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Abstract 

Background: Recurrence remains one of the key reasons of relapse after the radical radiation for locally 
advanced nasopharyngeal carcinoma (NPC). Here, the multiple molecular and clinical variables integrated 
decision tree algorithms were designed to predict individual recurrence patterns (with VS without recurrence) 
for locally advanced NPC. 
Methods: A total of 136 locally advanced NPC patients retrieved from a randomized controlled phase III trial, 
were included. For each patient, the expression levels of 33 clinicopathological biomarkers in tumor specimen, 
3 Epstein-Barr virus related serological antibody titer and 5 clinicopathological variables, were detected and 
collected to construct the decision tree algorithm. The expression level of 33 clinicopathological biomarkers in 
tumor specimen was evaluated by immunohistochemistry staining.  
Results: Three algorithm classifiers, augmented by the adaptive boosting algorithm for variable selection and 
classification, were designed to predict individual recurrence pattern. The classifiers were trained in the training 
subset and further tested using a 10-fold cross-validation scheme in the validation subset. In total, 13 molecules 
expression level in tumor specimen, including AKT1, Aurora-A, Bax, Bcl-2, N-Cadherin, CENP-H, HIF-1α, 
LMP-1, C-Met, MMP-2, MMP-9, Pontin and Stathmin, and N stage were selected to construct three 10-fold 
cross-validation decision tree classifiers. These classifiers showed high predictive sensitivity (87.2-93.3%), 
specificity (69.0-100.0%), and overall accuracy (84.5-95.2%) to predict recurrence pattern individually. 
Multivariate analyses confirmed the decision tree classifier was an independent prognostic factor to predict 
individual recurrence (algorithm 1: hazard ration (HR) 0.07, 95% confidence interval (CI) 0.03-0.16, P < 0.01; 
algorithm 2: HR 0.13, 95% CI 0.04-0.44, P < 0.01; algorithm 3: HR 0.13, 95% CI 0.03-0.68, P = 0.02).  
Conclusion: Multiple molecular and clinicopathological variables integrated decision tree algorithms may 
individually predict the recurrence pattern for locally advanced NPC. This decision tree algorism provides a 
potential tool to select patients with high recurrence risk for intensive follow-up, and to diagnose recurrence 
at an earlier stage for salvage treatment in the NPC endemic region. 
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Introduction 
Nasopharyngeal carcinoma (NPC), an 

Epstein-Barr virus (EBV) associated malignancy, has 
the highest incidence in endemic Southern China 
[1-3]. Although concurrent radiochemotherapy 
partially improves progression free survival, the 
disease recurrence remains the major cause of cancer 
mortality for locally advanced NPC [4]. For local 
recurrences, re-irradiation always causes a series of 
severe late toxicity, such as radiation encephalopathy, 
carotid blowout, cervical skin and muscle fibrosis 
[5-7]. The treatment efficacy was however dissatisfied 
that the 3-year overall survival was always less than 
50.0%, and coupled with low quality of life [5,6]. By 
contrast, for early stage residual or recurrence (stage I 
and II), either the treatment of endoscopic 
nasopharyngectomy or interstitial intensity- 
modulated brachytherapy, the 3-year disease free 
survival may reach to 85.7-97.4%, with acceptable 
early and late complications [8,9]. Therefore, 
identifying the high recurrence risk individuals at or 
prior to their earlier recurrence would greatly benefit 
patients from timely salvage treatment for NPC. 

Aberrant expression of tumor related biomarkers 
have been reported to be potential predictor of tumor 
recurrence [10,11]. However, the single prognostic 
tumor biomarker or Tumor-Node-Metastasis 
prognostication system was also found to have the 
limitation of low sensitivity and specificity to predict 
tumor recurrence individually [12]. By contrast, 
multi-molecules or variables integrated data mining 
methods provided a novel way to personally predict 
cancer patients’ outcome. In breast cancer, a 21-gene 
recurrence algorithm approach showed high 
predictive power to categorize the individual patient 
as low risk and high risk recurrence (6.8% vs. 30.5%) 
at the 10-year follow-up [13,14]. Using the LASSO Cox 
regression model and miRNA microarrays, the 
six-miRNA-based classifier was able to classify 
patients between those at high risk of disease 
progression and those at low risk of disease 
progression in stage II colon cancer [15]. Similarly, a 
gene-expression-based radiation-Sensitivity index 
and the linear quadratic model integrated approach 
allowed the individualisation of radiotherapy dose to 
tumor radiosensitive [16]. These studies revealed that 
patient-specific molecular signature might be a 
precision way to predict cancer patient outcome. 

Here, we sought to identify the 5-year recurrence 
pattern (with VS without recurrence) individually by 
designing 10-fold cross-validation decision tree 
algorithm classifiers for locally advanced NPC. The 
expression level of 33 tumor related biomarkers and 3 
EBV-related serological biomarkers, coupled with 5 
clinicopathological variables, were integrated into the 

classical decision tree learning algorisms. The trained 
decision tree model was further validated in 
separated subgroups to test its efficacy in predicting 
the individual recurrence pattern for locally advanced 
NPC.  

