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Abstract 

The occurrence and development of tumors is a complex process involving long-term multi-factor 
participation. In this process, tumor cells from a set of abnormal metabolic patterns that are 
different from normal cells. This abnormal metabolic change is called metabolic reprogramming of 
tumors. Wnt signaling pathway is one of the critical signaling pathways regulating cell proliferation 
and differentiation. In recent years, it has been found that Wnt signaling participates in the 
occurrence and development of malignant tumors by affecting metabolic reprogramming. This paper 
reviews the role of Wnt signaling in tumor metabolic reprogramming to provide crucial theoretical 
guidance for targeted therapy and drug response of tumors. 
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Introduction 
The occurrence and development of tumors is a 

complex process involving long-term multi-factor 
participation [1-6]. In this process, tumor cells from a 
set of abnormal metabolic patterns different from 
normal cells, providing the energy and raw materials 
needed for their life activities. This abnormal 
metabolic change is called metabolic reprogramming 
of tumors [7-10]. In 1930, Warburg proposed the 
Warburg effect of abnormal glucose metabolism in 
tumors, that is, tumor cells obtain energy mainly 
through anaerobic glycolysis [11]. Subsequently, it 
was found that tumor cells also have changes in 
amino acid metabolism and fat metabolism, thereby 
providing energy and raw materials for 
biomacromolecule synthesis [12-14]. In recent years, it 
has been found that the metabolic reprogramming of 
tumor cells also includes pentose phosphate bypass, 
lipid and protein and anabolism associated with 

nucleic acid synthesis, and a large number of 
endogenous oxygen free radicals, which are involved 
in the development of tumors has played an 
important role [15-18]. 

Wnt signaling pathway is one of the critical 
signaling pathways regulating cell proliferation and 
differentiation and plays an essential role in normal 
physiological activities such as growth and 
development and pathological processes including 
malignant tumors [19-23]. The Wnt signaling pathway 
is composed of various signal molecules, ligands and 
receptors such as Wnt protein and β-catenin, and is 
very conservative in evolution [24]. It mainly consists 
of three pathways: the classical Wnt pathway, the 
Wnt/Ca2+ pathway, and the planar cell polarity (PCP) 
pathway. In recent years, a large number of studies 
have found that the Wnt signaling pathway can affect 
the occurrence of obesity and diabetes by affecting the 
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metabolism of normal cells [25-28]. Further studies 
have shown that the Wnt pathway can also change the 
metabolism of tumor cells, thereby participating in the 
occurrence and development of malignant tumors by 
changing metabolic reprogramming [29-32]. 

1. Tumor metabolism reprogramming is 
one of the characteristics of malignant 
tumors 

Metabolic reprogramming is one of the 
prominent features of tumor cells, including all 
metabolic changes in tumor cells [33-36]. Abnormal 
glucose metabolism is the earliest discovered 
metabolic reprogramming. Under aerobic conditions, 
tumor cells are also mainly powered by the glycolysis 
pathway. This metabolic abnormality is also known as 
the Warburg effect [37-39]. That is, when the 
mitochondrial function of the tumor cells is 
dysfunctional, the cells obtain energy mainly by 
enhancing anaerobic glycolysis [40-44]. That is, after 
glucose is metabolized to pyruvic acid, it does not 
enter the tricarboxylic acid cycle for aerobic oxidation 
but is converted to lactic acid by lactate 
dehydrogenase [45]. However, because tumor cells 
are energy-efficient through the glycolysis pathway, 

to maintain the energy required for their life activities, 
tumor cells, in addition to increased glucose 
consumption, also increase energy supply by 
increasing fat metabolism [46-49]. It is characterized 
by de novo synthesis of fatty acids and active 
beta-oxidation, thus providing an adequate supply of 
energy through increased fat metabolism [50]. In 
addition, due to the uncontrolled nature of tumor cell 
proliferation, anabolism of fatty acid synthesis and 
amino acid metabolism of tumor cells has also 
changed [51, 52]. In tumor cells, the pentose 
phosphate pathway, the hexose synthesis pathway, 
the serine/glycine synthesis pathway, and the 
glutamate-glutamine cycle are all increased, thereby 
providing the required raw materials for the synthesis 
of biological macromolecules such as ribonucleic acid 
and protein [53-59].Also, the number of oxygen free 
radicals (ROS) in tumor cells increased compared 
with normal cells, and increased ROS stimulated the 
proliferation of tumor cells [60-62]. The purpose of 
tumor metabolic reprogramming is to drive limited 
nutrients or intermediate metabolites to be more 
"effectively" utilized by tumor cells to support the 
vigorous metabolic demands of tumor cell 
development and progression [63] (Figure 1). 

