Supplementary data to:

B7-H3 promotes the cell cycle-mediated chemoresistance of colorectal cancer cells by regulating CDC25A

Table S1. Primers for RT-qPCR assay of gene

Primer Name	Primer Sequence (5'-3')	
Homo-B7-H3 Forward	ACAGGCAGCCTATGACATT	
Homo-B7-H3 Reverse	CTGCATTCTCCTCCTCACAG	
Homo-CDC25A Forward	GTGAAGGCGCTATTTGGCG	
Homo-CDC25A Reverse	TGGTTGCTCATAATCACTGCC	
Homo-CDC25B Forward	ACGCACCTATCCCTGTCTC	
Homo-CDC25B Reverse	CTGGAAGCGTCTGATGGCAA	
Homo-CDC25C Forward	TCTACGGAACTCTTCTCATCCAC	
Homo-CDC25C Reverse	TCCAGGAGCAGGTTTAACATTTT	
Homo-CDK2 Forward	CCAGGAGTTACTTCTATGCCTGA	
Homo-CDK2 Reverse	TTCATCCAGGGGAGGTACAAC	
Homo-Chk2 Forward	CCCAAGGCTCCTCACA	
Homo-Chk2 Reverse	AGTGAGAGGACTGGCTGGAGTT	
Homo-ATR Forward	GGCCAAAGGCAGTTGTATTGA	
Homo-ATR Reverse	GTGAGTACCCCAAAAATAGCAGG	
Homo-Rb Forward	ACTCTTCAGCAATTGGAAAGG	
Homo-Rb Reverse	CACCAATGCAGAATTTATTTCAGT	
Homo-β-actin Forward	CATGTACGTTGCTATCCAGGC	
Homo-β-actin Reverse	CTCCTTAATGTCACGCACGAT	

Table S2. Clinical characteristics of patients

CRC patients	Number	B7H3 expression	CDC25A expression
		P value	P value
No. of patients	121		
Gender			
Male	71		
Female	50	0.2468	0.5612
Age (years)			
Mean	60.42		
Range	26-81	0.4016	0.5551
Tumor location			
Colon	70		
Rectum	51	0.2165	0.2466
TNM stage			
I-II	63		
III-IV	58	< 0.0001	< 0.0001

Supplementary Figure Legends

Figure S1. B7-H3 imparts CRC cell chemoresistance. (A) B7-H3 protein levels in NCM460, RKO, HCT116, HT29, SW480 and SW620 cells were analyzed by Western blot. β-actin served as a loading control. (B) B7-H3 protein and mRNA levels in B7-H3-overexpressing HCT116 and RKO cells were analyzed by Western blot and RT-qPCR. β-actin served as a loading control. (C) Cell viability after 48 h of 5-FU treatment was assessed by CCK8 in B7-H3-overexpressing HCT116 and RKO cells. Shown relative to negative control cells as the mean \pm SD. (n=5). (D) IC50 values were calculated on the basis of experiments from C as well as from negative control cells. Shown as the mean IC50 \pm SD. (n=5). (E) B7-H3-overexpressed HCT116 and RKO together with control cells were treated for 48 h with 10 μM 5-FU. Cell death was determined with the LDH assay. (n=5). (F) Apoptosis was measured using Annexin V/7-AAD double staining in B7-H3-overexpressing CRC cells. These data are shown as the mean \pm SD of three independent experiments. (G) Bc1-2 was upregulated while Bax was downregulated upon B7-H3 overexpression in both HCT116 and RKO cells compared with control cells.

Figure S2. B7-H3 inhibits chemotherapy-induced apoptotic cell death of CRC cells. (**A**) B7-H3 protein and mRNA levels in B7-H3 knockdown HCT116 and RKO cells were analyzed by Western blot and RT-qPCR. β-actin served as a loading control. (**B**) B7-H3-knockdown HCT116 and RKO together with control cells were treated for 48 h with 10 μM 5-FU. Cell death was determined with the LDH assay. (n=5). (**C**) Apoptosis was measured using Annexin V/7-AAD double staining in sh-B7-H3-CRC cells. These data are shown as the mean ± SD of three independent experiments. (**D**) Bax was upregulated while Bcl-2 was downregulated upon B7-H3 knockdown in both HCT116 and RKO cells compared with control cells.

Figure S3. B7-H3 inhibits CRC cells G2/M phase arrest via regulating CDC25A. (A) The effect of B7-H3 overexpression on cell cycle progression in HCT116 and RKO cells. Cells were treated with or without 20 or 40 μM L-OHP for 48 h. After 48 h, both attached and floating cells were harvested for cell cycle analysis. (B) The effect of B7-H3 knockdown on cell cycle progression in HCT116 and RKO cells. Cells were treated with or without 20 or 40 μM L-OHP for 48 h. After 48 h, both attached and floating cells were harvested for cell cycle analysis. (C) RT-qPCR to determine the mRNA levels of CDC25A in both control and B7-H3 overexpression HCT116 and RKO cells.

Figure S4. STAT3/CDC25A increases G2/M arrest on B7-H3 overexpression CRC cells. The effect of STAT3/CDC25A silencing on cell cycle progression in control and B7-H3-overexpressing CRC cells. Cells were treated with or without 20 or 40 μ M L-OHP for 48 h. After 48 h, both attached and floating cells were harvested for cell cycle analysis.