Materials and methods  
Study design 

The study population of 136 locally advanced 
NPC patients was originated from a prospective 
randomized controlled phase III trial as previously 
described [17]. The start date of the enrolled was 
August 2002, and the latest date of each patient being 
followed up was May 2010. Clinical stage was defined 
according to the NPC staging system of China [18]. 
The patients were treated with induction 
chemotherapy plus concurrent adjuvant 
chemoradiotherapy (IC/CCRT) or induction 
chemotherapy plus radiotherapy (IC/RT). In IC/RT 
subset, patients received two cycles of floxuridine 
plus carboplatin (floxuridine 750 mg/m2, d1-5; 
carboplatin AUC = 6) chemotherapy and underwent 
radiotherapy one-week thereafter. In the IC/CCRT 
subgroup, one week after completion of two cycles of 
floxuridine plus carboplatin (floxuridine 750 mg/m2, 
d1-5; carboplatin AUC = 6) chemotherapy, patients 
received radiotherapy and concurrent carboplatin 
(AUC = 6) chemotherapy on day 7, 28 and 49, 
respectively. Here, 72 IC/RT patients and 64 
IC/CCRT cases were included. In this study, patients 
received two-dimensional (2D) radiotherapy based on 
traditional Co60 γ-ray or linear accelerator 6–8 MV 
photon. The radiation fields were determined by the 
invasion field of the tumor and local regional cervical 
lymph node. The radiotherapy fields arrangement 
was divided into 2 parts. At the first course, two 
lateral opposing faciocervical portals were 
administered to 36–40 Gy irradiation. At the second 
course, facio-cervical splitting portals course was 
received. The accumulated radiation to the primary 
tumor was 68–72 Gy. For the neck region, 50 to 70 Gy 
was obtained according to the extent of the lymph 
node invasiveness. For lymph node negative and 
positive invaded necks, 50 Gy and 60-70 Gy radiation 
would respectively be given. 

This study was approved by the institutional 
review board at the Sixth Affiliated Hospital of Sun 
Yat-sen University, and written informed consent was 
obtained from all participants. 

Immunohistochemical (IHC) staining 
measurement and EBV-related serological 
antibodies assay 

Tissue microassays and IHC staining were 
performed to detect the tumor biomarkers expression 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

3325 

level under the protocol as previously reported [19]. 
In total, 33 tumor biomarkers were selected and 
subjected to IHC staining: cyclin D1, 14-3-3σ, 
Aurora-A, CENP-H, Stathmin, P21, CDC2, P27, ERK, 
p-ERK, Ki-67, E-Cadherin, β-Catenin, N-Cadherin, 
Snail, Twist, C-Met, nm23-H1, HIF-1α, COX2, MMP-2, 
MMP-9, TIMP-2, CD31, CD34, Bax, Bcl-2, Survivin, 
AKT 1, Pontin, Beclin 1, EZH2 and LMP 1. The 
detailed antibodies and dilution information are 
summarized in Table S1. The serological titer of EBV 
related antibodies, EA-IgA, VCA-IgA and 
anti-enzyme rate (AER) of EBV DNase-specific 
neutralizing antibody, were tested by ELISA assay 
[20]. The microvessel densities were evaluated by 
counting CD31-positive and CD34-positive capillaries 
(vascular endothelial cell markers) in the three most 
vascularised areas (‘‘hotspots’’). Prior to IHC staining, 
each primary antibody was tested according to the 
manufacturer’s datasheet with recommended positive 
control. Moreover, a non-immune serum 
immunoglobulin at the 1:200 dilutions was also used 
to replace the primary antibody as a negative control. 

We semi-quantitatively assessed each tumor 
biomarker expression level by measuring the staining 
intensity and extent as previously reported [21]. 
Briefly, the staining intensity was graded as follows: 
negative (score 0), bordering (score 1), weak (score 2), 
moderate (score 3) and strong (score 4). The staining 
extent was ranked into four parts according to the 
percentage of positive staining cells in the field: 0-25% 
(score 1), 26-50% (score 2), 51-75% (score 3) and 
76-100% (score 4). The overall score was obtained by 
multiplying the staining intensity and extent. The 
scores were assessed by two independent pathologists 
blinded to the clinical follow-up. Any discrepancies 
between these two pathologists were referred to a 
third pathological expert.  

Selection of variable for decision tree 
algorithm  

The univariate analysis is limited in prognostic 
variable selection, since it ignores the combinational 
potentials among individual factors which may 
provide joint beneficiaries. Earlier studies had shown 
that favourable classification accuracy could be 
obtained by a sophisticated feature subset selection 
(FSS) approach [22,23]. Here, we conducted a FSS 
method to select a pool of informative biomarkers, 
which were called feature herein, that were able to 
dichotomize the individuals into high and low risk to 
recurrence. To achieve the task of FSS, a hybrid 
filter-wrapper algorithm was utilized [24]. Specifically, 
we firstly ranked the importance of feature by 
LH-RELIEF model to select the top 20 variables [25]. 
These selected 20 variables were then scrutinized by 

FSS via wrapping of classical classification model to 
remove the redundant variables, which were believed 
to rarely contribute to the classification. Further, the 
classification model of random tree was used to 
generate decision rules. The resampling technique, 
also known as Adaptive Boosting (AdaBoost), was 
subsequently employed to enhance the classification 
performances [26]. To alleviate the computation cost 
in wrapping, a genetic algorithm was used to seek an 
informative feature subset. Once the candidate subset 
was obtained, it was further scrutinized to remove the 
redundant features by adding or removing of a 
particular variable to quantify its loss energy. Finally, 
a compact yet highly informative feature subset was 
obtained by preserving of the variables that were 
highly relevant to the classification process. The main 
advantage of this hybrid approach lies in that it keeps 
a great part of wrapper advantages while reducing 
the computation cost greatly. The detailed description 
of the FSS model is shown in the Supplementary 
Methods. 

