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Abstract 

Background: To develop and validate a radiomic nomogram incorporating radiomic features with 
clinical variables for individual local recurrence risk assessment in nasopharyngeal carcinoma (NPC) 
patients before initial treatment.  
Methods: One hundred and forty patients were randomly divided into a training cohort (n = 80) and a 
validation cohort (n = 60). A total of 970 radiomic features were extracted from pretreatment magnetic 
resonance (MR) images of NPC patients from May 2007 to December 2013. Univariate and multivariate 
analyses were used for selecting radiomic features associated with local recurrence, and multivariate 
analyses was used for building radiomic nomogram.  
Results: Eight contrast-enhanced T1-weighted (CET1-w) image features and seven T2-weighted (T2-w) 
image features were selected to build a Cox proportional hazard model in the training cohort, 
respectively. The radiomic nomogram, which combined radiomic features and multiple clinical variables, 
had a good evaluation ability (C-index: 0.74 [95% CI: 0.58, 0.85]) in the validation cohort. The radiomic 
nomogram successfully categorized those patients into low- and high-risk groups with significant 
differences in the rate of local recurrence-free survival (P <0.05).  
Conclusions: This study demonstrates that MR imaging-based radiomics can be used as an aid tool for 
the evaluation of local recurrence, in order to develop tailored treatment targeting specific 
characteristics of individual patients. 

Key words: Magnetic Resonance Imaging; Nasopharyngeal Carcinoma; Local Recurrence; Radiomic Feature; 
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Introduction 
Nasopharyngeal carcinoma (NPC) is a rare 

malignancy in most parts of the world, with incidence 
rate of approximately 1.1 cases per 100,000 people [1]. 
However, NPC is more common in South-Eastern 
Asia, particularly in southern China, with an annual 

incidence rate of 80 cases per 100,000 people [2-6]. 
Approximately 11% of NPC patients develop tumor 
recurrence at the primary or/and regional site after 
definitive therapy [7, 8]. With the use of 
intensity-modulated radiotherapy and concurrent 
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chemoradiotherapy, the control of local recurrence 
has substantially improved [9, 10]. However, only a 
portion of recurrent NPC patients have benefited 
from the improved treatment, which may be related 
to the specific characteristics of individuals [1, 9]. The 
outcome of salvage treatment remains very poor [11, 
12], with the survival after local recurrence equating 
to <18.3 months, and its management remains a 
difficult issue for clinicians [13, 14]. It is therefore vital 
to define the reliable prognostic factors that could 
identify NPC patients at low- or high-risk of local 
recurrence. 

Currently, magnetic resonance imaging (MRI) is 
a traditional and important tool for pretreatment 
staging and the determination of treatment programs 
for NPC [15, 16]. The traditional MRI, such as 
T1-weighted (T1-w) imaging and T2-weighted (T2-w) 
imaging, is mainly based on the anatomy of tumor 
invasion and does not consider intratumor 
heterogeneity so that they failed to evaluate the risk of 
individual patient based on specific intratumor 
characteristics [17, 18]. Many functional MRI 
sequences have been reported, such as 
diffusion-weighted imaging (DWI), diffusion tensor 
imaging (DTI), perfusion-weighted imaging (PWI), 
intravoxel incoherent motion (IVIM), could reflect 
intratumor features in different cancers [19, 20]. 
However, they are not as regular sequences for NPC 
patients, because the inherent anatomic constraints 
could cause all kinds of artifacts. Recent studies have 
found that radiomics analysis, which is based on 
imaging data, could provide additional information 
reflecting the underlying intratumor heterogeneity 
[21, 22].  

Radiomics, a rapidly emerging field, transforms 
medical images into mineable high-dimensional 
quantitative features via a large number of 
automatically extracted data-characterization 
algorithms [23, 24]. These numerous quantitative 
imaging features are extracted from entire tumors in 
different modalities (e.g. computed tomography [CT], 
MRI, or positron emission tomography-computed 
tomography [PET/CT]), and they may reflect 
intratumor heterogeneity which are closely associated 
with cancer staging, prognostic prediction, and 
response to treatment [25-27]. Identification of the 
intratumor heterogeneity of individual patients has 
the potential to yield important insights for targeted 
therapeutic selection and drug development [22, 28]. 
Several studies have observed the predictive ability of 
radiomic features in many cancers (e.g. head and neck 
squamous cell carcinoma [29], lung cancer [30], rectal 
cancer [31, 32], and breast cancer [33]), and revealed 
that radiomic features are associated with 
progression-free survival (PFS), recurrence, 

metastasis, and other clinical outcomes [34, 35]. 
Moreover, an intratumor heterogeneity survey for 
NPC patients has been assessed with regard to 
progression-free survival and treatment response 
[36-38]. These previous studies have indicated that 
radiomic features are an independent factor for the 
prediction of progression-free survival in advanced 
NPC patients. However, how radiomic features might 
differ between patients with different risk of local 
recurrence has not been established.  

