (P = 0.005, Figure 4A). The survival outcome of validation group was similar to the results

in the study group. For patients with single metastatic site and patients with three distant metastatic sites, there was no significant difference among metastatic pattern (P = 0.650, Figure 4B and P = 0.143, Figure 4D, respectively). While for patients with two distant metastatic sites, there were significant differences among metastatic pattern (P = 0.033, Figure 4C).

Discussion

In the present study with the large population, to our knowledge, it was the first time to perform a thorough investigation on both the survival and prognostic factors for different patterns of distant metastases in initial UCC patients at the FIGO stage IVB. Around 30% of all the patients suffered multiple distant metastases at the end of their lives. Higher incidence of multiple metastases was reported in another study [8]. The present study revealed that involvement of extra metastases significantly reduced patient's survival. Meanwhile, different prognostic factors were found in patients with various metastatic patterns.

Most of the patients suffered single distant metastasis among which lung was the most common site in the present study, followed by bone, liver, and brain. A similar metastatic distribution was reported in another study including metastases to lung in 11 patients, bone in 7 patients and liver in 4 patients [17]. However, a much larger sample size in this study provided us a chance to evaluate the diversities in metastatic site-specific survival. Cox analysis found no significant difference in patients with any one metastasis in this study. UCC patients with only bone metastasis showed a trend of better survival than the patients with other three types of distant metastases. Comparable median OS of 8 months in patients with lung metastasis was confirmed in both previous and the present study. Comparable median survival of 10 months [9] and worse survival (5 months) [13] after diagnosis of bone metastasis were shown in other studies. Brain metastasis in UCC patients showed the worst median OS of only 4 months which was consistent with the reported result [8]. Besides, the multivariate analysis identified the higher grade and higher T-stage as prognostic factors for UCC patients with the single site of distant metastases.

Table 4. Univariate and Multivariate Cox regression analysis of prognostic factors for FIGO stage IVB UCC patients with single distant metastatic site in the study group and the validation group.

Variable	Study	group					Valida	ion group				
	Univar	riate analysis		Multiva	riate analysis		Univariate analysis			Multiva	riate analysis	
	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI	P-value
Age												
≤ 40	1			1			1			-		
41-64	1.00	0.79 - 1.28	0.972	0.90	0.65 - 1.25	0.538	0.67	0.36 - 1.26	0.212	-	-	-
≥ 65	1.61	1.25 - 2.07	< 0.001	1.38	0.98 - 1.94	0.062	1.41	0.75 - 2.67	0.286	-	-	-
Race												
White	1			1			NA					
Black	1.28	1.07 - 1.53	0.006	1.37	1.07 - 1.75	0.012	NA	NA	NA	NA	NA	NA
Others	0.83	0.62 - 1.10	0.186	0.96	0.64 - 1.44	0.835	NA	NA	NA	NA	NA	NA
Insurance Recode												
Uninsured	1			-			NA			NA		
Insured	0.93	0.72 - 1.21	0.595	-	-	-	NA	NA	NA	NA	NA	NA
Marital status												
Unmarried	1			1			1			-		
Married	0.81	0.69 - 0.94	0.007	0.90	0.73 - 1.11	0.318	0.74	0.50 - 1.10	0.133	-	-	-
Grade												
Grade I- II	1			1			1			-		
Grade III- IV	1.23	1.02 - 1.49	0.029	1.22	0.99 - 1.51	0.057	0.88	0.55 - 1.41	0.596	-	-	-
Histology												
AC	1			-			1			-		
SCC	0.95	0.78 - 1.15	0.573	-	-	-	0.71	0.40 - 1.25	0.232	-	-	-
Others	1.05	0.84 - 1.32	0.661	-	-	-	0.87	0.46 - 1.62	0.650	-	-	-
T stage												
T1-2	1			1			1			-		
T3-4	1.44	1.21 - 1.70	< 0.001	1.43	1.16 - 1.77	0.001	1.03	0.67 - 1.58	0.904	-	-	-
N stage												
N0	1			-			1			1		
N1	0.96	0.82 - 1.13	0.622	-	-	-	0.67	0.45 - 0.99	0.046	0.65	0.43 - 0.99	0.043
Metastatic sites												
Bone	1			1			1			1		
Brain	1.54	0.96 - 2.48	0.073	1.66	0.91 - 3.03	0.102	1.01	0.24 - 4.29	0.992	0.95	0.22 - 4.10	0.945
Liver	1.22	0.98 - 1.52	0.083	1.00	0.73 - 1.38	0.987	1.39	0.75 - 2.58	0.301	1.29	0.67 - 2.49	0.443
Lung	1.03	0.86 - 1.23	0.749	0.91	0.71 - 1.15	0.415	1.27	0.81 - 1.99	0.289	1.27	0.78 - 2.07	0.330
Surgical treatment												
No Surgery	1			1			1			1		
Surgery	0.60	0.45 - 0.79	<0.001	0.78	0.56 - 1.09	0.145	0.52	0.27 - 1.00	0.051	0.51	0.26 - 1.03	0.059