Recurrence pattern classification by decision 
tree algorithm 

In order to validate the predictive power of the 
identified biomarkers pool, simulation experiments 
were conducted on the enrolled cases by using the 
AdaBoost algorithm with decision tree serving as the 
weak classifier. The strong point of the AdaBoost 
algorithm was that each case of the training set acted 
in a different role for discrimination at different 
training stages. Those cases that were incorrectly 
classified in the previous rounds would be given 
more attention. Therefore, the weak learner was 
forced to focus on the more informative examples of 
the training set. The AdaBoost algorithm was 
implemented by inducing decision trees using the 
gain ratio criterion for feature selection. The algorithm 
to generate the ensemble was identical to the idea 
proposed by Freund and Schapire [27]. The algorithm 
can be viewed as stage-wise for minimizing a 
particular error function. In the i-th iteration, the 
learning algorithm is invoked to minimize the 
weighted error on the training set by returning a weak 
classifier hi. Then, the weighted error hi is computed to 
update the weights on the training samples. The 
weight-updating scheme places more weight on 
training examples that were misclassified by hi and 
less weight on examples that were correctly classified. 
Therefore, AdaBoost constructs progressively more 
difficult learning problems in subsequent iterations. 
The final classifier is obtained by a weighted vote of 
each individual classifier via minimizing a margin 
error function. 
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Here, the weight wi for the i-th classifier is 

decided by its accuracy in the weighted training set.  
 

Table 1. Participant characteristics and association with 
recurrence free survival 

Characteristic (n = 136) No. (%) Univariate, HR (95% CI) P Value 
Age, year (> 43 vs ≤ 43) 47.8 vs 52.2 1.01 (0.58 to 1.77) 0.97 
Gender (Male vs Female) 78.7 vs 21.3 1.05 (0.54 to 2.05) 0.89 
T stage (T1-T2 vs T3-T4) 17.6 vs 82.4 0.64 (0.27 to 1.52) 0.31 
N stage (N0-N1 vs N2-N3) 44.9 vs 55.1 0.79 (0.45 to 1.41) 0.43 
Overall stage (III vs IVa) 54.4 vs 45.6 0.93 (0.53 to 1.63) 0.80 
Treatment (IC/RT vs 
IC/CCRT) 

52.9 vs 47.1 1.10 (0.62 to 1.94) 0.75 

14-3-3σa (> 7.0 vs ≤ 7.0) 54.2 vs 45.8 1.53 (0.81 to 2.89) 0.19 
AKT1a (> 5.0 vs ≤ 5.0) 47.5 vs 52.5 1.44 (0.79 to 2.62) 0.23 
Aurora-Aa (≤ 7.0 vs > 7.0) 46.7 vs 53.3 0.36 (0.20 to 0.66) < 0.01 
Baxa (≤ 3.5 vs > 3.5) 48.1 vs 51.9 0.75 (0.42 to 1.31) 0.30 
Bcl-2a (> 3.5 vs ≤ 3.5) 52.9 vs 47.1 0.78 (0.44 to 1.38) 0.40 
Beclin 1a (≤ 8.0 vs > 8.0) 70.1 vs 29.9 0.59 (0.33 to 1.06) 0.07 
β-catenina (> 5.0 vs ≤ 5.0) 26.7 vs 73.3 0.79 (0.42 to 1.46) 0.45 
CDC2a (≤ 5.0 vs > 5.0) 51.5 vs 48.5 0.71 (0.40 to 1.25) 0.24 
CD31b (≤ 379.1 vs > 379.1) 48.9 vs 51.1 0.71 (0.34 to 1.48) 0.36 
CD34b (≤ 380.5 vs > 380.5) 47.7 vs 52.3 0.64 (0.31 to 1.33) 0.23 
CENP-Ha (≤ 5.0 vs > 5.0) 43.7 vs 56.3 0.73 (0.42 to 1.28) 0.28 
C-Meta (≤ 5.0 vs > 5.0) 45.5 vs 54.5 0.89 (0.51 to 1.56) 0.68 
COX2a (≤ 5.0 vs > 5.0) 55.6 vs 44.4 0.83 (0.47 to 1.47) 0.53 
Cyclin D1a (≤ 3.5 vs > 3.5) 48.5 vs 51.5 0.64 (0.36 to 1.13) 0.12 
E-Cadherina (> 3.5 vs ≤ 3.5) 50.4 vs 49.6 1.10 (0.62 to 1.92) 0.75 
ERKa (≤ 5.0 vs > 5.0) 43.4vs 56.6 0.81 (0.46 to 1.43) 0.47 
EZH2a (≤ 8.5 vs > 8.5) 50.7 vs 49.3 0.82 (0.47 to 1.44) 0.49 
HIF-1αa (≤ 5.0 vs > 5.0) 45.2 vs 54.8 0.61 (0.34 to 1.07) 0.08 
Ki-67a (≤ 5.0 vs > 5.0) 46.7 vs 53.3 0.78 (0.44 to 1.36) 0.37 
LMP1a (> 5.0 vs ≤ 5.0) 42.1 vs 57.9 0.94 (0.51 to 1.73) 0.84 
MMP-2a (≤ 7.0 vs > 7.0) 46.7 vs 53.3 0.64 (0.37 to 1.13) 0.13 
MMP-9a (> 1.5 vs ≤ 1.5) 48.5 vs 51.5 1.60 (0.83 to 3.06) 0.16 
N-Cadherina (≤ 5.0 vs > 5.0) 44.0 vs 56.0 0.69 (0.39 to 1.21) 0.19 
nm23-H1a (≤ 5.0 vs > 5.0) 55.9 vs 44.1 0.62 (0.34 to 1.12) 0.11 
P21a (≤ 3.5 vs > 3.5) 48.9 vs 51.1 0.77 (0.44 to 1.35) 0.35 
P27a (≤ 7.0 vs > 7.0) 42.6 vs 57.4 0.49 (0.28 to 0.85) 0.01 
p-ERKa (> 2.5 vs ≤ 2.5) 48.0 vs 52.0 1.12 (0.58 to 2.16) 0.73 
Pontina (> 3.5 vs ≤ 3.5) 50.8 vs 49.2 0.86 (0.48 to 1.54) 0.62 
Snaila (> 3.5 vs ≤ 3.5) 57.8 vs 42.2 1.14 (0.65 to 2.00) 0.65 
Stathmina (≤ 7.0 vs > 7.0) 44.1 vs 55.9 0.69 (0.40 to 1.22) 0.20 
Survivina (> 2.5 vs ≤ 2.5) 50.0 vs 50.0 1.10 (0.63 to 1.92) 0.75 
TIMP-2a (> 7.0 vs ≤ 7.0) 50.0 vs 50.0 1.07 (0.61 to 1.88) 0.81 
Twista (> 2.5 vs ≤ 2.5) 54.9 vs 45.1 0.96 (0.55 to 1.70) 0.90 
EA-IgAc (≤ 1:40 vs > 1:40) 31.8 vs 68.2 0.89 (0.49 to 1.63) 0.71 
VCA-IgAc (≤ 1:160 vs > 
1:160) 