Figure S1

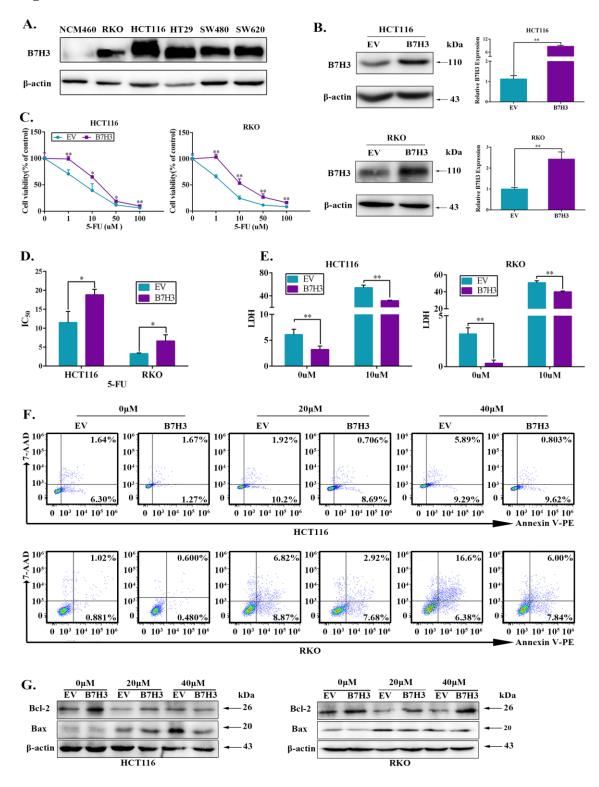


Figure S2

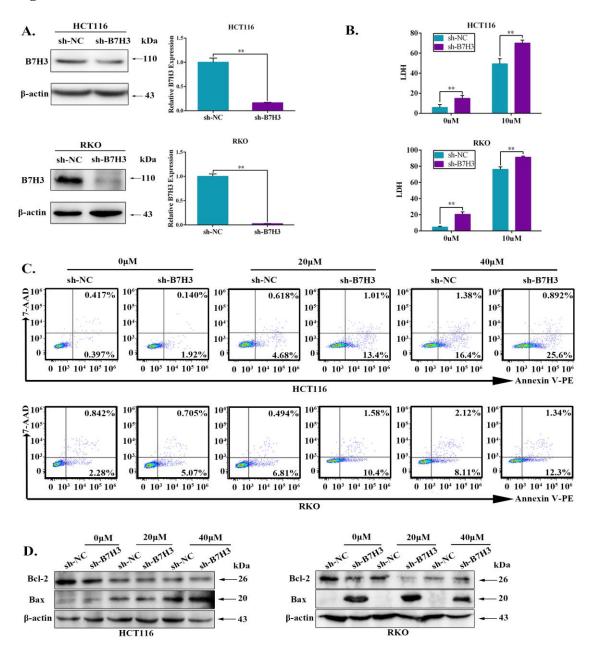


Figure S3

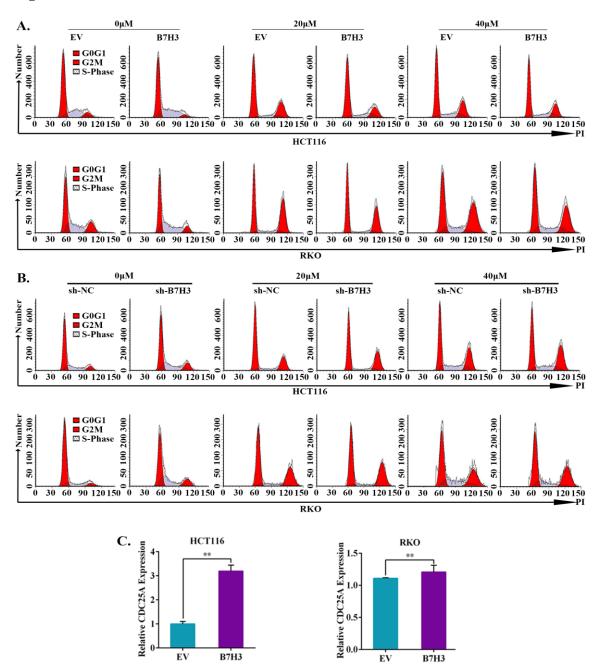
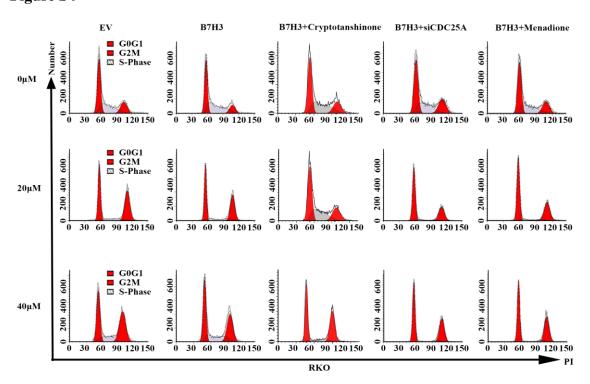



Figure S4

