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Abstract 

Metformin has been used as therapy for type 2 diabetes for many years. Clinical and basic evidence as indicated 
that metformin has anti-cancer activities. It has been well-established that metformin activates AMP-activated 
protein kinase (AMPK), which in turn regulates energy homeostasis. However, the mechanistic aspects of 
metformin anti-cancer activity remain elusive. p53 family proteins, including p53, p63 and p73, have diverse 
biological functions, including regulation of cell growth, survival, development, senescence and aging. In this 
review, we highlight the evidence and mechanisms by which metformin inhibits cancer cell survival and tumor 
growth. We also aimed to discuss the role of p53 family proteins in metformin-mediated suppression of cancer 
growth and survival. 
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Introduction 
Metformin is widely used to treat type 2 

diabetes. Metformin enhances cell sensitivity to 
insulin[1], inhibits hepatic glucose production and 
promotes peripheral glucose uptake and, conse-
quently, lowers blood glucose levels[2-4]. In addition, 
metformin can inhibit glucagon-induced elevation of 
cyclic adenosine monophosphate (cAMP) to decrease 
blood glucose[5]. In recent years, accumulating 
evidence indicates that metformin has biological 
activities beyond the treatment of diabetes, including 
anti-aging[6, 7] and anti-obesity effects[8, 9]. In fact, 
metformin was the first FDA-approved drug in a 
clinical anti-aging trial[10]. Moreover, numerous 
clinical and basic studies have implicated metformin 
in tumor suppression[11]. Currently, the FDA has 
approved more than 300 clinical trials to investigate 
the effects of metformin on cancer treatment 
(www.clinicaltrials.gov).  

p53 is a critical tumor suppressor gene frequently 
mutated in human cancers[12] and is the most studied 
gene in the human genome[13]. p53 protein contains 
five distinct domains, including an N-terminal 
transactivation domain (TAD), a proline-rich domain 
(PRD), a DNA binding domain (DBD), an oligomeri-

zation domain (OD), and a C-terminal regulatory 
domain (CTD)[14] (Figure 1A). p53 family proteins, 
p63 and p73, contain either a p53-homologous 
transactivation domain (TAp63 and TAp73) or lack of 
this domain (ΔNp63 and ΔNp73). Together with 
alternative splicing variants at C-termini, there are 
multiple p63 and p73 protein isoforms (Figure 1A). 
Due to similar structures of DNA binding domains 
and oligomerization domains, p53 family proteins 
share a subset of down-stream transcription targets, 
and they can mutually form oligomers [15]. Indeed, 
p63 and p73 have biological functions similar to that 
of p53, including regulation of cell growth, survival, 
development and senescence[14]. However, p63 and 
p73 have distinct biological functions. For instance, 
p63 has a critical role in embryonic development and 
is a pivotal regulator of cell-cell adhesion maintenance 
[16]. On the other hand, p73 is important for immu-
nological functions and neurological development 
[17]. With regard to tumorigenesis, unlike the p53 
gene that is frequently mutated in human tumors and 
cancers, there are rare mutations in the p63 or p73 
genes although expression of p63 or p73 are often 
altered. Interestingly, p63 seems to be involved in 
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both tumorigenesis and tumor suppression. On the 
one hand, p63 is often overexpressed in human 
squamous cell carcinoma and is critical for cell 
proliferation and growth[18-21]. On the other hand, 
down-regulation of p63 plays a pivotal role in cancer 
metastasis[22-25]. Notably, p63 and p73 are required 
for p53-dependent apoptosis in response to DNA 
damage[26] (Figure 1B). Mutant p53 can promote cell 
invasion via the inhibition of TAp63[27].  