59.1 vs 40.9 0.86 (0.48 to 1.56) 0.63 

AERc (≤ 64.5% vs > 64.5%) 49.2 vs 50.8 0.63 (0.35 to 1.13) 0.12 
 

Statistical methods 
The recurrence free survival (RFS) was defined 

as the time of diagnosis to the date of local and 
regional recurrence or the date of death or when 
censused at the latest date. After the completion of 
treatment, each patient was followed up at 3-month 
intervals during the first 3 years and at 6-month 
intervals thereafter. The univariate and multivariate 
proportional hazards model were employed to 
estimate the hazard ratio (HR) and 95% confidence 
interval (CI). The RFS was calculated by Kaplan-Meier 

analysis and log-rank tests. A two-tailed P < 0.05 was 
considered statistically significant. The statistical 
analysis was performed utilizing SPSS v.17.0.  

Results 
Study population 

In our previously reported randomized 
controlled phase III clinical trial, we showed that 
IC/CCRT subgroup had a comparable recurrence 
probability with IC/RT subset for locally advanced 
NPC [17]. Here, we included 64 IC/CCRT and 72 
IC/RT patients from this trial (Table 1). The molecular 
and clinicopathological features of these two 
subgroups are shown in Table 2 and Table 3. The 
median RFS was respectively 65.0 and 64.0 months for 
IC/CCRT and IC/RT subgroups. The 3-year and 
5-year RFS ratios were 73.9% and 66.1% for the 
IC/CCRT subgroup, and 70.1% and 62.8%, for the 
IC/RT subgroup, respectively (all with P value > 
0.05). Thus, the two subgroups had very similar 
clinicopathological features, and therefore were 
suitable for further training and validation by using 
the decision tree algorithm. 

Construction of decision tree algorithm to 
individually predict recurrence pattern 

In this study, the hybrid filter-wrapper algorithm 
was employed to select a subset of potential 
prognostic variables [24]. The proposed FSS process 
was conducted on 64 IC/CCRT, 72 IC/RT, and overall 
patients. Furthermore, the prognostic power of these 
identified biomarker panel was validated using the 
AdaBoost algorithm with decision tree serving as the 
weak classifier [27]. In particular, a rigorous 10-fold 
cross-validation scheme was used to quantify the 
prognostic performance of the trained model. In the 
10-fold cross-validation scheme, patients were 
randomly divided into 10 equal sized subgroups 
wherein nine subsets were used as training set to 
construct the classification algorithm while the tenth 
one was utilized as validation set to test the predictive 
performance. This 10-fold cross-validation would be 
cycled 10 times to guarantee each subgroup was used 
as a validation set one time. The averaged 
performance was used to quantify the overall 
accuracy of the constructed recurrence prediction 
decision tree algorithm. 

Prediction of individual recurrence pattern on 
overall patients by decision tree algorithm 

Nine of the 33 molecular variables (Table 1), 
including Aurora-A, AKT1, Bcl-2, LMP-1, MMP-9, 
MMP-2, Stathmin, Pontin and C-Met, were selected to 
the recurrence prediction biomarker pool. By using 
this 9-variable pool, a recurrence decision tree model 

min exp ( )
iw j i i jj

j
y w h x

 
− 
 

∑ ∑
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was built and then tested by 10-fold cross-validation 
scheme on training subset of the overall patients. To 
validate the performance of this recurrence prediction 
model, six quantitative measurements, including 
positive predictive value (PPV), negative predictive 
value (NPV), sensitivity, specificity, area under curve 
(AUC), and overall accuracy were calculated. 

 

Table 2. Participant characteristics and association with 
recurrence free survival in IC/CCRT subgroup 

