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Abstract 

Regulator of chromosome condensation 2 (RCC2), also known as TD-60, is an RCC1 family 
member and plays an essential role in mitosis. However, the roles of RCC2 in breast cancer are still 
unclear. In this study, RCC2 was found to exert oncogenic activities in breast cancer. Samples of 
breast cancer tissue revealed an increased level of RCC2 and a high level of RCC2 was associated 
with poor overall survival rate of breast cancer patients. Overexpression of RCC2 significantly 
enhanced cell proliferation and migration abilities of breast cancer cells in vitro and in vivo. 
Mechanistically, RCC2 induced epithelial-mesenchymal transition (EMT) through the activation of 
Wnt signaling pathway. Collectively, our study indicates that RCC2 contributes to breast cancer 
progression and functions as an important regulator of EMT through the activation of Wnt signaling. 
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Introduction 
Breast cancer is the most common malignancy 

diagnosed and the leading cause of cancer death 
among females worldwide, accounting for 24.2% of 
cancer cases and 15% of cancer-related death [1-3]. 
Many effective modalities have been utilized in the 
past few decades to successfully reduce cancer 
mortality rate. However, elucidating its biology and 
pathogenesis will allow far more informed diagnostic 
and therapeutic decisions needed by cancer patients.  

Regulator of Chromosome Condensation 2 
(RCC2) was originally identified as a candidate 
passenger protein [4]. The passenger proteins are 
essential to facilitation of proper chromosome 
segregation and cell cleavage [5], and are defined by 
their redistribution during the mitosis process, from 
the inner centromeres in early mitosis to the spindle 
midzone and midbody upon mitotic exit [6]. RCC2 

expression was specific to late G2 and mitosis, and its 
localization corresponded precisely with the 
chromosomal passenger complex (CPC) [7]. The 
process that RCC2 bound and activated kinase Aurora 
B, the catalytic subunit of CPC, was required for the 
recruitment of CPC to centromere and the following 
proper spindle formation and function [8].  

Sequence analysis reveals that RCC2 is a 
member of the RCC1 family of guanine nucleotide 
exchange factors (GEFs) [9]. Accumulating evidence 
showed that RCC2 exhibited GEF activity and was 
important to proper cell cycle progression both in 
interphase and mitosis. Its preference for binding with 
the nucleotide-free of the small GTPase Rac1 
indicated that RCC2 was a potential exchange factor 
[9]. Papini et al. discovered that RCC2 was a bona fide 
GEF for RalA, influencing the localization and activity 
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of the CPC at centromeres during early mitosis [7]. 
The absence of RCC2 expression arrested cells in 
prometaphase and activated the spindle assembly 
checkpoint [9]. Interactome assays demonstrated that 
RCC2 was a key component in fibronectin-dependent 
adhesion signaling pathways during interphase [10]. 
Its vast association with cell cycle progression and cell 
signaling leads us to speculate that RCC2 is a key 
nodal protein that integrates cell proliferation and 
cellular migration. 

In this study, using publicly available online data 
and clinical specimen-based analyses, we identified 
that RCC2 expression increased in breast cancer 
tissues and elevated RCC2 expression was associated 
with poor prognosis in breast patients. In vitro and in 
vivo experiments demonstrated that RCC2 promoted 
the growth, migration, and tumorigenicity of breast 
cancer through the activation of Wnt signaling 
pathway and inducing EMT. Our study highlights a 
novel role and a new regulatory mechanism of RCC2 
in breast cancer progression. 

Materials and Methods 
Cell culture  

MCF10A cells were cultured in DMEM/F12 
(Thermo Fisher Scientific, MA, USA) supplemented 
with 5% horse serum (Gibco, Carlsbad, USA), 20 ng/ 
ml EGF (Thermo), 0.5 mg/ ml hydrocortisone (Sigma, 
St. Louis, USA), 100 ng/ ml cholera toxin(Sigma), 10 
mg/ml insulin (Gibco) and Penicillin/Streptomycin 
(Gibco). 293T cells and human breast cancer cell lines 
MDA-MB-468, JIMT1, MDA-MB-231 were cultured in 
Dulbecco's Modified Eagle's Medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS, 
Invitrogen, CA, USA). MCF7, T47D and HCC1937 
cells were cultured in RPMI-1640 (Gibco) with 10% 
FBS. All cell lines were incubated in a humidified 
incubator at 37 °C with 5% CO2. 