Deregulated energetics is a hallmark of cancer 
cells. Most cancer cells exhibit elevated aerobic gly-
colysis, known as the Warburg effect[28]. Accumula-
ting evidence reveals that p53 and p53 family 
members are important in regulation of metabolism. 
Activation of p53 can transcriptionally inhibit GLUT1 
or GLUT4 expression to suppress glucose uptake[29]. 
In addition, p53 induces expression of TIGAR 
(TP53-induced glycolysis and apoptosis regulator), a 
transcription factor involved in suppression of 
glycolysis and pentose phosphate pathway[30]. 
Contrary to wild type p53, mutant p53 promotes 
aerobic glycolysis via increased GLUT1 plasma 
membrane association[31]. On the other hand, ΔNp63 
can directly transactivate HK2 expression in facilita-
ting aerobic glycolysis[32]. TAp63 transactivates Sirt1, 
AMPKα2 or LKB1 in regulation of lipid and glucose 
metabolism[33]. p73 can also regulate cancer cell 
metabolism. p73 activates expression of glutaminase-2 
(GLS-2) and promotes serine biosynthesis[34]. 
Metformin has been well established in modulating 
several master metabolic regulators, such as AMPK, 
mTOR or HIF1A[35-37]. Therefore, both metformin 
and p53 family proteins are critically involved in 
regulation of cancer metabolism, suggesting that 
function of p53 family proteins and metformin 
anti-cancer activities are intrinsically connected, 
which will be our major focus in this review.  

Metformin anti-cancer activity in various 
human cancers  

Metformin has been used to treat type 2 diabetes 

for many years. Accumulating evidence has indicated 
that metformin can dramatically reduce tumor 
incidence in cancer patients with type 2 diabetes[38, 
39]. Metformin inhibits growth, survival and 
metastasis of various cancer cells derived from breast, 
lung, esophagus, pancreas, liver and blood[40, 41] 
(Table 1). In addition, it has been recently shown that 
metformin has anti-tumor activities via an improved 
immune response[42-44] and modulation of cancer- 
related epigenetic modification[45]. The current 
literature indicates that metformin inhibits tumori-
genesis via distinct signaling in different cancer types 
(Table 1). Importantly, metformin can regulate 
expression and activities of p53 family proteins in the 
suppression of tumorigenesis, which are discussed in 
detail in a later section. Here, we will focus on the 
effects of metformin on different human cancers.  

Breast cancer is the most common cancer in 
women, especially in 30-59 years old females[46]. It 
has been reported that long-term use of metformin 
can dramatically reduce the risk of breast cancer in 
patients with type 2 diabetes[47]. In addition, breast 
cancer patients receiving metformin and neoadjuvant 
chemotherapeutic drugs (Table 1) have a higher 
pathological complete response rate than patients not 
receiving metformin[48]. At the molecular levels, 
metformin can inhibit mTOR signaling or suppress 
expression of cyclin D1 and ErbB2 (Her2) to inhibit 
breast cancer cell proliferation and growth[49-51] 
(Figure 1B). In addition, metformin can selectively 
inhibit breast cancer stem cells via suppressing 
nuclear translocation of NF-κB and phosphorylation 
of STAT3[43, 52] (Figure 1B). Furthermore, recent 
evidence demonstrated that high expression of 
peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α) can enhance breast 
cancer resistance to metformin[53]. Currently, there 
are 42 FDA-approved clinical trials that are 
investigating the effect of metformin on breast cancer 
treatment (Table 1).  

 

Table 1. List of selected clinical trials involving in metformin. 

Cancer Type  Effectors In Combination with Clinical Drugs Clinical Trials 
(Approved by FDA) 

Breast Cancer AMPK/mTOR;NF-κB; STAT3; cyclin D1; Her2 5-FU+Doxorubicin+ Cyclophosphamide; 
Doxorubicin+Cyclophosphamide; 5-FU+ 
Epirubicin+Cyclophosphamide; Paclitaxel; Docetaxel 

42 

Lung Cancer ATM/AMPK; JNK/p38; IL-6 Afatinib; Crizotinib; Alectinib; Ceritinib; Nivolumab 15 
Esophagus Cancer Stat3/Bcl-2; Clycin D1; CDK4; CDK6; AMPK; 

NF-κB; AKT 
5-FU; Cisplatin 1 

Liver Cancer NF-κB; AMPK; AMPK / Foxo3a; ACC; FASN; 
ACLY 

Sorafenib; Rapamycin; Aspirin  7 

Pancreatic Cancer Sp transcription factors; AMPK; GPCR; IR; CD44; 
EpCAM; EZH2 

Rapamycin; Aspirin; Gemcitabine  16 

Leukemia mTOR; AMPK Vincristine; Bortezomib; Paclitaxel 7 
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Figure 1. (A) Schematic representation of the structures of p53, p63 and p73. Using the alternative transcription starting sites, it generates TA or ∆N isoforms. 
Using the alternative splicing at the C-termini, it generates , β or γ isoforms. The transactivation domains (TAD), the DNA-binding domains (DBD), the 
oligomerization domains (OD), the C-terminal regulatory domains (CTD), the second transactivation domains (TA2), the sterile alpha motif (SAM) and the 
transactivation inhibitory domains (TID) are indicated. The ∆Np63 and ∆Np73 variants lack the N-terminal TAD homologues to that of p53 but their N-termini 
possess transactivation activities. (B) Pathways Involved in Metformin Anti-Cancer Activities. 