Characteristic No. (%)a Univariate, HR (95% CI) P Value 
Age, year (> 43 vs ≤ 43) 57.8 vs 42.2 0.92 (0.44 to 1.93) 0.82 
Gender (Male vs Female) 81.3 vs 19.7 1.63 (0.48 to 5.54) 0.43 
T stage (T1-T2 vs T3-T4) 25.0 vs 75.0 1.01 (0.31 to 3.35) 0.98 
N stage (N0-N1 vs N2-N3) 48.4 vs 51.6 1.25 (0.58 to 2.70) 0.58 
Overall stage (III vs IVa) 60.9 vs 39.1 1.07 (0.51 to 2.25) 0.86 
14-3-3σb (> 7.0 vs ≤ 7.0) 52.9 vs 47.1 0.60 (0.26 to 1.42) 0.25 
AKT1b (> 5.0 vs ≤ 5.0) 43.1 vs 56.9 0.96 (0.43 to 2.14) 0.92 
Aurora-Ab (≤ 7.0 vs > 7.0) 60.3 vs 39.7 3.56 (1.50 to 8.42) < 0.01 
Baxb (≤ 3.5 vs > 3.5) 54.8 vs 45.2 1.71 (0.80 to 3.64) 0.17 
Bcl-2b (> 3.5 vs ≤ 3.5) 48.4 vs 51.6 1.50 (0.70 to 3.23) 0.30 
Beclin 1b (≤ 8.0 vs > 8.0) 71.9 vs 28.1 1.97 (0.90 to 4.30) 0.08 
β-cateninb (> 5.0 vs ≤ 5.0) 76.6 vs 23.4 1.11 (0.49 to 2.54) 0.80 
CDC2b (≤ 5.0 vs > 5.0) 50.0 vs 50.0 1.97 (0.91 to 4.28) 0.09 
CD31c (≤ 379.1 vs > 379.1) 46.3 vs 53.7 1.05 (0.38 to 2.89) 0.93 
CD34c (≤ 380.5 vs > 380.5) 43.9 vs 56.1 1.45 (0.54 to 3.86) 0.46 
CENP-Hb (≤ 5.0 vs > 5.0) 63.0 vs 37.0 1.359 (0.65 to 2.86) 0.42 
C-Metb (≤ 5.0 vs > 5.0) 52.4 vs 47.6 0.63 (0.28 to 1.39) 0.25 
COX2b (≤ 5.0 vs > 5.0) 42.9 vs 57.1 1.05 (0.50 to 2.20) 0.91 
Cyclin D1b (≤ 3.5 vs > 3.5) 53.1 vs 46.9 1.739 (0.81 to 3.72) 0.15 
E-Cadherinb (> 3.5 vs ≤ 3.5) 54.7 vs 45.3 1.24 (0.59 to 2.60) 0.57 
ERKb (≤ 5.0 vs > 5.0) 59.4 vs 40.6 0.94 (0.45 to 1.98) 0.88 
EZH2b (≤ 8.5 vs > 8.5) 46.9 vs 53.1 1.31 (0.62 to 2.76) 0.47 
HIF-1αb (≤ 5.0 vs > 5.0) 54.0 vs 46.0 1.23 (0.59 to 2.59) 0.58 
Ki-67b (≤ 5.0 vs > 5.0) 54.7 vs 45.3 1.13 (0.54 to 2.38) 0.74 
LMP1b (> 5.0 vs ≤ 5.0) 68.5 vs 31.5 1.00 (0.44 to 2.27) 0.99 
MMP-2b (≤ 7.0 vs > 7.0) 57.1 vs 42.9 1.50 (0.71 to 3.17) 0.29 
MMP-9b (> 1.5 vs ≤ 1.5) 47.9 vs 52.1 0.38 (0.15 to 1.00) 0.05 
N-Cadherinb (≤ 5.0 vs > 5.0) 54.7 vs 45.3 1.92 (0.90 to 4.11) 0.09 
nm23-H1b (≤ 5.0 vs > 5.0) 53.8 vs 46.2 2.05 (0.87 to 4.85) 0.10 
P21b (≤ 3.5 vs > 3.5) 55.6 vs 44.4 1.03 (0.49 to 2.15) 0.95 
P27b (≤ 7.0 vs > 7.0) 59.4 vs 40.6 2.23 (1.04 to 4.78) 0.04 
p-ERKb (> 2.5 vs ≤ 2.5) 57.8 vs 42.2 0.92 (0.37 to 2.26) 0.85 
Pontinb (> 3.5 vs ≤ 3.5) 46.7 vs 53.3 1.70 (0.76 to 3.80) 0.20 
Snailb (> 3.5 vs ≤ 3.5) 39.7 vs 60.3 1.08 (0.51 to 2.29) 0.83 
Stathminb (≤ 7.0 vs > 7.0) 57.8 vs 42.2 2.22 (1.04 to 4.75) 0.04 
Survivinb (> 2.5 vs ≤ 2.5) 57.8 vs 42.2 1.09 (0.52 to 2.30) 0.82 
TIMP-2b (> 7.0 vs ≤ 7.0) 53.1 vs 46.9 0.92 (0.44 to 1.93) 0.82 
Twistb (> 2.5 vs ≤ 2.5) 46.0 vs 54.0 0.76 (0.36 to 1.59) 0.46 
EA-IgAd (≤ 1:40 vs > 1:40) 74.2 vs 25.8 1.11 (0.50 to 2.45) 0.80 
VCA-IgAd (≤ 1:160 vs > 1:160) 41.9 vs 58.1 1.12 (0.51 to 2.47) 0.78 
AERd (≤ 64.5% vs > 64.5%) 52.5 vs 47.5 1.21 (0.55 to 2.67) 0.64 

 
By using 10-fold cross-validation scheme, the 

sensitivity and specificity to predict 5-year recurrence 
pattern (with recurrence vs. without recurrence) on 
the training subsets were 91.0% and 72.0%, 
respectively. The overall performance on overall 
patient was satisfactory: PPV of 87.6%, NPV of 85.4%, 
sensitivity of 92.4%, specificity of 77.4%, and AUC of 
92.2% (Fig. 1A, Table S2). In total, this 10-fold 
cross-validation scheme accurately identified the 
recurrence pattern for 118 patients, and the overall 
accuracy was 86.9%. Importantly, a significant RFS 
difference was detected between the subgroups that 

were identified as with recurrence and without 
recurrence. Specifically, the median RFS for high 
recurrence risk subgroup was 22.8 months compared 
with 61.7 months for the low recurrence risk subset (P 
< 0.001, Fig. 2A). As expected, this 10-fold 
cross-validation scheme was confirmed to be an 
independent prognostic factor to predict tumor 
recurrence (Table 4). Taken together, these results 
suggested that the 10-fold cross-validation decision 
tree model was indeed a powerful approach to predict 
the patient recurrence pattern individually.  