Table 5. Univariate and Multivariate Cox regression analysis of prognostic factors for FIGO stage WB UCC patients with two sites of distant metastases in the study and the validation group.

Variable	Study g	group					Validat	ion group			
	Univar	iate analysis		Multiva	riate analysis		Univar	Univariate analysis			
	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI	P-value		
Age											
≤ 40	1			1			1				
41-64	1.23	0.86 - 1.74	0.255	0.99	0.69 - 1.44	0.970	0.99	0.38 - 2.58	0.984		
≥ 65	1.79	1.21 - 2.65	0.004	1.72	1.14 - 2.59	0.010	2.60	0.89 - 7.60	0.080		
Race											
White	1			1			NA				
Black	1.39	1.04 - 1.85	0.027	1.237	0.92 - 1.67	0.165	NA	NA	NA		
Others	0.78	0.54 - 1.13	0.195	0.775	0.53 - 1.14	0.191	NA	NA	NA		
Insurance Recode											
Uninsured	1			1			NA				
Insured	0.51	0.33 - 0.79	0.002	0.522	0.34 - 0.81	0.004	NA	NA	NA		
Marital status											
Unmarried	1			-			1				
Married	0.83	0.65 - 1.05	0.117	-	-	-	1.18	0.63 - 2.20	0.603		
Grade											
Grade I- II	1			-			1				
Grade III- IV	1.35	0.97 - 1.87	0.071	-	-	-	1.09	0.52 - 2.30	0.815		
Histology											
AC	1			-			1				
SCC	1.27	0.90 - 1.78	0.174	-	-	-	0.81	0.40 - 1.63	0.550		
Others	1.40	0.97 - 2.03	0.074	-	-	-	0.98	0.45 - 2.16	0.959		
T stage											
T1-2	1			-			1				
T3-4	1.05	0.80 - 1.37	0.740	-	-	-	0.87	0.45 - 1.69	0.675		
N stage											
N0	1			-			1				
N1	1.12	0.85 - 1.47	0.420	-	-	-	2.63	1.13 - 6.11	0.025		
Metastatic sites											
Bone + Brain	1			1			1				
Bone + Liver	0.47	0.25 - 0.86	0.015	0.44	0.24 - 0.83	0.011	1.27	0.35 - 4.62	0.721		
Bone + Lung	0.40	0.22 - 0.72	0.002	0.36	0.20 - 0.65	0.001	0.40	0.11 - 1.42	0.158		
Brain + Liver	0.46	0.10-2.06	0.312	0.99	0.21 - 4.63	0.984	NA	NA	NA		
Brain + Lung	0.57	0.28 - 1.18	0.133	0.56	0.27 - 1.17	0.123	2.14	0.22 - 21.19	0.517		
Liver + Lung	0.56	0.31 - 0.99	0.047	0.50	0.28 - 0.89	0.018	0.64	0.18 - 2.27	0.485		
Surgical treatment											
No Surgery	1			1			1				
Surgery	0.64	0.42 - 0.99	0.046	0.509	0.32 - 0.81	0.005	0.74	0.26 - 2.07	0.560		

Table 6. Univariate Cox regression analysis of prognostic factors for FIGO stage IVB UCC patients with three or four sites of distant metastases in the study and the validation group.