 

 
Figure 1: metabolic pathways in cancer cells. Highly proliferating cells promote glucose catabolism and glutamine catabolism by regulating key metabolic pathways, driving 
molecular synthesis and maintaining energy balance through molecular interactions. Cancer cells use aerobic glycolysis to produce ATP and promote pyruvate synthesis to 
promote glycolysis by increasing the expression of glycolytic enzymes. Tumor cells also produce macromolecules such as NADPH and 5-carbon sugar-driven nucleic acids via the 
pentose phosphate pathway. The citrate from the TCA cycle is exported to the cytosol and further converted to acetyl-CoA for the synthesis of lipid acids. 
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Figure 2: The network of Wnt signaling regulates tumor metabolism reprogramming. The activated Wnt signaling pathway promotes the up-regulation of MCT-1, 
CYC1 and ATP synthase by the downstream transcription factor TCF/LEF, resulting in the secretion of intracellular lactate and the occurrence of aerobic glycolysis. Wnt signaling 
pathway can also up-regulate the expression of GLUT-1, LDH, PKM2, SLC1A5 and other genes by c-Myc promoting glycolysis, nucleotide and fatty acid synthesis in tumor cells. 
The non-canonical Wnt signaling pathway promotes aerobic glycolysis by activating Akt-mTOR to stabilize the expression of mTORC1 and β-catenin. The activated mTOR 
pathway promotes glucose uptake by increasing glucose transporter expression. On the other hand, the mTOR pathway can also lead to an increase in fatty acid synthesis by 
up-regulating the expression of acetyl-CoA, resulting in an increase in fatty acid oxidative metabolism. In addition, activation of the mTOR pathway can also result in upregulation 
of glucose-6-phosphate dehydrogenase, resulting in enhanced pentose phosphate bypass and promotion of ribonucleic acid synthesis. ROS levels can directly affect the 
transcriptional activity of β-catenin. ROS can interact with TCF4, alter the binding of β-catenin to TCF, and interact with the transcriptional link factor of FOXO3a, thereby 
changing the gene expression of cells and promoting tumorigenesis. 

 

2. Wnt signaling regulates tumor 
metabolism reprogramming 

As a highly conserved signaling pathway in 
evolution, the Wnt signaling pathway plays an 
essential role in many biological processes such as 
growth, development, metabolism, and stem cell 
maintenance, while the Wnt pathway is out of control 
and occurs in diseases such as cancer, obesity, and 
diabetes [64, 65]. The Wnt signaling pathway acts as a 
critical regulatory pathway, similar to that involved in 
metabolic alterations in normal cells, and is also 
engaged in swollen metabolic reprogramming in 
tumor cells. Current research indicates that the Wnt 
pathway can also mediate the regulation of tumor cell 
metabolism, thereby participating in tumor 
development and progression by affecting tumor cell 
metabolism reprogramming [66]. The current study 
found that the Wnt signaling pathway can participate 
in the metabolic reprogramming of tumors through 
the regulation of multiple downstream signaling 
pathways such as TCF/LEF, c-myc and Akt-mTOR 
pathway [67-69]. The Wnt signaling pathway can also 
indirectly affect metabolic pathways by directly 
regulating the expression of rate-limiting enzymes in 
metabolic pathways and by regulating other 

oncogenes, leading to metabolic changes in cells 
(Figure 2). 