Lentivirus production and oligonucleotide 
transfection 

Lentiviruses were produced by transfecting 293T 
cells with expression plasmids and packaging 
plasmids (psPAX2 and pMD2.G, Addgene_12260 and 
Addgene_12259); the supernatants were collected 48 
hrs later, filtered through 0.45 mm filters (Millipore, 
CA, USA) and then concentrated via Amicon Ultra 
centrifugal filters (100KD MWCO, Millipore). Cells 
were transfected with the lentiviral particles in the 
presence of 8-μg/ mL polybrene (Sigma). Two days 
after infection, puromycin (1-μg/ mL) was added for 
48–72 hrs to eliminate uninfected cells. siRNAs 
(GeneChem, Suzhou, China) were transfected using 
Lipofectamine RNAiMAX (Invitrogen). According to 

knockdown effects, siRCC2-2 and siRCC2-3 were 
used in our study. The sequence of siRCC2-2 was 5′- 
AAGGGGCAGCTGGGACATGGT -3′. The sequence 
of siRCC2-3 was 5′- GCUGUUAAAGAGGUCCAA 
ATT -3′. Additionally, control siRNA (scramble) was 
also used in this study. The sequence of short hairpin 
RNAs (shRNAs) targeting human RCC2 (shRCC2) 
was 5′- AAGAGATGAAAGTGAGACTGA -3′. 

Immunoblotting 
The collected tissues and cultured cells were 

lysed in RIPA lysis buffer (150 mM NaCl, 0.5% EDTA, 
50 mM Tris-HCL, pH 8.0, 0.5% Nonidet P40) 
supplemented with protease inhibitors and 
phosphatase inhibitors (Roche, Mannheim, Germany) 
and centrifuged for 20 min at 14,000 x g and 4°C. 
Protein concentration was determined by 
bicinchoninic acid (BCA) assay (Cwbiotech, Beijing, 
China). Protein lysates were resolved by 
SDS-polyacrylamide gel electrophoresis, transferred 
to a PVDF membrane (Merck Millipore, CA, USA), 
and incubated with the indicated primary antibodies 
coupled with HRP-conjugated secondary antibodies 
by ECL reagent (Beyotime, Shanghai, China). 
Antibodies used were as follows: RCC2, E-cadherin, 
ZO1, N-cadherin, ZEB1, Snail1 (Cell Signaling 
Technology, Massachusetts, USA); FN1 (Abcam, 
Massachusetts, USA); β-catenin, c-Myc (Santa Cruz, 
TX, USA); Cyclin D1 (BD Biosciences, CA, USA). 
Secondary antibodies used were: HRP-goat 
anti-mouse, HRP-goat anti-rabbit (TransGene, Beijing, 
China). 

Quantitative real-time PCR (qPCR) 
Total RNA was extracted using TRIzol (Thermo 

Fisher Scientific, MA, USA) and was transcribed into 
cDNA using PrimeScript RT Master Mix (Takara, 
Dalian, China) according to the manufacturer’s 
instructions. qPCR was performed using the 
LightCycler ® 480 SYBR Green I Master (Roche) on a 
CFX96TM Real-Time System (BIO-RAD, California, 
USA). The relative gene expression levels were 
calculated using the ΔCt method (Ct of GAPDH 
minus the Ct of the target genes). Each experiment 
was performed in triplicate. Primer sequences are 
listed in Supplementary Table S1. 

Cell growth and colony formation assay 
Cell growth was evaluated by MTT assay. 

Briefly, Cells were seeded in 96-well plates (1000 
cells/ well) in triplicate and cell viability was 
examined by MTT dye solution (5 mg/ ml, Sigma) 
every two days. For colony formation assay, cells 
were seeded in 6-well plates (800cells/ well) in 
triplicate and cultured under normal growth 
conditions for two weeks. Colonies were washed and 
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stained with 0.1% crystal violet, and were counted 
using an inverted microscope. 