 

Table 3. Participant characteristics and association with 
recurrence free survival in IC/RT subgroup 

Characteristic No. (%)a Univariate, HR (95% CI) P Value 
Age, year (> 43 vs ≤ 43) 43.5 vs 56.5 1.03 (0.44 to 2.46) 0.94 
Gender (Male vs Female) 78.3vs 21.7 0.82 (0.36 to 1.87) 0.64 
T stage (T1-T2 vs T3-T4) 10.1vs 89.9 2.17 (0.64 to 7.37) 0.22 
N stage (N0-N1 vs N2-N3) 43.5 vs 56.5 1.25 (0.53 to 2.96) 0.62 
Overall stage (III vs IVa) 46.4 vs 53.6 1.06 (0.44 to 2.56) 0.90 
14-3-3σb (> 7.0 vs ≤ 7.0) 39.6 vs 60.4 0.70 (0.26 to 1.83) 0.46 
AKT1b (> 5.0 vs ≤ 5.0) 57.8 vs 42.2 0.45 (0.18 to 1.10) 0.08 
Aurora-Ab (≤ 7.0 vs > 7.0) 47.8 vs 52.2 2.13 (0.90 to 5.02) 0.08 
Baxb (≤ 3.5 vs > 3.5) 47.1 vs 52.9 0.97 (0.41 to 2.31) 0.94 
Bcl-2b (> 3.5 vs ≤ 3.5) 43.5 vs 56.5 1.06 (0.45 to 2.50) 0.90 
Beclin 1b (≤ 8.0 vs > 8.0) 55.9 vs 44.1 1.37 (0.55 to 3.40) 0.50 
β-cateninb (> 5.0 vs ≤ 5.0) 70.6 vs 29.4 1.53 (0.59 to 3.94) 0.38 
CDC2b (≤ 5.0 vs > 5.0) 44.9 vs 55.1 0.91 (0.39 to 2.15) 0.83 
CD31c (≤ 379.1 vs > 379.1) 55.6 vs 44.4 1.85 (0.62 to 5.52) 0.27 
CD34c (≤ 380.5 vs > 380.5) 60.9 vs 39.1 1.59 (0.53 to 4.77) 0.40 
CENP-Hb (≤ 5.0 vs > 5.0) 58.8 vs 41.2 1.41 (0.60 to 3.32) 0.43 
C-Metb (≤ 5.0 vs > 5.0) 54.4 vs 45.6 2.48 (1.00 to 6.14) 0.05 
COX2b (≤ 5.0 vs > 5.0) 46.4 vs 53.6 1.47 (0.61 to 3.55) 0.39 
Cyclin D1b (≤ 3.5 vs > 3.5) 49.3 vs 50.7 1.41 (0.60 to 3.33) 0.43 
E-Cadherinb (> 3.5 vs ≤ 3.5) 52.9 vs 47.1 0.62 (0.26 to 1.46) 0.27 
ERKb (≤ 5.0 vs > 5.0) 55.1 vs 44.9 1.74 (0.74 to 4.09) 0.21 
EZH2b (≤ 8.5 vs > 8.5) 50.7 vs 49.3 1.14 (0.48 to 2.71) 0.76 
HIF-1αb (≤ 5.0 vs > 5.0) 55.1 vs 44.9 2.49 (1.00 to 6.16) 0.05 
Ki-67b (≤ 5.0 vs > 5.0) 51.5 vs 48.5 1.46 (0.62 to 3.43) 0.39 
LMP1b (> 5.0 vs ≤ 5.0) 47.4 vs 52.6 1.16 (0.46 to 2.96) 0.75 
MMP-2b (≤ 7.0 vs > 7.0) 50.7 vs 49.3 1.63 (0.69 to 3.83) 0.27 
MMP-9b (> 1.5 vs ≤ 1.5) 53.8 vs 46.2 1.02 (0.41 to 2.57) 0.96 
N-Cadherinb (≤ 5.0 vs > 5.0) 55.2 vs 44.8 1.06 (0.45 to 2.49) 0.90 
nm23-H1b (≤ 5.0 vs > 5.0) 40.7 vs 59.3 1.23 (0.52 to 2.89) 0.64 
P21b (≤ 3.5 vs > 3.5) 44.9 vs 55.1 1.80 (0.76 to 4.28) 0.18 
P27b (≤ 7.0 vs > 7.0) 56.5 vs 43.5 1.82 (0.77 to 4.28) 0.17 
p-ERKb (> 2.5 vs ≤ 2.5) 47.2 vs 52.8 0.93 (0.36 to 2.46) 0.89 
Pontinb (> 3.5 vs ≤ 3.5) 52.3 vs 47.7 0.72 (0.31 to 1.69) 0.45 
Snailb (> 3.5 vs ≤ 3.5) 44.9 vs 55.1 0.68 (0.29 to 1.60) 0.38 
Stathminb (≤ 7.0 vs > 7.0) 53.6 vs 46.4 0.85 (0.35 to 2.04) 0.71 
Survivinb (> 2.5 vs ≤ 2.5) 43.5 vs 56.5 0.70 (0.28 to 1.73) 0.44 
TIMP-2b (> 7.0 vs ≤ 7.0) 46.4 vs 53.6 0.94 (0.40 to 2.22) 0.89 
Twistb (> 2.5 vs ≤ 2.5) 43.3 vs 56.7 1.54 (0.64 to 3.73) 0.34 
EA-IgAd (≤ 1:40 vs > 1:40) 61.2 vs 38.8 1.17 (0.45 to 3.05) 0.75 
VCA-IgAd (≤ 1:160 vs > 1:160) 37.3 vs 62.7 1.24 (0.50 to 3.03) 0.64 
AERd (≤ 64.5% vs > 64.5%) 50.0 vs 50.0 2.06 (0.85 to 4.99) 0.11 

 

Prediction of individual recurrence pattern on 
IC/CCRT subgroup by decision tree algorithm 

Next, we asked whether this 10-fold 
cross-validation decision tree model would also be 
predictive in the IC/CCRT subgroup that only 
contained 64 locally advanced NPC patients (Table 2). 
After the FSS procedure, eight variables were shown 
to be highly prognostic, including HIF-1α, Aurora-A, 
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Stathmin, c-Met, N-cadherin, Bax, MMP-9, and N 
stage. Similarly, this 10-fold cross validation- 
algorithm also had a powerful predictive efficacy to 
determine the individual patient recurrence pattern. 
The PPV, NPV, sensitivity, and specificity were 85.7%, 
88.9%, 93.3% and 77.4%, respectively. Moreover, the 
AUC and overall accuracy to predict individual 
recurrence pattern reached to 91.3% and 86.8%, 
respectively (Fig. 1B, Table S2). Significantly, the 
survival analysis confirmed that the median RFS for 
the high recurrence risk subgroup was 24.5 months 
and 65.8 months for the low recurrence subset (P < 
0.001, Fig. 2B). Multivariate analysis indicated that 
this 10-fold cross-validation decision tree algorithm 
was an independent prognostic factor to predict 
specific patient recurrence risk (Table 4). 