2.1 Wnt pathway participates in tumor 
metabolic reprogramming through TCF/LEF 
pathway 

Current studies indicate that the metabolism of 
malignant tumor cells is mainly regulated by the 
canonical Wnt pathway , while the classical Wnt 
signaling pathway can also exert biological functions 
through the downstream transcription factor 
TCF/LEF [70-73]. When TCF/LEF is activated, the 
expression of MCT-1, CYC1, and ATP synthase is 
up-regulated, resulting in intracellular lactate 
secretion and aerobic glycolysis [74]. This not only 
leads to an increase in aerobic glycolysis but also 
provides essential energy for tumor cells, while a 
large amount of lactic acid secretion also induces 
secretion of factors such as VEGF, thereby promoting 
tumor angiogenesis [75-77]. In addition to affecting 
tumor cells themselves, the Wnt pathway is also 
involved in the formation of the tumors 
microenvironment [78-80]. Although alterations in 
fatty acid (FA) metabolism in cancer cells have 
received less attention compared to other metabolic 
alterations such as glucose or glutamine metabolism, 
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recent studies have uncovered the importance of lipid 
metabolic reprogramming in carcinogenesis [81]. By 
activating TCF/LEF to inhibit the expression of 
PPARγ and C/EBPα in adipocytes around the tumor, 
it promotes the fat degradation of fat cells, thus 
providing the necessary conditions for the fat supply 
of tumor cells [82, 83]. 

2.2 Wnt pathway participates in tumor 
metabolic reprogramming through the 
c-mycpathway 

Metabolic alterations attributable to Myc are due 
to quantitative and not qualitative differences in its 
behavior, thus making it somewhat easier to 
understand its role in normal metabolic processes. In 
metabolic reprogramming, the classical Wnt signaling 
pathway can be involved in tumor metabolic 
reprogramming by over-activation of c-Myc [84, 85], 
c-Myc’s overexpression in cancer can most likely be 
attributed to the fact that it is a major transcriptional 
integrator of most, if not all, normal and oncogenic 
growth factor pathways, c-Mycis activated as a 
transcription factor by binding to a specific gene 
sequence (CACGTG), the most prominent transcript 
families under Myc’s control tend to encode proteins 
that supervise energy production, anabolic pathways, 
protein synthesis, thereby up-regulating the 
expression of genes such as GLUT-1, PDH, PFK1, HK, 
LDH, PKM2, and SLC1A5[86-90], thereby 
correspondingly causing cells. Increased internal 
glucose uptake, accelerated glycolysis, and increased 
glutamine-glutamate cycling. Thereby promoting the 
glycolysis, nucleotide and fatty acid synthesis in 
tumor cells, providing tumor cells with the substances 
and energy required for proliferation [91-94]. Also, 
c-myc can also up-regulate the expression of FOXOs, 
thereby increasing the production of reactive oxygen 
species and inducing autophagy in tumor cells, 
thereby recycling intracellular proteins and lipids 
through autophagy to other growth and substances 
required for proliferation[95-101]. 

2.3 Wnt pathway involved in tumor metabolic 
reprogramming through the Akt-mTOR 
pathway 

Cells grow and proliferate when nutrients, 
growth factors and the cellular energy status trigger 
carbohydrate catabolism and the synthesis of essential 
building blocks such as proteins, nucleotides and 
lipids. The evolutionarily conserved Ser/Thr protein 
kinase target of rapamycin mTORC1 is activated by 
other pathways such as Wnt signalling. The Wnt 
signaling pathway is involved in tumor metabolic 
reprogramming mainly through activation of Akt 
-mTOR. Wnt signalling stimulate mTORC1 through 

the PI3K–phosphoinositide-dependent kinase 1 
(PDK1)–AKT pathway. Activated AKT 
phosphorylates tuberous sclerosis complex 2 (TSC2; 
also known as tuberin) to activate the metabolic 
pathways that ultimately drive cell growth [102, 103]. 
In comparison to mTORC1 regulation, mTORC2 
regulation is poorly understood, mTORC2actived by 
the hydrophobic motif in a subset of AGC family 
kinases such as PKA, PKG, PKC , including AKT 
Glycogen synthase kinase 3β (GSK3β) Wnt signalling 
inhibits GSK3β and the TSC complex, and thus 
activates mTORC1 and mTORC2 [104-107]. The 
activated mTOR pathway promotes glucose uptake 
by cells by increasing the expression of glucose 
transporters [108]. On the other hand, the mTOR 
pathway can also lead to an increase in fatty acid 
synthesis by up-regulating the expression of 
acetyl-CoA, resulting in the increased oxidative 
metabolism of fatty acids [109-111]. Activation of the 
mTOR pathway can also lead to up-regulation of 
glucose-6-phosphate dehydrogenase, leading to 
enhanced pentose phosphate bypass and more 
feedstock for ribonucleic acid synthesis [112-116]. 

