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Abstract 

IL-35 is the newest member of IL-12 family. A dimeric protein consisting of two separate subunits 
has manifested suppressive actions on immune system, which is counterproductive in the context of 
cancers. Various reports have confirmed its inhibitory role on immune system which is carried out 
via formation of IL-35-producing regulatory T cells (iTr35), increased Treg development and 
suppressive Th17 cells growth. Although last decade has seen a great deal of scientific interest on 
this subject, the exact role, precise signal transduction and elaborative functions of IL-35 in tumor 
microenvironment (TME) remained elusive. Search for anti-IL-35 therapies have exhibited limited 
success in animal models. Contrarily, few studies have denied the idea that IL-35 plays a role in 
cancer. The purpose of this review is to analyze the reported scientific data on continuous 
symphony of IL-35 in cancers since the inception of former. 
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Introduction 
Interleukin 35 (IL-35) is a part of IL-12 family in 

addition to IL-12, IL-23 and IL-27. It is the newest 
member of IL-12 family which possesses anti- 
inflammatory and immunosuppressive properties [1]. 
It is released primarily from stimulated natural Treg 
cells [2], and its secretion is unfound in human 
non-stimulated Treg cells [3]. IL35-producing regula-
tory B cell (i35-Breg) [4], stimulated pan T cells, 
CD4(+), CD8(+), CD4(+)CD25(-) T cell subpopulation 
[5] and CD8α+ DC [6] are described in literature as 
IL-35 producing cells as well. Besides, T cells [7] and B 
cells population [8], tumor-associated macrophages 
[9] and infiltrating dendritic cells [10] are also related 
with IL-35 upregulation. IL-35 is not a constitutive 
tissue product [11] and only expressed in certain 
tissues after pro-inflammatory activation by various 
stimuli such as tumor necrosis factor-α (TNF-α), 
interferon-c (IFN-c), and IL-1β [12]. It was originally 
named in 13th International Congress of Immunology 

and currently grabs a significant attention of scientific 
community [13]. 

IL-35 is a dimeric protein consisting of p35 of 
IL12 and Epstein-Barr virus induced 3 (EBI3) subunits 
which are encoded by P35 and EBI3, respectively [1, 
14-16]. The affinity of two subunits (p-35 and EBI3) to 
form a heterodiamer was first explained by Devergne 
et al. in 1997 [17]. Interestingly, two subunits of IL-35 
from human and mice can bind to each other, which 
explain its conservation between species [18].  

Although IL-35 is mostly expressed in Treg cells 
but recent evidences have uncovered its much larger 
tissue distribution [11]. Various reports have 
indicated the presence of EBI3 and IL-12 p35, subunits 
of IL-35, in placental trophoblasts [19], Hodgkin 
lymphoma cells [10], acute myeloid leukemia cells 
[20], lung cancer cells [21] esophageal carcinoma, 
hepatocellular carcinoma, cervical carcinoma, and 
colorectal cancer [22, 23]. Similar studies have pointed 
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IL-35 as a major player in tumor microenvironment 
(TME) [24]. The presence of Foxp3+ Treg cells and 
Treg cells in TME is demonstrated as one of the 
sources of IL-35 production [25, 26].  

Signal Transduction of IL-35 
Unlike other members of IL-12 family of 

cytokines (IL-12, IL-23, and IL-27), IL-35 is not 
secreted by Antigen Presenting Cells (APCs) but its 
production has been reported primarily in Tregs [15, 
27]. It is maintained that assembly of both α and β 
chains is necessary for the bioactive secretion of IL-35 
[28]. Although signaling mechanism of IL-35 is not 
completely studied yet, Collison LW et al. has showed 
that IL-35 transmits signal through IL-35R, which is a 
“unique heterodimer of receptor chains IL-12Rβ2 and 
gp130 or homodimers of each respective chain” [14] 
(Figure 1). Although IL-35 is a subunit of IL-12 but its 
distinctive functions raised the suspicion about its 
unique signal transduction.  