 
Use of metformin is associated with lower risk of 

lung cancer[54]. Metformin improves outcomes of 
chemotherapy and/or radiotherapy and survival for 
non-small cell lung cancer (NSCLC) patients with 
type 2 diabetes[55]. Metformin can induce apoptosis 
in lung cancer cells via activating ATM-AMPK and 
JNK/p38 MAPK pathways[56, 57] (Figure 1B). In 
addition, metformin can sensitize EGFR-TKI-resistant 
lung cancer cells through inhibition of IL-6 signaling 
[58] (Figure 1B). In recent years, several studies have 
demonstrated that a combination of metformin and 
other clinically proven drugs are beneficial in lung 
cancer treatment. For instance, metformin can 
significantly increase the efficacy of afatinib (EGFR 
inhibitor) to treat non-small cell lung cancers bearing 
mutant EGFR[59] (Table 1). In addition, a combination 

of metformin and ALK inhibitors, including 
crizotinib, alectinib or ceritinib, exhibits a synthetic 
effect on ALK+ NSCLC cells[60] (Table 1). Most 
recently, a phase II clinical trial was undertaken to 
evaluate the effects of a combination of nivolumab 
(PD-1 monoclonal antibody) and metformin on 
advanced NSCLC[61] (Table 1). Currently, there are 
15 FDA-approved clinical trials to examine metformin 
anti-lung cancer activity (Table 1). Notably, several 
clinical studies have shown no clear correlation 
between metformin use and risk of lung cancer in 
patients with type 2 diabetes[62, 63]. Thus, more 
studies are needed to clarify whether metformin is 
beneficial for lung cancer patients.  

Esophageal squamous cell carcinoma (ESCC) is 
the third most common carcinoma in digestive tracts 
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and the sixth leading cause of cancer death in the 
world[64]. Clinical analyses have indicated that 
metformin can reduce the risk of esophagus cancer, 
especially after 2 years of metformin use[65]. 
Metformin can induce ESCC cell autophagy and 
apoptosis via inactivation of the Stat3-Bcl-2 
pathway[64] (Figure 1B). In addition, metformin can 
suppress the expression of cyclin D1, CDK4 and 
CDK6, resulting in ESCC cell growth retardation[66] 
(Figure 1B). Furthermore, metformin can inhibit 
migration and invasion of ESCC cells via inhibiting 
NF-κB nuclear localization[67] or AKT signaling[68] 
(Figure 1B). Moreover, metformin can enhance 
esophagus cancer cell sensitivity to chemotherapeutic 
drugs, 5-FU[69] or cisplatin[70, 71]. Currently, there is 
one clinical trial approved by the FDA that is 
exploring the effect of metformin on ESCC (Table 1). 

Accumulating evidence has indicated that 
metformin can inhibit the development of hepato-
cellular carcinoma (HCC) and improve survival of 
HCC patients [72-74]. Metformin inhibits NF-κB 
signaling to suppress HCC cell growth in an 
AMPK-dependent manner[75]. In addition, metfor-
min inhibits HCC cell migration and down-regulates 
the epithelial to mesenchymal transition (EMT) via 
the AMPK-Foxo3a pathway[76] (Figure 1B). 
Interestingly, metformin inhibits liver tumor growth 
via suppressing expression of several lipogenic 
enzymes such as Acetyl-CoA carboxylase (ACC), fatty 
acid synthase (FASN) and ATP citrate lyase (ACLY), 
independent of AMPK[77]. Therefore, it seems that 
metformin inhibits HCC development in both 
AMPK-dependent and AMPK-independent pathways 
(Figure 1B). Notably, a combination of metformin and 
sorafenib, the first-line therapeutic drug for HCC 
treatment, can significantly inhibit HCC cell prolifera-
tion and induce HCC cell autophagy via suppressing 
mTOR signaling[78] (Figure 1B). However, several 
clinical studies have shown that chronic treatment 
with metformin can increase HCC tumor 
aggressiveness and resistance to sorafenib[79] or have 
shown no superior efficacy when adding metformin 
to sorafenib in the treatment of advanced HCC[80]. 
Furthermore, combined treatment with metformin 
and rapamycin or aspirin is beneficial to HCC 
patients[81, 82]. Most recently, it was shown that 
silencing of hexokinase 2 (HK2) can sensitize HCC 
cells to metformin[83]. Therefore, a combination of 
metformin and glycolysis inhibition may be a new 
strategy for HCC treatment. Currently, there are 7 
FDA-approved critical trials that are investigating 
metformin anti-HCC activity (Table 1). 