Transwell Assay 
Transwell assay was performed in 24-well plates 

(Corning, MA, USA) to assess cell migration. The cells 
were suspended in serum-free medium and incubated 
in the top chamber, and medium containing 10% FBS 
was placed as a chemical attractant in the bottom of 
the chamber. After incubation for 24 hrs, the cells 
attached to the membrane in the upper chamber were 
removed using a cotton swab, and the remaining cells 
were fixed with 4% paraformaldehyde (PFA) for 20 
min. The migrated cells were stained with 0.1% 
crystal violet and observed via optical microscopy. 

Animal studies  
All animal experiments were performed 

according to the ethical standards and national 
guidelines and were approved by the Animal Ethical 
and Welfare Committee (AEWC). Female BALB/c 
nude mice (4–5 weeks old) were purchased from 
Guangdong Medical Experiments Animal Center. For 
subcutaneous inoculation, 1×106 cells in 200 μl PBS 
were injected subcutaneously into the right dorsal 
flank of 6-week-old female nude mice. Tumor 
volumes were measured with calipers every 3 days 
using the formula (length×width2)/2. For metastasis 
assay, 1×106 cells in 200 μl PBS were injected into tail 
veins of 6-week-old female nude mice. After 6 weeks 
the mice were sacrificed, and the tumor nodules 
formed in the liver and lung were counted and then 
embedded in paraffin for hematoxylin and eosin (HE) 
staining. 

Immunofluorescence 
Cells seeded in confocal dishes were fixed with 

4% PFA for 20 min, and permeabilized with 0.5% 
Triton X-100 for 20 min. Following PBS washings, 
non-specific antigen binding sites were blocked by 2% 
Bovine Serum Albumin (BSA) for 30 min. Cells were 
then incubated with anti-β-catenin (Santa Cruz, 1:100) 
antibodies overnight at 4 °C. After washing with PBS, 
cells were incubated with secondary antibody 
(DyLight 488-conjugated mouse anti-rabbit IgG; 
1:200) for 60 min and the nuclei were stained with 
DAPI (Invitrogen) for 5 min, which was subsequently 
washed with PBS. All experiments were 
light-sensitive. The cells were then viewed with a 
fluorescence microscope (Olympus Corporation, 
Tokyo, Japan). 

Statistical analysis 
Statistical analyses were performed using SPSS 

20.0 software (IBM Corporation, Armonk, NY, USA) 
and GraphPad Prism6 software (La Jolla, CA, USA). 

The data are presented as the mean ± standard 
deviation and all experiments were done in triplicates. 
Mann-Whitney U-test was used to assess differences 
in the RCC2 mRNA expression levels in tumorous 
and normal tissues. The statistical comparisons were 
analyzed using Student's t-test (only two groups) or 
ANOVA (three or four groups). Survival curves were 
obtained using the Kaplan-Meier method, and the 
log-rank test was used to test the difference in 
survival curves. P < 0.05 (two-sided) was considered 
statistically significant. 

Results 
High RCC2 expression in breast cancer 
correlates with survival of patients  

To elucidate the potential relationship between 
RCC2 expression and cancer incidence, RCC2 
expression level was examined via Oncomine Online 
Database (https://www.oncomine.org/resource/ 
main.html) [11]. Gene Summary analyses showed that 
RCC2 had significantly higher expression in several 
cancers, including lymphoma, breast, cervical, 
colorectal, gastric, liver, lung, and ovarian cancer (p 
value, 1E-4; fold change, 2; gene rank, top 10%, Figure 
S1). Herein, we focused on breast cancer and selected 
six independent datasets for a meta-analysis, and 
found that RCC2 mRNA expression was significantly 
up-regulated in breast cancer tissues compared with 
normal counterparts (Figure 1A, P=0.029). To further 
evaluate the reliability of this observation as obtained 
in Oncomine, RCC2 mRNA expression was next 
analyzed in 1104 breast cancer tissue samples and 114 
normal breast tissue samples from The Cancer 
Genome Atlas (TCGA) Data Portal 
(https://cancergenome.nih.gov/). The results 
indicated that RCC2 was up-regulated in breast 
cancer tissues (Figure 1B, P < 0.001). Meanwhile, a 
comparison of RCC2 expression between 114 pairs of 
breast cancer tissues with their adjacent normal breast 
tissues validated the trend above (Figure 1C, P < 
0.001). 