The aim of this study was to investigate whether 
radiomic features were associated with local recurrent 
NPC. Furthermore, we integrated radiomic features 
with clinical variables to build a nomogram for 
stratifying low- or high-risk local recurrent NPC 
patients.  

Materials and Methods  
Patients 

This retrospective study was approved by the 
ethics committee of Guangdong General Hospital 
review board. All patients provided written informed 
consent. Our hospital database was searched to 
identify all patients with newly diagnosed NPC 
between May 2007 and December 2014 who were 
treated with a radiotherapy or chemoradiotherapy 
regimen. The study eligibility criteria were (a) 
patients with histologically-confirmed NPC; (b) 
patients who had not received treatment (surgery, 
radiotherapy, or chemoradiotherapy) before MRI 
scans; (c) patients who had undergone pre-treatment 
MRI scans for review (including CET1-w and T2-w 
images); and (d) patients who were followed-up every 
1-3 months during the first 2 years, every 6 months in 
years 2-5, and annually thereafter. Patients with 
known magnetic resonance contraindications, 
insufficient follow-up data, any treatments 
(radiotherapy, chemotherapy, or chemoradiotherapy) 
before their first MRI scan, or a history of previous or 
synchronous malignant tumors, were excluded. The 
histological subtype of the patients’ tumors was 
categorized according to the World Health 
Organization standards and included type I 
(differentiated keratinizing carcinoma), type II 
(differentiated non-keratinizing carcinoma), and type 
III (undifferentiated non-keratinizing carcinoma) [39]. 
Eligible patients were randomly divided into two 
cohorts at a ratio of 4:3. Eighty patients were assigned 
to the training cohort, while the remaining 60 patients 
were assigned to the independent validation cohort.  

Baseline clinical variables were collected, 
including age, gender, T stage, N stage, histology, 
hemoglobin (HGB), and platelet count [40]. The 
primary endpoint of this study was local 
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recurrence-free survival (LRFS), which was defined as 
the time from the start of the MR examination until 
the date of local recurrence [12, 13]. The minimum 
follow-up time for patients without local recurrence 
was 36 months after the first MR examination. All 
local recurrences were diagnosed by flexible 
nasopharyngoscopy and biopsy and/or MRI scanning 
of the nasopharyngeal area and neck.  

Treatment 
The targets of radiation therapy (RT) are the 

nasopharynx and adjacent at-risk tissues, and both 
sides of the neck (levels Ib-V, and the retropharyngeal 
nodes) [1]. Patients received a cumulative radiation 
dose equivalent to 66 Gy or greater to the primary 
tumor, 60-66 Gy to the involved neck area, and 50 Gy 
or greater to the adjacent at-risk tissues [41]. Early 
stage patients (stage I-II) were treated with RT alone, 
while advanced stages (stage III-IV) were treated with 
RT and concurrent chemotherapy [26, 40]. The 
concurrent chemoradiotherapy regimen comprised of 
cisplatin (40 mg/m² 5 days per week, 6-7 cycles), 
beginning on the first day of radiotherapy.  

Radiomics workflow 
The radiomics workflow is presented in Fig. 1, 

including (1) image acquisition, (2) image 
segmentation, (3) feature extraction, (4) feature 
selection, and (5) model building. 

Image acquisition, image segmentation, and 
feature extraction  

All patients underwent non-contrast and 
contrast-enhanced nasopharyngeal and neck 1.5 T 
MRI scans (Signa EXCITE HD, TwinSpeed, GE 
Healthcare, Milwaukee, WI, USA). The acquisition 
parameters were as follows: axial T2-weighted 
spin-echo images (repetition time [TR]/echo time 
[TE]: 5000/85 ms, field of view [FOV] = 23 × 23 cm, 
number of excitations [NEX] = 2.0, slice thickness = 4 
mm, spacing between slices = 1.0 mm) and axial 
contrast- enhanced T1-weighted spin-echo images 
(TR/TE: 687/16 ms, FOV = 23 × 23 cm, NEX = 2.0, 
slice thickness = 4 mm, spacing between slices = 1.0 
mm). We included axial T2-w Digital Imaging and 
Communications in Medicine (DICOM) images and 
CET1-w DICOM images that had been archived using 
Picture Archiving and Communication Systems 
(PACS).  