With regard to pancreatic cancers, several 
clinical studies have indicated that use of metformin 
is associated with improved outcomes of pancreatic 

cancer patients with diabetes[84, 85]. Metformin 
down-regulates expression of Sp transcription factors, 
activates AMPK kinase activity, and disrupts 
crosstalk between G protein–coupled receptors and 
insulin receptor signaling, leading to inhibition of 
pancreatic cancer cell proliferation[41, 86, 87]. 
Metformin can also inhibit stemness of pancreatic 
cancer stem cells, via re-expression of miRNAs to 
reduce the expression of cancer stem cell markers, 
such as CD44, EpCAM and EZH2[88, 89] (Figure 1B). 
A combination of metformin and rapamycin, aspirin 
or gemcitabine exhibits better effects in suppressing 
pancreatic cancer cell proliferation and tumor 
growth[90-93]. Currently, there are 16 FDA-approved 
clinical trials that are investigating the effect of 
metformin on pancreatic cancer (Table 1). 

Metformin can inhibit proliferation of T-cell 
acute lymphoblastic leukemia (T-ALL) cells by induc-
ing autophagy and apoptosis, likely via inhibition of 
mTOR signaling[94]. Our results showed that 
metformin can enhance leukemia cell sensitivity to the 
chemotherapeutic drug, vincristine, via activating 
AMPK[95] (Figure 1B). In addition, several studies 
have shown that bortezomib[96] or paclitaxel[97] can 
enhance metformin anti-leukemia activity. Currently, 
there are 7 FDA-approved clinical studies that are 
investigating the effect of metformin on leukemia 
treatment (Table 1). 

Taken together, metformin anti-cancer activities 
are evident, likely via different mechanisms in various 
human cancers. Combinational therapy using 
metformin and other therapeutic drugs may be an 
effective strategy for cancer treatment. 

Metformin, AMPK and p53 family 
proteins 

It is now clear that metformin can inhibit 
tumorigenesis in various human cancers and tumors 
via different signaling pathways. The most 
demonstrated downstream effector of metformin is 
AMPK. Different mechanisms by which metformin 
activates AMPK and the role of AMPK in 
metformin-mediated biological outcomes have been 
extensively studied. On the other hand, the p53 family 
proteins are core components in the regulation of 
growth and survival upon various stresses. The 
interplay between metformin, AMPK and p53 family 
proteins seems critical in metformin-mediated 
anticancer activities. 

AMPK plays a critical role in energy homeostasis 
via targeting and phosphorylation of mTOR, 
acetyl-coA carboxylase 1 (ACC1) or modulation of 
GLUT activity, among others, to regulate protein 
metabolism, lipid metabolism or glucose metabolism, 
respectively[98]. Metformin is known to indirectly 
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activate AMPK in two different ways. Metformin at a 
high dose (~mM) inhibits the mitochondrial 
respiratory chain complex I, resulting in an increased 
AMP/ATP ratio, which in turn promotes AMP 
binding to AMPK γ subunit, AMPK conformational 
changes and exposure of AMPKα T172 to be 
phosphorylated and activated by its upstream kinase 
LKB1 [2]. On the other hand, it was recently shown 
that metformin at a low dose (~µM) can activate 
AMPK through the lysosomal pathway independent 
of the AMP/ATP ratio[35].  