Breast cancer is clinically divided into four major 
molecular subtypes based on the expression of the 
estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 
(HER2), including luminal A, luminal B, Her2, and 
basal-like sub-types [12]. Interestingly, the highest 
RCC2 expression was found in the basal-like breast 
cancer (Figure 1D), which is known to have a 
propensity for metastasis and worse prognosis [13]. 
Kaplan-Meier survival analysis of Pawitan cohort [14] 
revealed that patients with high RCC2 expression had 
poorer overall survival on the Oncomine database 
(Figure 1E). Taken together, these results indicate that 
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RCC2 is up-regulated in human breast cancer tissues, 
which may play a significant role in the development 
of breast cancer and the clinical prognosis of breast 
cancer patients. 

RCC2 mediates oncogenic activities in breast 
cancer cell in vitro 

Next, we investigated the role of RCC2 on 
malignant phenotypes of breast cancer cells. The 
expression levels of RCC2 in breast cancer cell lines 
were then measured (Figure 2A). We increased RCC2 
expression in MCF7 and MDA-MB-468 cells via 
lentiviral infection and depleted RCC2 in JIMT1 and 
MDA-MB-231 cells using siRNA. Cell growth assays 
revealed that stable RCC2 overexpression (Figure 2B) 
accelerated cell proliferation as determined by MTT 
(Figure 2C) and colony growth assays (Figure 2D). 
Additionally, exogenous RCC2 expression in breast 
cancer cells dramatically enhanced the cell migratory 
capability as indicated by Transwell assays (Figure 
2E). In contrast, knockdown of RCC2 in JIMT1 and 
MDA-MB-231 cells (Figure 3A) attenuated cell 
viability (Figure 3B), clonogenicity (Figure 3C) and 

migratory properties (Figure 3D). Taken together, our 
results substantiate RCC2 as an oncogene promoting 
the proliferation and migration of breast cancer cells. 

Silencing of RCC2 decreases xenograft tumor 
growth and metastasis in vivo 

To investigate the effects of RCC2 on the 
tumorigenic capacity of breast cancer cells in vivo, 
xenograft tumor growth assay was established by 
subcutaneous transplantation with either MDA-MB- 
231-shRCC2 or MDA-MB-231-shScr cells (n=6) 
(Figure 4A). Consistent with in vitro results, silencing 
of RCC2 markedly reduced tumor size and weight as 
compared to the scramble group (Figure 4B and 4C). 
Western blotting confirmed lower expression of RCC2 
in MDA-MB-231-shRCC2 xenograft tumors (Figure 
4D). Furthermore, to delineate whether RCC2 could 
promote tumor metastasis in vivo, MDA-MB-231- 
shRCC2 or negative control cells were intravenously 
injected into nude mice (n=6) via tail vein to establish 
a liver/lung metastatic model. At the completion of 
experiment, livers and lungs were resected. The 
visible tumor metastases were statistically and 

 

 
Figure 1. Up-regulation of RCC2 is associated with poor prognosis of breast cancer patients. (A) A meta-analysis of 6 independent breast cancer 
datasets in Oncomine database. (B-D) RCC2 mRNA expression from TCGA database was compared between 114 normal breast tissues and 1104 breast 
cancer tissues(B), between 114 pairs of breast cancer tissues with their adjacent normal breast tissues(C), and across four different subtypes in breast cancer(D). 
(E) Kaplan-Meier curves indicating the overall survival based on the expression levels of RCC2 in breast cancer patients derived from the publicly accessible 
Pawitan Breast Dataset (log-rank test, P=0.0138). ***P < 0.001. 
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numerically lower in MDA-MB-231-shRCC2 group 
(Figure 4E). Metastatic nodules on the surfaces of 
livers and lungs were further confirmed by 
hematoxylin-eosin (HE) staining (Figure 4F). In 
summary, these results suggest that silencing of RCC2 
significantly attenuates xenograft tumor progression 
and metastatic potential in vivo. 