2.4 Wnt pathway participates in tumor 
metabolic reprogramming by regulating the 
expression of rate-limiting enzymes in 
metabolic pathways 

Regulation of the Wnt signaling pathway also 
includes control of metabolic enzymes, and 
β-catenin-mediated c-Myc expression leads to 
up-regulation of several rate-limiting glycolytic genes, 
including those for glucose transporter 1 (GLUT-1) ), 
LDH and pyruvate kinase, the last step in catalyzing 
glycolysis produces ATP and pyruvate, which 
promotes aerobic glycolysis in cancer cells [117-120]. 
When the mitochondrial function of tumor cells is 
dysfunctional, the cells obtain energy mainly by 
enhancing anaerobic glycolysis. After glucose is 
metabolized to pyruvic acid, it does not enter the 
tricarboxylic acid cycle for aerobic oxidation but is 
converted to lactic acid by lactate dehydrogenase 
[121-124]. In ovarian cancer, a large number of 
metabolic genes have been found to be targets of 
transcription, including participation in glutamine 
metabolism and fatty acid metabolism [125-127]. In 
breast cancer, Wnt/β-catenin increases the aerobic 
glycolysis process by reducing the expression of the 
cytochrome c oxidase that inhibits mitochondrial 
respiration [128, 129]. Also, recent studies have 
demonstrated that Wnt5b regulates the expression of 
oxidative phosphorylation-related genes, such as 
cytochrome C1 and ATP synthase, through the 
canonical Wnt pathway [130]. In colorectal cancer 
cells, aerobic glycolysis is promoted, pyruvate 
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synthesis is increased, and pyruvate dehydrogenase 
(PDH) activity in mitochondria is inhibited to reduce 
pyruvate oxidation, resulting in more conversion of 
pyruvate to lactic acid. The glycolytic enzyme PKM2 
is a pleopoietic protein that acts as a transcriptional 
coactivator. In the signaling of various cancer cell 
types, PKM2 interacts with β-catenin to cause 
β-catenin transcriptional changes, resulting in 
up-regulation of c-myc expression [131, 132]. 

In addition to the above regulation, the Wnt 
signaling pathway is also regulated by the expression 
of reactive oxygen species (ROS) [133]. The 
phenomenon of elevated reactive oxygen species is 
common in tumor cell, which is mainly caused by 
accelerated metabolic activity, mitochondrial 
dysfunction, cell receptor signal enhancement, 
oncogene, oxidase and cyclooxygenase activity 
[134-136]. Low levels of ROS, by reversibly oxidizing 
protein sulfhydryl groups, altering protein structure 
and function involved in the transduction of cellular 
signaling pathways, also can cause DNA instability 
and mutations, leading to genomic instability and, 
ultimately, canceration of cells [137]. Mitochondria are 
an important source of ROS. In tumor cells, ROS 
levels can directly affect the transcriptional activity of 
β-catenin. ROS can replace the interaction between 
β-catenin and TCF4, and change the binding of 
β-catenin to TCF to transcriptional catenin with 
FOXO3a. The role of factors, which in turn changes 
the gene expression of cells, regulates the occurrence 
and development of tumors [138, 139]. The oxidative 
stress process also activates DVL levels upstream of 
the canonical Wnt signal, which interacts with 
thioredoxin family proteins to activate independent 
Wnt signals outside the classical Wnt signaling 
pathway [140-142]. Thus, oxidative stress in tumor 
cells regulates the canonical Wnt signaling pathway to 
alter gene transcriptional changes, promoting tumor 
cell autophagy via the mTORC1-independent 
pathway [143, 144]. Under nutrient pressure or other 
stress conditions, tumor cells can recycle cellular 
proteins and lipids and convert them into other 
substances needed for survival, helping tumor cells to 
pass through the harsh cellular microenvironment 
[145-148].  