Mounting evidence has indicated that AMPK is 
involved in cancer cell growth and survival [99]. 
Clinical studies have demonstrated that AMPK 
activity is decreased in cancer [75, 95, 100]. Lack of 
LKB1, a direct AMPK upstream kinase, leads to 
inhibited AMPK activity[101]. In fact, knockout of 
LKB1 promotes K-RasG12D-induced lung cancer 
metastasis[102]. In addition, activated AKT can 
directly phosphorylate AMPKα on Serine 485, 
resulting in AMPK conformational changes and 
blockage of AMPKα T172 from phosphorylation[103, 
104]. Recent studies demonstrated that ubiquitin 
ligases UBE2O or MAGE-A3/6-TRIM28 can promote 
ubiquitination of AMPKα, resulting in proteasome- 
dependent degradation and an increase in cell 
proliferation and tumor growth[105, 106]. Further-
more, knockout of AMPKα can enhance c-Myc- 
induced lymphoma progression[107]. Notably, single 
AMPKα1 or AMPKα2 knockout mice do not exhibit 
accelerated tumor formation[108-110], suggesting that 
lack of AMPKα, alone, is not sufficient in driving 
tumorigenesis.  

Numerous studies have indicated that activation 
of AMPK inhibits cell proliferation and tumor 
growth[111]. Glucose deprivation can induce cell 
death via activation of AMPK[112]. Activation of 
AMPK can also affect multiple signaling, including 
mTOR, p53 and NF-kB, to regulate cell growth and 
survival[113-115]. Currently, small molecules, such as 
berberine, AICAR and OSU-53[116-118], have been 
shown to activate AMPK in suppression of cell 
proliferation and tumor growth, Currently, the role of 
AMPK in the metformin anti-cancer activities has 
been extensively studied. Metformin inhibits cell 
proliferation and tumor growth in AMPK-dependent 
or AMPK-independent pathways[36, 119]. It has been 
reported that metformin can reverse multidrug 
resistance via activating AMPK[120]. Interestingly, 
several clinical drugs, including paclitaxel and 
aspirin, can enhance metformin-mediated activation 
of AMPK to inhibit tumor growth [93, 121]. Most 
recently, it has been shown that metformin is involved 
in cancer immune response via activating AMPK, 
which directly phosphorylates PD-L1 on S195 

resulting in ER-associated degradation (ERAD)[44]. In 
addition, Metformin can also regulate epigenetic 
modifications by promoting AMPK-mediated 
phosphorylation of TET2 on S99, resulting in TET2 
protein stabilization and accumulation of 
5-hydroxymethylcytosine (5hmC)[45]. 

Activated AMPK can induce phosphorylation of 
p53 on serine 15, leading to cell-cycle arrest[113]. In 
addition, AMPK can phosphorylate SIRT1 on Thr344 
and inhibit its deacetylase activity toward p53, 
resulting in enhanced p53 transactivation activity to 
promote apoptosis of HCC cells[115]. AMPK can also 
directly phosphorylate p73 on S426, leading to p73 
nuclear accumulation, which in turn promotes 
apoptosis[122]. In contrast, the AMPK catalytic 
subunit, AMPKα, can interact with p73α, promoting 
p73α degradation independent of AMPK kinase 
activity[123]. Hence, the precise effects of AMPK on 
p73 and its biological outcomes need to be further 
investigated. With regard to the effects of AMPK on 
p63, much less is known. Recently, it was reported 
that lovastatin, a statin drug used for lowering 
cholesterol, can induce phosphorylation of p63 via 
activating AMPK-p38MAPK signaling[124].  

The role of p53 in metformin anti-cancer 
action 

Several reports have shown that p53 is involved 
in metformin anti-cancer action[125-127]. Metformin 
activates AMPK, which induces p53 phosphorylation 
and activation to inhibit melanoma invasion and 
metastasis[125]. Metformin can also inhibit MDMX 
expression and reduce MDMX-p53 interactions, 
leading to p53 activation and cell death in lymphoma 
cells[126] (Figure 1B). A combination of metformin 
and 2-deoxyglucose induces apoptosis in prostate 
cancer cells in a p53-dependent manner[127]. Several 
studies have shown that metformin inhibits the 
viability of cancer cells lacking p53[128, 129]. 
Moreover, metformin can sensitize p53-deficient 
colorectal cancer cells to radiotherapy[129]. Therefore, 
these results indicate that metformin inhibits cancer 
cell growth and survival in both p53-dependent and 
p53-independent ways. 