RCC2 induces EMT via activating 
Wnt/β-catenin signaling pathway  

Accumulating evidence suggests that EMT, a 
process by which epithelial cells acquire the 
characteristics of mesenchymal cells, plays a critical 
role in breast cancer [15]. In order to investigate 
whether RCC2 regulates EMT, we stably expressed 
RCC2 in MCF10A cell, a "normal" nontumorigenic 
breast epithelial cell line that had been extensively 

used to study EMT [16]. As shown in Figure 5A, 
exogenous RCC2-tranfected cells rendered a 
mesenchymal morphology and acquired migratory 
capability. Epithelial markers like E-cadherin and 
ZO1 were down-regulated, whereas mesenchymal 
markers N-cadherin and fibronectin were 
significantly up-regulated. Transcription factors such 
as ZEB1 and Snail1, whose high expression were 
considered a hallmark of EMT through transcriptional 
control of E-cadherin [17], were also showed an 
up-regulation in MCF10A cells with RCC2 
overexpression (Figure 5B). Consistently, over-
expression of RCC2 promoted EMT in epithelial-like 
MCF-7 cells, while knockdown of RCC2 diminished 
EMT progression in MDA-MB-231 cells as EMT 
markers indicated (Figure 5C). 

 

 
Figure 2. Elevated RCC2 expression accelerates breast cancer cell proliferation and migration in vitro. (A) The protein levels of RCC2 in human 
breast cancer cell lines were determined by western blotting. (B) RCC2 transfection efficiencies in MCF7 and MDA-MB-468 cells were confirmed. Proliferation 
capability of breast cancer cells transfected with RCC2 overexpression and control vector was evaluated by MTT assays (C) and Colony formation assays (D). (E) 
Transwell assays showed that RCC2 overexpression promoted cell migration. Each bar represents mean ± SD of three independent experiments. **P < 0.01; ***P < 
0.001.
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Figure 3. RCC2 knockdown attenuates the proliferation and migration of breast cancer cell in vitro. (A) Silencing of RCC2 in JIMT1 and MDA-MB-231 
cells, transfected with non-targeting siRNA (scramble) or two different RCC2-specific siRNA, attenuated its expression at protein level. RCC2 knockdown 
suppressed breast cancer cell growth and cell migration, evaluated by MTT assays (B), colony formation assays (C), and Transwell assays (D). Results are expressed 
as mean ± SD of three independent experiments. **P < 0.01; ***P < 0.001. 

 
To probe the underlying mechanisms of RCC2 

function in breast cancer, whole genome 
transcriptome analysis using RNA-seq was 
performed on MDA-MB-231 cells transfected with 
control or RCC2-targeting siRNAs. Two independent 
siRNAs produced highly similar results (Figure S2). 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis of differential expression genes indicated that 
RCC2 loss-of-function affected pathways enriched 
mainly in PI3K-AKT signaling, ECM-receptor 
interaction, focal adhesion, Wnt signaling, etc (Figure 
5D). Wnt signaling pathway is reported to coordinate 
EMT programs [18]. Thus, to elucidate whether the 
Wnt pathway is involved in RCC2-induced breast 
cancer progression, expression of β-Catenin in 
MCF10A cells was examined by immunofluorescence. 
Figure 5E showed that MCF10A cells stably 
expressing RCC2 resulted in an increased β-Catenin 