The segmentation for region-of-interest (ROI) 
settings was performed using ITK-SNAP software 
(open source software; https://itk.org/) All manual 
segmentations of the tumor were performed by two 
radiologist with 11 years of experience in head and 
neck MR image (O.Y. and B.G) in a blinded fashion, 
and each segmentation was validated by a senior 

radiologist with 15 years of experience in head and 
neck MR image (S.Z.). The ROI included the whole 
tumor and was delineated on both the axial T2-w and 
CET1-w images in each slice. 

The feature extraction was performed in 
MATLAB R2014a (Mathworks, Natick, MA, USA) 
using our in-house algorithms designed to extract 
four different feature classes, including first-order 
statistics features, shape- and size-based features, 
statistics-based textural features, and wavelet 
features, which are described in detail in 
Supplementary Methods 1. DICOM files (MR images 
+ tumor contours) were imported into the algorithms 
to extract the radiomic features. A total of 970 
complete radiomic features were extracted from MR 
images, including 485 features from the CET1-w 
images and 485 features from the T2-w images.  

Feature selection and model building 
The recursive feature elimination with logistic 

regression algorithm (LR-RFE) was used to select the 
most predictive features with the highest area under 
the curve (AUC) (containing the first n features) [42, 
43]. The RFE method continuously eliminates the 
features that did not significantly contribute to the 
model based on the iterative method, finally obtaining 
ranked features based on the number of iterations 
when the feature was discarded. With the ranked 
features, different feature sets could be obtained by 
selecting the top-n features from the ordered sequence 
(1≤n≤N). The set of first n features was fed into the 
local recurrence classifier, and its performance for 
differentiating low- and high-risk of local recurrence 
in NPC could be evaluated by a receiver-operating 
characteristic (ROC) curve and AUC. Finally, a subset 
with the highest AUC (containing the first n features) 
was selected as the best feature subset for the 
discrimination task. The LR-RFE method was 
conducted in the training cohort and validated in the 
independent cohort. The LR-RFE algorithm was 
implemented in Python with the Sklearn package. 
After feature selection, we used Cox regression to 
build a model. The non-zero coefficient of the selected 
feature was defined as the radiomic score (Rad-score); 
the Rad-score was calculated for each patient using a 
formula derived from the selection features weighted 
by their regression coefficient. Radiomic features were 
built using the Rad-score. In this study, the CET1-w 
and T2-w images were used to establish the 
prediction model, and obtained the risk scores 
Rad-score1 and Rad-score2, respectively. Finally, we 
used cox regression analysis to determine the 
association of Rad-score1, Rad-score2, clinical 
variables with local recurrence in the training cohort. 
A Rad-score was calculated for each patient derived 
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from identified predictors weighted by their 
regression coefficient. We calculated the median 
Rad-score, which classified NPC patients into 
low-risk and high-risk groups.  

Validation of the radiomic nomogram 
The radiomic nomogram, which integrated the 

radiomic features and clinical variables, was built for 
prediction based on the Cox proportional hazards 
regression model. The radiomic nomogram 
performance was measured quantitatively using the 
concordance index (C-index) [44]. The concordance 
index and calibration curve were obtained from 
multivariable Cox proportional hazard regression 
analyses. The threshold of p value was 0.05 (P < 0.05) 
for the “good” calibration in this analysis. Patients 
were stratified into high- or low-risk groups based on 
the Rad-score, the threshold of which was delimited 
by using the median Rad-score. Patients with median 
scores were placed in high-risk groups. We also used 
a survival analysis to measure the difference in the 
LRFS between high- and low- risk groups, which was 
assessed in the training cohort, and then confirmed in 
the validation cohort [45]. We also performed a cox 
regression analysis to test the significant of clinical 
variables alone, included age, gender, T stage, N 
stage, HGB, and platelet count. 