Reactive oxygen species (ROS) play an critical 
role in regulation of tumorigenesis and cellular 
response to anticancer therapies[130]. Metformin can 
reduce cancer risk via inhibiting cellular ROS 
production[131]. Mechanistically, metformin 
suppresses ROS production via inhibiting NAD(P)H 
oxidase activity or activating AMPK/FOXO3a, which 
facilitates antioxidant thioredoxin[132, 133]. Notably, 
ROS can act as an upstream factor that activates p53 
and a downstream effector of p53 that mediates 
apoptosis (reference). However, whether ROS-p53 or 
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p53-ROS axis plays a role in metformin-mediated 
anticancer activity need to be further investigated. 

Role of p63 in metformin anti-cancer 
action 

ΔNp63α is the predominant p63 protein isoform 
expressed in epithelial cells[134]. ΔNp63α is a critical 
transcriptional regulator of the cell adhesion program, 
through regulation of a subset of adhesion molecules, 
including integrin β4, integrin α6 and fibronectin 
1[16]. ΔNp63α expression is significantly reduced in 
advanced human cancers, including breast cancer, 
lung cancer and bladder cancer[22, 135, 136]. Work 
from our lab and others showed that oncogenic 
PI3K/HER2/Ras commonly inhibits expression of 
ΔNp63α, facilitating cell migration and cancer 
metastasis[22, 25]. Furthermore, we found that MKP3 
and CD82 are the downstream targets of ΔNp63α in 
regulating cancer metastasis[23, 24].  

Notably, ΔNp63α has been shown to be 
overexpressed in squamous cell carcinoma (SCC) and 
to promote SCC cell proliferation and survival[21]. 
Our study indicated that protein isomerase Pin1 
directly binds to and stabilizes ΔNp63α to promote 
proliferation of head and neck squamous cell 
carcinoma cells (HNSCC)[19]. ΔNp63α can also 
suppress p73-induced apoptosis to promote survival 
of HNSCC cells[21]. Our recent study demonstrated 
that metformin dramatically inhibits ΔNp63α protein 
expression to inhibit SCC cell viability under glucose 
starvation or in combination with 2-deoxyglucose 
(2-DG)[18]. At the molecular level, metformin 
upregulates WWP1 expression to destabilize ΔNp63α 
protein independent of AMPK[18], indicating that 
ΔNp63α is an important downstream target of 
metformin (Figure 1B).  

Role of p73 in metformin anti-cancer 
activity 

Like p53, p73 has anti-proliferative and pro- 
apoptotic activities[137]. p73 plays a critical role in 
cancer cell response to chemotherapy[138]. Unlike 
p53, the p73 gene is rarely mutated in human tumors. 
Metformin can stabilize p73 via activation of AMPK to 
induce cell apoptosis[122] (Figure 1B). Metformin can 
also increase p73 protein expression to promote cell 
autophagy[139] (Figure 1B). These results indicate 
that p73 is important in metformin anti-cancer action. 
Further in vivo studies are needed to verify whether 
metformin targets p73 in the regulation of cancer cell 
growth and survival. 

Conclusion 
There is no doubt that metformin possesses 

anti-cancer activities. The effects of metformin in 
suppression of tumorigenesis have been demonstra-
ted in many human cancers derived from breast, lung, 
esophagus, liver, pancreas and blood. In the past 
decade, many signaling pathways impacted by 
metformin have been identified. AMPK is the most 
studied down-stream effector of metformin. 
Metformin can activate AMPK in mitochondria- 
dependent and lysosome-dependent pathways. 
Activated AMPK inhibits tumor growth and survival 
via regulating its downstream targets including 
p53/p63/p73, mTOR, ACC, and MAPK. p53 family 
proteins are intimately involved in metformin- 
mediated inhibition of cell growth and survival. In 
particular, p63 emerges as a novel metformin target in 
the inhibition of cell survival and tumor growth. 
However, whether p63 is a critical target of metformin 
in cancer patients needs to be further investigated.  

Metformin is speculated to be a promising 
candidate drug for cancer treatment in combination 
with therapeutic drugs. Currently, more than 300 
FDA-approved clinical trials are undergoing 
investigation of metformin anti-cancer activity, 
including numerous studies that use a combination of 
metformin with other drugs such as afatinib [59], 
sorafenib [79] and chemotherapeutic drugs[48, 140]. It 
would be interesting to examine a combination of 
metformin with p53/p63/p73-targeted drugs, if 
available, in cancer treatment.  
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