level. To confirm that the increased expression of 
β-catenin was due to activated Wnt signaling 
pathway, we further detected the levels of Wnt 
signaling downstream molecules in xenograft model. 
As indicated in Figure 5F, expression of EMT 
markers, β-catenin and Cyclin D1 were significantly 
decreased in MDA-MB-231-shRCC2 xenograft 
tumors. Moreover, overexpression of RCC2 in MCF-7 
cells significantly increased, while knockdown of 
RCC2 in MDA-MB-231 cells decreased the expression 
of Wnt signaling genes, such as β-catenin, Cyclin D1 
and c-Myc (Figure 5G). And their mRNA levels were 
further validated by quantitative real-time PCR 
(Figure S3). These data suggest that RCC2 have a 
pro-metastatic role in breast cancer, which is 
mediated via inducing EMT and activating 
Wnt-signaling pathway. 
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Figure 4. Depletion of RCC2 diminishes xenograft tumor growth and metastatic potential in vivo. (A-C) MDA-MB-231 with RCC2 stably 
knock-downed and control cells were injected into 6-week-old BALB/c female nude mice (n=6). After 6 weeks of injected, xenograft tumors were harvested. 
Photographs of harvested tumors (A), tumor growth curves (B), and tumor weight (C) were shown. (D) RCC2 protein levels in a murine subcutaneous xenograft 
model, as confirmed by western blotting. (E) Quantitative analyses of metastases were measured in liver and lung tissues. (F) Liver and lung metastases of 
MDA-MB-231 cells were determined by tissue observation and HE staining. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 5. RCC2 was correlated with EMT and Wnt signaling pathway in breast cancer cells. (A) The morphology of MCF10A cells stably expressed 
RCC2 and control by bright field microscopy (upper). Representative images show that RCC2 overexpression promoted MCF10A cells migration (down). 
Immunoblotting analysis of EMT markers in MCF10A (B) and MCF7 cells (C, left) with RCC2 overexpressed, or MDA-MB-231 cells with RCC2 down-regulated (C, 
right). (D) The top 10 categories of the KEGG pathways. KEGG enrichment was performed based on differentially expressed mRNAs by defining a threshold of the 
average FPKM ≥ 1, and the cut-off as more than a 2-fold change in MDA-MB-231 cells transfected with scramble or two RCC2-targeting siRNAs. (E) 
Immunofluorescence staining for β-catenin in MCF10A cells after transduction with exogenous RCC2 and control. (F) Expression of EMT markers (E-cadherin, 
N-cadherin) and the Wnt pathway downstream molecules (β-catenin, Cyclin D1) in xenograft models from MDA-MB-231-shScr and shRCC2 groups were detected 
by western blotting. (G) Western blotting analysis of Wnt target genes expression in response to RCC2 overexpression or knockdown in MCF7 and MDA-MB-231 
cells. ***P < 0.001. 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

6845 

Discussion 
RCC2’s roles in human cancers have been 

increasingly scrutinized in recent years. The 
dysregulation of RCC2 expression and its clinical 
significances have been documented. Elevated 
expression of RCC2 was correlated with poor 
prognosis in basal cell carcinoma (BCC) [19], 
colorectal cancer [20], gastric cancer [21], lung cancer 
[22-24] and ovarian cancer [23]. Conversely in 
colorectal cancer, reduced RCC2 expression was 
associated not only with improved survival in 
microsatellite instable (MSI) patients, but also with 
poor prognosis in microsatellite stable (MSS) group 
[20]. However, there is no study on elucidating the 
correlation between RCC2 and breast cancer 
progression. Herein, we found RCC2 expression was 
up-regulated in several kinds of tumors via Oncomine 
database, including breast cancer. TCGA RNA-seq 
expression data further confirmed the higher RCC2 
expression in cancer as compared to normal tissues. 
Kaplan Meier survival analysis of breast cancer 
patients showed that high expression of RCC2 had 
significantly reduced overall survival rates. 

RCC2 is linked to CPC complexes involved in 
mitotic spindle assembly [7], membrane dynamics 
[25] and cell cycle progression [9]. In addition, 
suppression of RCC2 blocks cellular activity in 
prometaphase [9], alters cell morphology [25], and 
increases apoptosis [23]. Those evidence suggest the 
potential function of RCC2 in regulating cell motility. 
Our studies demonstrated that ectopic expression of 
RCC2 in breast cancer cells increased cell proliferation 
in vitro, whereas the silencing of RCC2 led to opposite 
phenotypes. In addition, our in vivo experiments 
showed subcutaneous injection of MDA-MB-231 cells 
with knock-downed RCC2 significantly inhibited 
tumorigenicity.  