Variable	Stud	ly group		Validation group		
	HR	95%CI	P-value	HR	95%CI	P-value
Age						
≤ 40	1			1		
41-64	1.23	0.62 - 2.43	0.551	0.51	0.11 - 2.28	0.375
≥ 65	0.91	0.43 - 1.93	0.814	0.74	0.12 - 4.47	0.738
Race						
White	1			NA		
Black	0.66	0.33 - 1.33	0.249	NA	NA	NA
Others	0.77	0.40 - 1.51	0.450	NA	NA	NA
Insurance Recode						
Uninsured	1			NA		
Insured	0.94	0.38 - 2.33	0.897	NA	NA	NA
Marital status						
Unmarried	1			1		
Married	1.21	0.76 - 1.94	0.429	4.00	1.36 - 11.8	0.012
Grade						
Grade I- II	1			1		
Grade III- IV	0.84	0.33 - 2.16	0.717	0.76	0.20 - 2.93	0.691
Histology						
AC	1			1		
SCC	1.00	0.55 - 1.80	0.990	0.85	0.18 - 3.96	0.840
Others	1.46	0.77 - 2.75	0.249	2.76	0.57 - 13.37	0.206
T stage						
T1-2	1			1		

Variable	Stud	y group		Validation group			
	HR	95%CI	P-value	HR	95%CI	P-value	
T3-4	0.87	0.53 - 1.42	0.576	0.71	0.25 - 2.01	0.521	
N stage							
N0	1			1			
N1	0.64	0.37 - 1.13	0.123	0.38	0.12 - 1.16	0.088	
Metastatic sites							
Bone + Brain + Liver	1			1			
Bone + Brain + Lung	0.44	0.09 - 2.05	0.294	0.13	0.01 - 1.49	0.101	
Bone + Liver + Lung	0.34	0.08 - 1.43	0.143	0.12	0.01 - 1.17	0.068	
Brain + Liver + Lung	0.28	0.06 - 1.37	0.116	0.16	0.01 - 1.87	0.142	
Bone + Brain + Liver + Lung	0.54	0.10 - 2.99	0.483	NA	NA	NA	
Surgical treatment							
No Surgery	1			1			
Surgery	1.35	0.55 - 3.36	0.513	8.01	0.83 - 76.94	0.072	

With the exception of the single site of metastasis, 295 of 979 patients suffered metastases in two or more organs. Different configurations of two metastatic sites showed different patients' survivals. Compared with the patient with metastases to bone plus brain, better survivals were noticed in patients with metastases to bone plus liver, bone plus lung, and liver plus lung. No significant difference was noticed between patients with brain plus bone, liver or lung. Therefore, more attention should be paid for

Figure 4. Kaplan–Meier analysis of overall survival for UCC patients in the validation group (A), single site of distant metastases (B), two sites of distant metastases (C), and patients with three or more sites of distant metastases (D).

the screening of brain metastases even though the relevant incidence was low. As to the factor's analyses, only the uninsured status was found to be the independent prognostic factor. For patients with three or more metastatic sites, no significant difference was found among metastatic patterns. The late stage without any effective treatments may be the main reason why no difference or prognostic factors were found. Timely screening and proper treatment should be performed in order to slow down the progress into multiple metastases and to improve the survival.

Treatment for patients with distant metastases was accepted to be the important prognostic factor and was investigated in the previous studies. A study reported a significantly longer 5-year survival in patients after definitive radiotherapy and chemoradiotherapy [18]. Surgical resections of metastatic pulmonary lesions were performed in 12 patients with longer survival than those who did not receive the surgery [11]. A review concluded that multimodal therapy can guarantee a better survival [12]. Only 7.9% of the UCC patients received surgery of primary site in our study and no significant impact of surgery on the survival was found. The records on the surgery on the metastatic lesion in the SEER database were not available. Besides, no information of radiotherapy or chemotherapy can be pooled, making it impossible to evaluate the influence on

survival. All the treatments should be further investigated based on larger population.

Although the present study identified the largest cohort of single and multiple distant metastases in UCC patients with FIGO stage IVB, the limitations should be revealed. In this study, we only analyzed the distant metastases to organs of lung, bone, liver and brain. The metastases to distant lymph nodes and peritoneal spread were not investigated because of no available data in the SEER database. The sequence of each metastasis in patients with multiple sites may be the important confusing factor to survival and should be further investigated in the larger population with related information. Limited number of patients in some patterns of metastases may result in bias in survival calculation and comparation. Moreover, important factors including some human papillomavirus (HPV) infection and special gene expression should be investigated in future study. Moreover, due to the limited sample size in the validation group, not all the prognostic factors were validated, and more studies with larger sample size were needed in future.