 Recently, Collison LW et al. concluded that 
signal transduction of IL-35 does overlap with IL-12 
and IL-27 transduction as it relays the signals using 
IL-12Rβ2 and gp130, which corresponds with IL-12 

and IL-27 respectively [14]. Signal transduction is 
further carried through activation of pSTAT1 by 
gp130 chain and pSTAT4 by IL-12Rβ2 chain of 
receptor. Collison et al. explains that because the IL-35 
signal transduction is carried out through two 
different but independent routes involving STAT 
signaling, the absence of either one of these two 
IL-35R chains will not affect the suppressive functions 
of IL-35 on T cells. However complete deletion of both 
chains of the receptor resulted in the loss of 
suppressive IL-35 effects [14]. Though conversion of 
conventional T cells into iTr35 require the 
phosphorylation of both STAT1 and STAT4 from 
gp130 chain and IL-12Rβ2 chain respectively [29]. 
iTr35 has specific tolerance promoting capabilities in 
parasitic infections and tumors. It is thought to work 
independently of (forkhead box P3) Foxp3, IL-10, and 
TGF-β [30]. Hetrodiamerization of STAT1 and STAT4 
leads to upregulation of EBI3 or P35 which ultimately 
helps convert conventional T cells into iTr35. 
However a human study found that IL-35 can activate 
STAT1 and STAT3 heterodimers in human CD4+ T 
cells [31]. The expression pattern of IL-35R varies 
within the human system [3, 29, 32]. IL-12Rβ2 chain is 

expressed predominantly in activated T 
cells, natural killer cells [33] and dendritic 
cells [34]. IL-35 signaling in B cells is 
carried via IL-12Rb2: WSX-1, which 
activates phosphorylation of STAT1 and 
STAT3 [35].  

IL-35 performs two distinctively 
notable functions. It suppresses the 
conventional T cells proliferation and 
transforms the conventional T cells into 
Treg cell population which are termed as 
iTr35 as they act through IL-35 [36, 37]. It 
also suppresses immune responses via 
strengthening Treg development and 
inhibiting Th17 cells growth [38-40] 
(Figure 2).  

Immunosuppressive effects of IL-35 
have been linked with progression and 
amelioration of various diseases. How-
ever, the single most vital role that has 
grabbed attention of scientific community 
is implication of IL-35 in cancer milieu. 
The aim of this review is to summarize 
and analyze important published data on 
IL-35 effects on cancer progression and 
tumor microenvironment.  

Evidences of IL-35 in cancer 
development 

Immune cells consist of multiple 
checkpoints where distinct types of 

 

 
Figure 1. Cells secreting IL-35 and overview of IL-35 signal transduction. IL-35 is secreted by 
variety of cells which then activates its receptors through JAK/STAT signaling to exert its 
anti-inflammatory and immunosuppressive effects.  
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immune cell(s) are responsible for any unwarranted 
entry. Like security blankets, immune system cells 
work in number of layers with each layer responsible 
for sustainability of respective microenvironment and 
destruction of unwanted endogenous and exogenous 
substances [41]. Hence functions of immune system 
cells is not restricted to killing the foreign substances 
brazenly, but also to evaluate the antigens, recognize 
and establish the self tolerance, maintain homeostatic 
conditions and even regulate the functions of other 
tissues. Such large scale intelligent modulation by 
immune system is largely exercised through its 
regulatory wings namely Tregs and Breg cells [42-45]. 