Recently, RCC2 has been identified as a 
regulator of cellular migration and tumor metastasis. 
Further study revealed that RCC2 interacted 
physically with the small GTPase RAC1 and may act 
as a GEF for Rac1 [9]. Another research implicated 
that RCC2, as a negative dual regulator of RAC1 and 
ARF6, guided mesenchymal cell directional migration 
[10]. Williamson et al. identified that interactions 
among CORO1C, RCC2, and RAC1 accelerated 
mesenchymal cell migration through RAC1 
trafficking and controlling its exposure to GEFs [25]. 
CORO1C has been reported to be up-regulated in 
multiple clinically aggressive cancers and its 
down-regulation resulted in reduced cell invasion 
and metastasis [26, 27]. Like before, transwell assays 
also demonstrated that exogenous RCC2 in breast 
cancer cells increased migration potential, while 

ablation of RCC2 markedly reduced their migration 
capacity. Metastatic viability was further assessed in 
tail vein injection mouse models. MDA-MB-231- 
shRCC2 injected mice showed a reduction in the 
number of metastatic nodules in liver and lung. 

EMT is a prerequisite physiological process for 
metastasis in most cancers and several studies have 
suggested the association of RCC2 and EMT in cancer 
malignancy. RCC2 expression was elevated in lung 
adenocarcinoma (LUAD), up-regulation of RCC2 
could promote cell migration and invasion through 
the activation of EMT [22]. In another study, lncRNA 
LCPAT1 was found to be involved in cigarette smoke 
extract (CSE) /PM2.5-induced lung cancer cell 
autophagy and EMT via RCC2 up-regulation [24]. 
Here, we found that RCC2 overexpression promoted 
mesenchymal phenotypes in mammary epithelial 
MCF10A cells and western blotting results revealed 
that RCC2 stimulated EMT in breast cancer cells. 

To elucidate the role of RCC2 in EMT, RNA-seq 
was performed in MDA-MB-231 cells with control or 
RCC2 silenced. Previous research on LUAD indicated 
that RCC2 might activate EMT through the activation 
of the MAPK-JNK signaling pathway [22]. Our KEGG 
pathway analysis suggested that RCC2 loss-of- 
function affected the PI3K/AKT signaling, an 
upstream pathway of MAPK-JNK. While no 
significant difference was observed on the PI3K-AKT 
signaling pathway in breast cancer cells (data were 
not shown), another high-scored pathway, Wnt 
signaling pathway, was further investigated.  

Wnt pathway is a key signaling cascade that 
regulates physiological germination and development 
of breast cancer [28, 29]. Canonical Wnt signaling is 
also referred as Wnt/β-catenin signaling, defined by 
cytoplasmic β-catenin nuclear translocation and 
activation of TCF4/β-catenin transcriptional targets 
[30, 31]. Wnt driven breast cancers are noteworthy as 
they illustrate increased cell motility, EMT phenotype 
and tumor metastasis [32-36]. Immunofluorescent 
staining showed that up-regulation of RCC2 could 
increase the expression and nuclear translocation of 
β-catenin in MCF10A cell. Furthermore, activation of 
TCF4/β-catenin transcriptional targets, such as c-Myc 
and CyclinD1, play significant roles in regulating 
tumor malignancy and EMT [37, 38]. Our results 
indicated that regulation of RCC2 level could directly 
affect the expression of β-catenin and its 
transcriptional targets.  

Consequently, we generated RCC2-enriched and 
silenced cells to perform in vitro and in vivo assays, 
and found that RCC2 overexpression promoted 
aggressive progression of breast cancer through the 
activation of the Wnt signaling pathway. However, 
further investigations are needed to clarify deeper 
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mechanisms that elaborate the roles of RCC2 in the 
regulation of Wnt signaling pathway. 
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2; EMT: Epithelial-Mesenchymal Transition; CPC: 
chromosomal passenger complex; GEFs: guanine 
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tetrazolium; KEGG: Kyoto Encyclopedia of Genes and 
Genomes. 
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