3. Prospect 
Metabolic reprogramming of cells is one of the 

important features of tumors. And with the 
deepening of research, people's understanding of 
tumor metabolism reprogramming is no longer 
limited to changes in glucose metabolism such as 
glycolysis and tricarboxylic acid cycle, but also 
includes many metabolic pathways such as fatty acid 
metabolism, cholesterol metabolism, and amino acid 

metabolism change [149-152]. As one of the important 
signaling pathways regulating cell metabolism 
reprogramming, Wnt signaling pathway has been 
found to regulate the metabolism of tumor cells 
through downstream signaling pathways such as 
mTOR and c-myc.In addition to the pathways 
mentioned above, recent studies have shown that the 
Wnt pathway can also interact with hippo pathway 
regulating tumor metabolism. Wnt pathway mediates 
TAZ expression, upregulates IRS1 and stimulates 
Akt- and Glut4-mediated glucose metabolism [153].In 
addition Wnt pathway a key scaffolding protein 
Dishevelled (DVL), is responsible for nuclear export 
of phosphorylated YAP, DVL is also required for YAP 
intracellular trafficking induced metabolic stress. 
Note that the p53/LATS2 and LKB1/AMPK tumor 
suppressor axes regulating tumor metabolism 
reprogram [154]. Stearoyl-CoA desaturase 1 (SCD1)a 
central enzymatic in the conversion of saturated fatty 
acids, enhances the production of lipid-modified Wnt 
proteins that activate the canonical Wnt pathway. 
Activation of the Wnt pathway leads to the release of 
both β-catenin and YAP/TAZ from the destruction 
complex. This enables β-catenin and YAP/TAZ to 
translocate to the nucleus where, upon interaction 
with their transcriptional partners, they mediate the 
cancer metabolism reprogramming [155]. In addition, 
studies have shown that non-coding RNAs such as 
miRNA and lncRNA as well as circular RNA can 
regulate tumor metabolism by regulating the Wnt 
pathway [156-169].Also, current studies have found 
that abnormal changes in cellular metabolism precede 
tumorigenesis. Therefore, molecular markers related 
to tumor metabolism have important clinical value, 
which can provide new ideas for the development of 
new molecular markers and early diagnosis of tumors 
[170-172]. The relationship between abnormal 
activation of the Wnt signaling pathway and tumors 
and multi-level target anticancer therapy of the Wnt 
signaling pathway has become a new research hotspot 
in tumor molecular biology. These findings provide 
direct evidence that metabolic changes can promote 
tumorigenesis, and the key nodes of its regulation are 
also becoming potential targets in tumor diagnosis 
and treatment and will provide important theoretical 
guidance for targeted therapy and precision medicine 
of tumors. The tumor microenvironment is closely 
related to the occurrence and development of cancer 
[173-177]. Nutritional competition between cells can 
significantly affect cell growth, survival, and function. 
Glucose restriction caused by tumors alters the 
metabolism of T cells, which in turn affects their 
function. Studies have shown that, tumor glucose 
consumption metabolically limits T cells, inhibiting 
their mTOR activity, glycolysis, and IFN-γ 
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production, allowing tumors to develop further. This 
mechanism can help people develop more effective 
cancer immunotherapy, better liberate the immune 
system, and achieve long-lasting anti-cancer effects 
[178-182]. Wnt pathway regulates PDL1 to regulate 
tumor immune escape by regulating the expression of 
ALDH [183]. Tumor cells can also derived Wnt 
ligands stimulate M2-like polarization of TAMs 
through c-Myc via canonical Wnt/β-catenin 
signaling, which results in tumor 
immunosuppression [184]. In conclusion, through 
in-depth study of Wnt pathway and tumor metabolic 
reprogramming, it will further expand people's 
understanding of the etiology of malignant tumors 
and will provide an important theoretical basis for 
humans to overcome malignant tumors finally. 
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