Prediction of individual recurrence pattern on 
IC/RT subgroup by decision tree algorithm 

We further applied the 10-fold cross-validation 
decision tree model to the IC/RT subset (Table 3). 
After the FSS selection, seven biomarkers, including 
of HIF-1α, Aurora-A, CENP-H, Stathmin, C-Met, 
AKT1and MMP-9, were recruited to construct the 
10-fold cross-validation decision tree algorithm. 
Determined by this algorithm, the predictive efficacy 
was encouraging: the PPV, NPV, sensitivity, and 
specificity were 93.2%, 76.0%, 87.2% and 87.4%, 
respectively. The AUC and overall accuracy to predict 
individual recurrence pattern were 93.6 and 87.0%, 
respectively (Fig. 1C, Table S2). Moreover, 
Kaplan-Meier analysis showed that the high-risk 

 

 
Fig. 1. ROC analysis plotted to individual recurrence pattern using tumor related molecular and clinicopathological variables, and three decision tree algorithms. The recurrence 
predictive efficacy of the tumor related molecular and clinicopathological variables, and the three decision tree algorithms in overall patients (A), IC/CCRT subgroup (B) and 
IC/RT subgroup (C).  
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recurrence subgroup identified by the decision tree 
had significantly shorter RFS than that of low risk 
subset (18.5 vs. 61.3 months, P < 0.001, Fig. 2C). 
Multivariate analysis demonstrated that this 10-fold 
cross validation decision tree algorithm was indeed 
an independent prognostic factor to predict patient 
recurrence individually (Table 4). Taken together, 
although validated for a small cohort (72 patients), 
these results confirmed that the 10-fold 
cross-validation decision tree algorithm still had a 
high power to predict the patient recurrence pattern 
individually. 

Discussion 
Molecular tumor biomarkers are useful 

prognostic factors to predict patient outcome that 
complement the Tumor-Node-Metastasis staging 
system. However, the use of a single tumor biomarker 

is limited due to its low predictive efficacy. Taken 
HER2 in breast cancer as an example, high HER2 
expression correlates with a favourable outcome [28], 
and is targeted specifically by trastuzumab according 
to its expression level [29], but HER2 status has a 
limited efficacy to predict individual patient 
prognosis. By integrating the 21-gene signature, the 
patient recurrence pattern was determined 
individually for breast cancer [30]. Similarly, the 
multi-biomarkers and support vector machine (SVM) 
algorithm based data mining approach displayed a 
promising way to predict patient outcome 
individually for lung cancer and nasopharyngeal 
carcinoma [31,32]. After integrating multiple variables 
and training in one subgroup, the SVM algorithm 
accurately predicted the outcome for 83.5-91.8% 
patients, suggesting a potential method for predicting 
the tumor prognosis of individual patients [32]. 

 

 
Fig. 2. Kaplan-Meier estimation of recurrence-free survival according to decision tree algorithm predicted recurrence pattern in overall patients (A), IC/CCRT subgroup (B), and 
IC/RT subgroup (C). 
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Table 4. Multivariate cox proportional-hazards analysis in 3 decision tree algorithms 

Characteristic  Overall patients  IC/CCRT  IC/RT 
 HR (95% CI) P Value  HR (95% CI) P Value  HR (95% CI) P Value 

Aurora-A (≤ 7.0 vs > 7.0)  0.29 (0.13 to 0.69) 0.01  0.53 (0.11 to 2.61) 0.43  0.31 (0.06 to 1.50) 0.15 
AKT 1 (> 5.0 vs ≤ 5.0)  2.74 (1.16 to 6.49) 0.02     0.51 (0.15 to 1.72) 0.28 
Bcl-2 (> 3.5 vs ≤ 3.5)  1.06 (0.46 to 2.43) 0.90       
LMP 1 (> 5.0 vs ≤ 5.0)  1.35 (0.63 to 2.87) 0.44       
MMP-2 (≤ 7.0 vs > 7.0)  0.76 (0.33 to 1.75) 0.52       
MMP-9 (> 1.5 vs ≤ 1.5)  2.23 (1.07 to 4.67) 0.03  1.08 (0.34 to 3.44) 0.89  2.86 (0.85 to 9.65) 0.91 
Stathmin (≤ 7.0 vs > 7.0)  0.86 (0.38 to 1.94) 0.72  1.39 (0.33 to 5.91) 0.65  0.71 (0.26 to 1.92) 0.50 
Pontin (> 3.5 vs ≤ 3.5)  0.87 (0.37 to 2.02) 0.74       
C-Met (≤ 5.0 vs > 5.0)  0.58 (0.27 to 1.24) 0.16  0.27 (0.07 to 1.03) 0.06  2.31 (0.76 to 7.04) 0.14 
HIF-1α (≤ 5.0 vs > 5.0)     0.36 (0.08 to 1.63) 0.18  1.00 (0.34 to 2.94) 0.99 
Bax (≤ 3.5 vs > 3.5)     2.37 (0.32 to 17.36) 0.40    
N-Cadherin (≤ 5.0 vs > 5.0)     0.64 (0.18 to 2.34) 0.50    
N stage (N0-N1 vs N2-N3)     0.48 (0.12 to 1.98) 0.31    
CENP-H (≤ 5.0 vs > 5.0)        2.17 (0.70 to 6.70) 0.18 
Decision Tree 1 (1 vs 0)  0.07 (0.03 to 0.16) < 0.01       
Decision Tree 2 (1 vs 0)     0.13 (0.04 to 0.44) < 0.01    
Decision Tree 3 (1 vs 0)        0.13 (0.03 to 0.68) 0.02 