Statistical analysis 
The statistical analyses were conducted using R 

software, version 3.1.3 (http://www.R-project.org). 
We performed univariate and multivariate analyses in 
this study. The Kaplan-Meier and log-rank methods 
were used to analyze the univariate discrimination of 
the LRFS, which was grouped by models. Survival 
analysis and Kaplan-Meier survival curves were 
processed with the “survival” and “survcomp” 
packages. Multivariate logistic regression was 
conducted with the “rms” package. Cox proportional 
hazards regression, nomograms, and calibration 
curves were calculated by the rms package. C-index 
calculation was performed with the “Hmisc” package. 
The clinical characteristics of training and validation 
cohorts were compared by using an independent 
samples t-test, χ2 test, or Mann-Whitney U test, as 
appropriate. We performed correlation analysis to 
evaluate relationship between clinical variables and 
local recurrence with the “stats” package. All 
statistical tests were two-sided, and P values of <0.05 
were considered significant.  

Results  
Clinical characteristics  

A total of 140 patients with pathologically 
confirmed NPC were included in this study. The 

training and validation cohorts were similar in terms 
of baseline clinical variables (P >0.05). The median 
LRFS time was 26 months (range: 3-68 months). The 
results of correlation analysis showed that N-stage is 
significant associated with local recurrence but other 
clinical variables are not significant. The patient 
characteristics are summarized in Table 1.  

 

Table 1: Demographic and clinical characteristics of patients in 
the training cohort and validation cohort. Statistical comparison 
between the training cohort and the validation cohort was 
conducted with the Mann-Whitney U test for continuous variables 
and the χ2 test for categorical variables. 

Characteristic Type Training Cohort 
(%) 
n=80 

Validation cohort 
(%) 
n=60 

P-value 

Gender Male 54 (67.5) 49 (81.7) 0.06 
Female 26 (32.5) 11 (18.3) 

Age (years) Range 14-71 14-67 0.07 
Median±STD 46±10 42±12 

Overall stage Ⅰ 1 (1.3) 0 (0) 0.16 
Ⅱ 12 (15) 2(3.3) 
Ⅲ 46(57.5) 42 (70) 
Ⅳ 21 (26.2) 16 (26.7) 

T stage Ⅰ 6 (7.5) 5 (8.3) 0.08 
Ⅱ 30 (37.5) 11 (18.3) 
Ⅲ 30 (37.5) 33 (55) 
Ⅳ 14 (17.5) 11 (18.3) 

N stage Ⅰ 6 (7.5) 5 (8.3) 0.16 
Ⅱ 31 (38.7) 13 (21.7) 
Ⅲ 36 (45) 37 (61.7) 
Ⅳ 7 (8.8) 5 (8.3) 

 Histology  WHO type I 0 (0)  0 (0)  0.73  
    WHO type II 2 (2.5)  1 (1.7)  

  WHO type 
III 

78 (97.5)  59 (98.3)  

Hemoglobin (g/L) < 136 44 (55)  30 (50) 0.56 
 ≥ 136 36 (45)  30 (50)  
Platelet counts, 
×109/L 

< 238  47 (58.8)  26 (43.3) 0.07 

 ≥ 238  33 (41.2)  34 (56.7)  
 

Radiomic feature extraction, feature selection, 
and model building  

In total, the eight features selected from CET1-w 
images were as follows: CET1-w_1_GLCM_cluster_ 
shade, CET1-w_3_fos_median, CET1-w_3_fos_mean, 
CET1-w_4_fos_skewness, CET1-w_Surface_to_ 
volume_ratio, CET1-w_6_fos_skewness, CET1-w_4_ 
fos_mean, and CET1-w_4_fos_median. We used these 
features to establish a Cox proportional hazard model 
(CET1-w C-index 0.60 [95% CI: 0.49-0.72]. Based on 
the coefficient of eight features, we calculated the 
Rad-score1 for CET1-w Cox (Supplementary Methods 
3). Similarly, we selected seven features from the T2-w 
images as follows: T2-w_4_GLCM_cluster_shade, 
T2-w_6_GLCM_autocorrelation, T2-w_6_GLCM_ 
IMC1, T2-w_1_GLCM_cluster_shade, T2-w_7_fos_ 
mean, T2-w_1_GLRLM_LRHGLE, and T2-w_7_ 
GLCM_sum_average, and established a Cox 
proportional hazard model (T2-w C-index 0.62 [95% 
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CI: 0.52, 0.71]). The Rad-score2 of T2-w Cox was also 
calculated (Supplementary Methods 3).  