 Immune evasion plays a key role in the 
development and progression of cancer [46, 47], 
which largely results from the failure of immune 
system to respond to particular tumor. This chiefly is 
achieved by the induction of immunosuppressive 
forces, which release cytokines to switch off the 

immune system and causes immune evasion of 
tumor. IL-35 is seen as critical immunosuppressive 
cytokine involved in immune evasion. The 
immune-cancer nexus is a well-established link as 
immune system plays a vital role in prevention, 
development and therapy of cancer [48]. Friedman 
and Liao explained that IL-35 is an important driver in 
cancer development as it enhances angiogenesis and 
blocks CD8+ T cells via releasing TGF-β [49]. One 
recent study has implicated IL-35 in breast cells 
cancer, showing greater induction of iTr35 in TME 
and causing inhibition of conventional T cell which 
subsequently converted in iTr35 [50]. Similar evidence 
was provided by Wang et al. which not only 
consolidates the presence of IL-35 in TME but also 
emphasizes its remarkable role in tumorigenesis and 
related angiogenesis. According to the study the 
injection of J558-IL-35 cells (mouse plasmacytoma 
cells expressing IL-35) in BALB/c mice drastically 

increased the tumor size as compared to 
control. Moreover the protein lysates of 
IL-35 positive tumor contained higher 
concentration of IL-35, suggesting the 
definite part of IL-35 in tumor progression 
[51]. IL-35 neutralizing mAb was 
co-injected with J558-IL-35 cells in 
Rag2−/−BALB/c mice (mice that lack T 
and B lymohocytes), to know whether 
tumor progression was IL-35 specific. 
Intriguingly study found the abrogation of 
tumor growth in the presence of IL-35 
neutralizing mAb compared to control. 
Study also emphasizes that IL-35 
accumulates myeloid cells which in turn 
suppress the CTL responses in TME [51]. 
To understand and evaluate the 
effectiveness of anti-IL-35 therapy against 
cancer Liao et al. developed a series of 
in-silico experiments to find that 
continuous injection of drug provides 
better tumor control than intermittent 
supply of the same drug during the course 
of existing tumor [52]. A mathematical 
model was developed followed by in-silico 
experiments to evaluate the extent to 
which blocking IL-35 can reduce tumor 
growth. First, partial differential equations 
(PDEs) were used that entails interactions 
among different cells and cytokines. 
Situation arising in Wang et al. experiments 
[51] was assumed and two kinds of 
plasmacytoma cells were injected into wild 
type mice. One of the type consisted of 
tumor cells that were transfected with 
IL-35 to raise the amount of IL-35 into TME 

 

 
Figure 2. Signal transduction and tumorigenic effects of IL-35. IL-35 receptor consists of gp130 
and IL-12Rβ2 which upon activation phosphorylates STAT signaling. IL-35 suppresses the 
conventional T cells and promotes its conversion into iTr35 which plays vital role in tumor 
immune evasion as they inhibit various immune responses owing to suppressive IL-35. Similarly 
pro-tumor activities are enhanced by the development of Treg cells and inhibition of Th17 
responses. 
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while second used normal plasmacytoma cells that 
produced very small amount of IL-35. It was exhibited 
that model simulation corresponds with the 
experimental data shown in the experiments of Wang 
et al. 

One of the more recent clinical evidence is put 
forward by Zhou et al. which showed that plasma 
level of IL-35 correlates with the progression and 
metastasis of prostate cancer and that it is 
independent predictor of the same [53]. An important 
study implicating IL-35 in prostate cancer is presented 
by Olson et al. in which authors presented a novel 
“population of CD8+CTLA-4+ IL-35-secreting tumor 
antigen-specific regulatory T cells” and it can affect 
the antigen-specific effectors responses via an IL-35 
dependent mechanism [54]. Another authentication 
came from recent Wang K et al. study consisting of 
blood samples from 50 untreated gastric cancer 
patients, which showed significant upregulation of 
IL-35 producing B cells [55]. In the research of 
Pylayeva-Gupta’s group, they use a mouse model of 
pancreatic cancer demonstrated that IL-35+ Bregs are 
directly recruited to the tumor cell vicinity via a 
chemokine gradient of CXCL13 and promote 
tumorigenesis in IL-35 dependent manner [56, 57]. 
More recently it is pointed that the inhibitory 
cytokines like IL-35 and TGF-β play a significant role 
in immune escape of lung cancer cells. Same study 
confirmed the earlier reports that Foxp3 is an 
upstream regulator of IL-35 release [58]. Moreover, a 
clinical study consisting of 106 non-small cell 
lung cancer (NSCLC) patients and 78 healthy controls 
discovered a positive correlation between tumor TNM 
stage, lymph node metastases and circulating levels of 
IL-35. Inverse relationship between IL-35 and overall 
survival rate was also found [59]. 