In summary, the lung, bone, liver, and brain were the common metastatic sites in patients with UCC at FIGO stage IVB, among whom 30% patients suffered multiple metastases. Decreased survival was confirmed in patients with increased number of metastatic sites. Higher grade, higher T stage, black race, unmarried status and more sites were risk factors in all the patients with distant metastases. Different performance was showed in survival and prognostic factors among the patterns of distant metastases.

Acknowledgements

The Authors would like to thank SEER public database to make the uterine cervical cancer patients' data available.

Competing Interests

The authors have declared that no competing interest exists.

References

- Vaccarella S, Lortet-Tieulent J, Plummer M, et al. Worldwide trends in cervical cancer incidence: impact of screening against changes in disease risk factors. Eur J Cancer. 2013;49(15):3262-3273.
- Utada M, Chernyavskiy P, Lee WJ, et al. Increasing risk of uterine cervical cancer among young Japanese women: Comparison of incidence trends in Japan, South Korea and Japanese-Americans between 1985 and 2012. Int J Cancer. 2019;144(9):2144-2152.
- Hernandez-Hernandez DM, Apresa-Garcia T, Patlan-Perez RM. Epidemiological overview of uterine cervical cancer. Rev Med Inst Mex Seguro Soc. 2015;53 Suppl 2(S154-S161.
- Everhov AH, Ekberg S, Hirschberg AL, et al. Lost workdays in uterine cervical cancer survivors compared to the general population: impact of treatment and relapse. J Cancer Surviv. 2016;10(3):514-523.
- Park SH, Ro DY, Park BJ, et al. Brain metastasis from uterine cervical cancer. J Obstet Gynaecol Res. 2010;36(3):701-704.
- Sato Y, Tanaka K, Kobayashi Y, et al. Uterine cervical cancer with brain metastasis as the initial site of presentation. J Obstet Gynaecol Res. 2015;41(7):1145-1148.
- Ikeda S, Yamada T, Katsumata N, et al. Cerebral metastasis in patients with uterine cervical cancer. Jpn J Clin Oncol. 1998;28(1):27-29.
- Hwang JH, Yoo HJ, Lim MC, et al. Brain metastasis in patients with uterine cervical cancer. J Obstet Gynaecol Res. 2013;39(1):287-291.
- Yoon A, Choi CH, Kim HJ, et al. Contributing factors for bone metastasis in uterine cervical cancer. Int J Gynecol Cancer. 2013;23(7):1311-1317.
- Zhang Y, Guo X, Wang G, et al. Real-World Study of the Incidence, Risk Factors, and Prognostic Factors Associated with Bone Metastases in Women with Uterine Cervical Cancer Using Surveillance, Epidemiology, and End Results (SEER) Data Analysis. Med Sci Monit. 2018;24(6387-6397.
- Ki EY, Lee KH, Park JS, et al. A Clinicopathological Review of Pulmonary Metastasis from Uterine Cervical Cancer. Cancer Res Treat. 2016;48(1):266-272.
- Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol. 2016;27(4):e43.
- Matsumiya H, Todo Y, Okamoto K, et al. A prediction model of survival for patients with bone metastasis from uterine cervical cancer. J Gynecol Oncol. 2016;27(6):e55.
- 14. Zhang C, Wang G, Han X, et al. Comparison of the therapeutic effects of surgery combined with postoperative radiotherapy and standalone radiotherapy in treating spinal metastases of lung cancer. Clin Neurol Neurosurg. 2016;141(38-42.
- Guo X, Zhang C, Guo Q, et al. The homogeneous and heterogeneous risk factors for the morbidity and prognosis of bone metastasis in patients with prostate cancer. Cancer Manag Res. 2018;10(1639-1646.
- Guo Q, Zhang C, Guo X, et al. Incidence of bone metastasis and factors contributing to its development and prognosis in newly diagnosed renal cell carcinoma: a population-based study. Cancer Manag Res. 2018;10(2935-2944.
- 17. Hata M, Omura M, Miyagi E, et al. The role of radiation therapy for uterine cervical cancer with distant metastasis. Oncology. 2012;83(2):67-74.
- Wang YM, Wang CJ, Fang FM, et al. Differences in the outcomes and complications between elderly and younger uterine cervical cancer patients treated by definitive radiotherapy - A propensity score-matched study. Gynecol Oncol. 2017;145(2):277-283.