Cox regression analysis determined that 
Rad-score1, Rad-score2, gender, age, HGB, and 
N-stage were associated with local recurrence in the 
training cohort. A Rad-score was calculated for each 
patient using the following formula derived from the 
above independent predictors weighted by their 
regression coefficient:  

Rad-score = 0.88663*Rad-score1+ 0.50748* Rad-score2 
+ 0.02159*gender+ 0.02012*age + 0.00691*HGB 

-0.21954*N-stage  

The contribution of the selected parameters with 
their coefficients for the predictive model construction 
is presented in the form of a histogram in Fig. 2. The 
model that incorporated the above independent 
predictors was developed and presented as the 
radiomic nomogram (Fig. 3A) and provided a C-index 
of 0.69 (95% CI: 0.59-0.77). The calibration curves of 
the radiomic nomogram for the probability of local 
recurrence occurred at 2 or 3 years, as illustrated in 
Fig. 3B, and they exhibited better agreement between 
the estimation with the radiomic nomogram and 
actual observation.  

Validation of the radiomic nomogram 
Using the second radiomic features to similarly 

extract and select 60 patients as the internal validation 
cohort, the radiomic nomogram yielded a C-index of 
0.74 (95% CI: 0.58-0.85). Good calibration was 
observed for the probability of local recurrence in the 

validation cohort (Figure not provided). We also built 
a clinical model based on the clinical variables. After 
cox regression analysis, only N stage was remained as 
independent predictors of local recurrence. The 
clinical model yielded a C-index of 0.56 (95% CI, 
0.66-0.45) in the training cohort and 0.59 (95% CI, 
0.68-0.49) in the validation cohort. The radiomic 
nomogram exhibited better prediction performance 
than the radiomic features and clinical variables 
alone, in both the training cohort and the validation 
cohort.  

The patients were categorized into low- and 
high-risk groups based on the median Rad-score. 
Patients in the low-risk group (Rad-score <5.50) were 
significant longer LRFS than did patients in the 
high-risk group (Rad-score ≥5.50) (Fig. 4, P = 0.008).  

Discussion 
Using radiomics-based feature analysis, we 

found that radiomic features were closely association 
with local recurrence in NPC patients. In this study, 
we built a radiomic nomogram that combined the 
radiomic features and clinical variables to evaluate 
the risk of local recurrence in NPC patients before 
initial treatment, and classified NPC patients into 
high risk and low risk groups. The radiomic 
nomogram provides a visual tool for optimal clinical 
decisions, enabling clinicians to perform inexpensive, 
earlier identification of NPC patients at high risk of 
local recurrence.  

 

 
Figure 1: Workflow of the radiomics analysis. (1) Acquisition of high-quality magnetic resonance images. (2) Segmented region of interest (ROI) that contains either the whole 
tumor rendered in three dimensions. (3) Quantitative features were extracted. (4) Robust features were selected. (5) A combined model was built that integrated the radiomic 
features and multiple clinical variables.  
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Figure 2: Histogram illustrating the role of the selected parameters that contributed to the radiomic nomogram. The selected parameters are plotted on the y-axis with their 
coefficients in the Cox analysis plotted on the x-axis. 

 
Figure 3: (A) A radiomic nomogram incorporated the Rad-score1, Rad-score2, and clinical variables in the training cohort. (B) Calibration curve of local recurrence free survival 
probabilities at 2-years (blue line) and 3-years (black line) in nasopharyngeal carcinoma patients. The diagonal dotted line represents an ideal evaluation, while the blue and black 
solid lines represent the performance of the radiomic nomogram. The closer the fit to the diagonal dotted line, the better the evaluation. 

 
Figure 4: Graphs indicating the results of the Kaplan-Meier survival analyses according to the radiomic features to predict local recurrence-free probability in all datasets. A 
significant local recurrence free survival difference was noted between patients in the low- and high-risk groups (dataset, n = 140, log-rank test, P = 0.008). 
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Previous models of NPC demonstrated that 
MRI-based radiomic features were predictive in 
progression-free survival and treatment response 
without offering an evaluation of local recurrence [36, 
46]. In this study, we found that radiomic features had 
a closely association with local recurrence in NPC 
patients, and the predictive performance of the 
nomogram model underwent significant 
improvement after the addition of radiomic features. 
The results can be explained by the fact that the 
quantitative image features were extracted from 
entire tumors, and hence they are likely to reflect the 
intra-tumor heterogeneity. Kwan et al [47] and 
Vallieres et al [48] have also supported that radiomic 
features was associated with distant metastasis and 
could reflect the characteristics of intratumor 
heterogeneity. The result also demonstrated that the 
contribution of the CET1-w images to the nomogram 
was slightly greater than that of the T2-w images. The 
result may indicate that the T2-w images mainly 
reflected tumor density and obscure boundaries, 
while the CET1-w images reflected intra-tumor 
heterogeneity and architecture (e.g., tumor 
angiogenesis) [49]. This previous finding of 
angiogenesis associated with tumor invasion lends 
credence to the possibility of CET1-w image 
differences possibly reflecting angiogenesis [41].  