The role of IL-35 in promotion and development 
of cancer is consolidated by Huang et al. in an 
experimental study. It showed the overexpression of 
IL-35 in human pancreatic ductal adenocarcinoma 
(PDAC) and linked it with the poor prognosis of it. It 
was revealed that IL-35 contributes significantly to 
extravasation and metastasis by aiding adhesion to 
endothelial cells via Intracellular Adhesion Molecule-1 
(ICAM1) dependent mechanism [60]. Likewise, 
circulating levels of plasma IL-35 were higher in 
PDAC along with correlated increase in IL-35 mRNA 
expression and worsening tumor stage [61]. Elevated 
levels of IL-35 in bone marrow, peripheral blood 
plasma and TME of patients with Acute Myeloid 
Leukemia (AML) are also reported [62-65]. An 
important clinical study put forward by Zhao and 
colleagues described the data from 60 breast invasive 
ductal carcinoma (IDC) patients and confirmed the 
presence of robust IL-35 expression in tumor 

infiltrating lymphocytes (TILs). Higher IL-35 
expression was correlated with increased tumor size, 
advanced age (>50 Years), TNM (Tumor, Node, and 
Metastases) stage III and lymph node metastasis [66]. 
Previously, comparable results were presented by 
another research group working on IL-35 and its link 
with breast cancer [67]. Same study held low 
circulating IL-23: IL-35 ratio responsible for poor 
prognosis of breast cancer. Likewise Hamidinia and 
group implicated raised number of Treg cells and 
corresponding increase in IL-35 and other immune 
suppressor cytokines such as IL-10 and TGF-β in 
breast cancer patients with different clinical stages 
[68]. Study was performed on 40 breast cancer patient 
and complements the earlier reports. Similar tumor 
promoting results showing direct or indirect 
involvements of IL-35 in colorectal cancer are also 
reported [69]. In line with the previous data Yi Lu 
described IL-35 as an important biomarker in thyroid 
cancer diagnosis [70]. This data suggests the gross 
involvement of IL-35 in various types of cancers. 
Though exact mechanism of action through which 
IL-35 acts remains elusive, but there is abundant data 
implicating IL-35 in cancer.  

Induction of Neutrophils by IL-35 in 
cancer  

Neutrophils are an essential part of innate 
immune system [71, 72] and their participation in 
cancer development is increasingly realized [73, 74]. 
The duality of effects of neutrophils in cancer is 
implicated on its ability to get polarized by different 
cytokines to anti-tumor (N1) and pro-tumor (N2) 
phenotypes [75]. It is well established that 
pro-inflammatory cytokines (IL-6, TGF-β1, G-CSF) 
switch the neutrophils towards pro-tumor bias in 
TME [76-78]. Interestingly, it was described in a recent 
study that IL-35 activates pro-tumor (N2) bias in TME. 
An important study is put forward by Zou et al. which 
showing production of pro-inflammatory cytokines as 
result of IL-35 induction, shifting the neutrophils to 
TME. Interestingly study also presented the activation 
of macrophages in TME as result of IL-35, which 
secreted IL-1β and IL-6. STAT3 and ERK pathways 
in neutrophils were presented to be partly a cause for 
the suppression of T cells [79].  