 
Tumor recurrence and metastasis are the major 

forms of disease progression contributing to patient 
mortality. If recurrences were diagnosed at an earlier 
stage, the salvage treatment would achieve more 
favourable outcome. For recurrent T1-2 NPC, our and 
other studies have demonstrated that interstitial 
intensity-modulated brachytherapy-based re-radia-
tion and nasopharyngectomy achieved more than 
85.7% 3-year disease-free survival [33-36], which is 
essentially the same for those with primary T1-2 NPC 
[37]. Therefore, identifying the high-risk patients prior 
to their recurrence may provide the opportunity to 
earlier diagnosis and timely salvage treatment. 
Indeed, the breast cancer 21-gene signature recurrence 
prediction model initiated a novel approach to realize 
this goal by integrating multiple variables [38,39]. 
Importantly, the combined multiple-molecule 
algorithms are informative to predict patient 
recurrence pattern early and individually for other 
types of tumors, including NPC. 

However, we have noticed that previously used 
SVM model was case-sensitive as its prognostic 
classification efficacy was prone to alteration by 
selecting different training cases, which was 
published at journal of PloS One [32]. Moreover, the 
SVM predictive performance was also easily distorted 
by using noisy variables. Here, we addressed these 
problems by employing a rigorous processing 
framework. This framework consist of two 
well-founded steps, a hybrid filter-wrapper FSS to select 
a concise yet informative biomarker panel and a 
prognostic classification through the AdaBoost 
algorithm [24]. In the FSS step, a recently reported 
model of LH-RELIEF was used to find the potential 
candidate variables [25]. The main advantage of 
LH-RELIEF is in its capability of featuring important 
estimation by utilizing the local approximation [27]. 
In other words, patients sharing similar pathological 
baseline and molecular phenotype were clustered to 

maximize a margin between their class assignments. 
This novel approach displayed an outstanding 
performance even when the feature was highly 
degraded by “noise”. The selected candidates were 
further scrutinized by wrapping them to the 
classification model to remove the molecules with 
negligible contributions to the classification 
performance. In this sense, the obtained biomarker 
panel was compact but possessed higher prognostic 
power. The well-selected variables were then fed into 
a classification model by decision tree rules and 
boosted with the AdaBoost technique to validate their 
performances. Such configuration was extensively 
used in machine learning community due to its 
powerful performance and independence on data 
distributions [24]. Indeed, our 10-fold cross-validation 
decision tree model proved that by selecting and 
integrating molecular biomarkers and 
clinicopathological variables, the individual 
recurrence pattern could be precisely predicted 
(overall accuracy 84.5-95.2%, Table S2). 

This precision recurrence prediction algorithm 
also provided the rationale of determining a 
follow-up strategy individually for patients with 
locally advanced NPC. First, the parameters of 
molecule expression level and variable here 
integrated were all recruited at each patient’s 
diagnosis. This means that the individual recurrence 
pattern may be determined at their diagnosis, and 
therefore would leave a nearly 2-year monitoring 
window for the algorithm identified recurrence high 
risk individuals to receive intensive follow-up (RFS 
for individuals with high-risk recurrence were 
18.5-24.5 months, Fig. 2). Taken the high risk 
individual for example, the follow-up interval may be 
modified from three months to one month within the 
first 24.5 months after the completion of 
radiochemotherapy. More importantly, this intensive 
surveillance provides the opportunity to identify 
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individual recurrence at an early stage, so that they 
may receive timely salvage treatment, such as 
interstitial intensity-modulated brachytherapy based 
re-radiation or nasopharyngectomy. Together, this 
decision tree algorithm provides a potential way to 
optimize posttreatment surveillance strategy and to 
earlier diagnose recurrence for salvage treatment to 
endemic NPC. 

In recent years, intensity-modulated radiation 
therapy (IMRT) was employed to the locally 
advanced NPC and was a favorable therapeutic 
variate than 2D radiation. Moreover, IMRT was 
associated with a lower incidence of late toxicities 
comparing with 2D radiation. In our study, the 
prospective clinic trial was enrolled from August 2002 
to April 2005, our center mainly carried out 2D 
treatment. In the 2010s, our center executed IMRT 
generally. In this study, we addressed the prognostic 
vale of molecular and clinicopathological variables. 
Significantly, all cases received the 2D radiation, 
indicating a uniform radiation effect between the two 
arms. Therefore, the radiotherapy approach had no 
difference to our results. 

While our proposed algorithm has potential to 
precisely identify the individual patient recurrence 
pattern, the method may pose some limitations. For 
instance, patients in this study were originated from a 
one-center prospective randomized controlled phase 
III trial, and an outside testing subset should be used 
to further validate the predictive power of these 
decision tree algorithm classifiers. Technically, the 
IHC staining requires rigor of execution, and may 
present significant bias. A non-biased reverse phase 
protein array (RPPA) assay could be utilized to 
analyse tumor biomarker expression level in our 
ongoing and future validation studies. 

Our molecular and clinicopathological variables 
combined with a 10-fold cross-validation decision tree 
algorithm demonstrate a high capacity to identify the 
patient recurrence pattern individually. This method 
provides the potential to identify the patient 
recurrence at an early stage and to improve the 
outcome by timely salvage treatment for recurrent 
NPC.  
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