Age, gender, T-stage, N-stage, hemoglobin, 
platelet counts have been identified and evaluated in 
previous studies [50, 51]. In this study, after 
multivariate analyses, age, gender, N-stage, HGB 
were remained and combined with radiomic features 
to build a model for the evaluation of local recurrence 
in NPC patients. Our results indicated that N-stage 
was negatively associated with local recurrence in 
NPC patients, while previous findings supported that 
N-stage was positive association with distant 
metastasis in NPC patients [52]. To validate the 
relationship between N-stage and local recurrence, we 
conducted a correlation analysis and the result 
indicated that N-stage was significantly associated 
with local recurrence. The possible reasons 
underlying the negative correlation of N-stage are as 
follows: first, N-stage was based on the site of 
adenopathy and that of the greatest diameter [1]. 
However, occult micrometastasis in lymph nodes 
could exist regardless of the size [53]. Second, the 
irradiation area of the neck is unfixed compared with 
other head and neck irradiation area by using a 
thermoplastic head and shoulder mask. Therefore, the 
cervical lymph node could not receive enough dosing, 
which may result in local recurrence. Finally, we kept 
N-stage as an important factor in the nomogram. In 
addition, age, gender and HGB were remained after 
filtration. Although these clinical variables provided 

slightly predictive strength to improve reclassification 
performance in this study, existing studies have 
demonstrated that they could serve as important 
markers of prognosis in NPC patients; therefore, we 
kept them as candidate factors in the nomogram [10, 
50, 54, 55].  

Several previous studies have made great efforts 
to build nomograms for individual local recurrence 
risk assessment in NPC patients based on clinical 
variables, such as Chen et al [56], which included age, 
the neutrophil/leukocyte ratio (NWR), pathological 
type, primary gross tumor volume, maxillary sinus 
invasion, ethmoidal sinus, invasion and lacerated 
foramen invasion. Wang et al [57] also reported that 
cervical lymph nodes (≥3 cm) were a risk factor for 
local recurrence in NPC patients treated with 
intensity-modulated radiotherapy. However, new 
biomarker that could reflect intratumor heterogeneity 
still need to be found to guide individual treatment 
for patients. The radiomic nomogram we developed 
in this study combined the clinical variables and the 
specific radiomic features, which selected from 
first-order statistics, shape descriptors, and texture 
features, could reflect intratumor heterogeneity. Our 
results also showed that the radiomic nomogram 
provides better predictive performance compared 
with radiomic features and clinical variables alone, as 
it refers to the combination between multiple clinical 
manifestations and intratumor heterogeneity. In 
additional, the radiomic nomogram could serve as 
both a scoring system and a visualized prediction 
tool, which could help physicians rapidly evaluate a 
patient with his/her expected LRFS via a simple 
calculation in clinical practice. Quantifying both of 
these risks is critical to the clinical decision of whether 
patients should receive any specific therapy and, if so, 
whether it should be less or more “intense.” Notedly, 
we still need further prospective clinical validation 
before this model was used for clinic.  

There were some limitations in the present 
analysis. First, this study was performed in an 
endemic area, single hospital and lacked external 
validation. Multicenter prospective validation in both 
NPC-endemic and nonendemic areas with a larger 
sample size is needed to acquire powerful evidence 
for clinical application. Second, the algorithms of 
radiomic model and statistical analysis were relatively 
unfamiliar and complicated for clinic. There will be a 
website or application to solve this problem, which 
doctors could get the results by uploading images and 
clinical variables.  

In conclusion, we developed a radiomic 
nomogram integrated radiomic features and multiple 
clinical variables to predict and evaluate local 
recurrence in NPC patients. The radiomic nomogram 
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classified NPC patients into high-risk and low-risk 
groups with significant difference in local 
recurrence-free survival, and it served as a visual tool 
to identify high-risk individuals who would benefit 
from aggressive therapeutic strategies. 
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