IL-35 and Tregs in cancer  
Despite the growing evidence that directly 

implicates IL-35 for immune evasion of tumor cells 
due to its inhibitory actions, it is interesting to notice 
that majority of IL-35 is released from Treg cells. 
These Treg cells are recruited to tumor sites to avoid 
any miscalculation, the result of which is less number 
of CD4+ T cells and CD8+ CTLs in TME to combat 
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cancer. Intriguingly, depletion of Tregs cells exerted 
similar effects on cancer development as IL-35 when 
studied alone [80]. Correspondingly, inhibition of 
mere suppressive signaling from Treg cells devoid of 
depletion led to better treatment outcomes [81, 82]. 
Likewise, blockade of Treg cells steered the reversal of 
CD8+ T cells exhaustion [83]. Increased Treg cells 
population is also seen in breast cancer patients [66]. 
Hence it may be plausible to argue that the 
suppressive action of Treg on T cell growth 
corresponds with IL-35 actions on the latter. This 
obviously confirms Treg cells as major producers of 
IL-35 as manipulation of either of them led to identical 
findings. Therefore, targeting IL-35 for tumor 
suppression can also be a viable option. One of the 
verification is performed by Meghan et al. who 
introduced EBI3 monoclonal antibody (mAb) that 
neutralizes IL-35 specifically but does not affect Tregs 
cells. Study findings manifested that neutralization of 
IL-35 resulted in improved tumor control in 
Wild-type C57BL/6 mice as compared to control mice 
[84]. An unorthodox study in this context is reported 
by Nicholl MB et al. which although described the role 
IL-35 in pancreatic cancers but found, rather 
surprisingly, that it was not expressed by Treg cells 
but expression found in epithelial derived pancreatic 
cancer (PCAN) cells [85]. In addition, cytokine- 
induced killer (CIK) cells are a heterogeneous cells 
population expressing cell markers for both T cells 
and natural killer cells and launch a robust attack 
against cancer cells [86]. CIK have well reported 
advantages in hematological malignancies and solid 
tumors in the past [87-89]. Studies also report the 
inverse relationship in number and function between 
Treg cells and CIK, understandably through release of 
inhibitory cytokines by former [90, 91]. Alternatively 
it is also documented that dendritic cells co-cultured 
with CIK led to suppression of Treg cells and its 
inhibitory cytokines [92-94]. Interestingly, Ying Pan 
and colleagues showed that Tregs cells and IL-35 
concomitantly increased in a time-dependent manner 
during the generation of CIK cells as compared to 
DC-CIK co-cuture, which notably suspended the 
expression of Treg cells and IL-35 [95]. 

Role of EBI3 in IL-35 pro-tumor effects  
EBI3 can form IL-12p35 part of heterodimer to 

constitute IL-35 [96]. It could be interesting to notice 
what effect EBI3 knockout can exert on tumor 
promotion. Theoretically, EBI3 knockout would stall 
IL-35 production from Tregs which would result in 
raised CTL and improved tumor protection. Contrary 
to the theoretical perception Zhenzhen Liu and group 
[97] found increased tumor growth, decreased CD8+ 
T cells and higher CD4+FoxP3+ Treg cells in 

EBI3-defecient C57BL/6 and BALB/c mice as 
compared to control. This is due to the fact that EBI3 is 
responsible for secretion of both IL-27 and IL-35 
which is a tumor suppressor and tumor promoter, 
respectively. Authors argued that IL-27 phenotype 
dominantly prevail in EBI3 deficient mice and IL-10 
signaling play a vital role in the absence of IL-27 and 
IL-35 from Treg cells. Expectedly, depletion of Tregs 
led to positive tumor outcome. It possibly means the 
superior effectiveness of Tregs depletion in tumor 
control as compared to IL-35 alone. Esophageal cancer 
is one of the lethal types of cancer affecting 
approximately 450000 patients worldwide and ranked 
number six in cancer mortality rates [98]. It was 
discussed by Eric W. Lin et al. that IL-35 is a part of 
esophageal cancer TME as part of suppressive 
cytokine released directly from Treg cells to curtail the 
T cells population and hence playing a role in tumor 
evasion. Similar results were boasted in gastric ulcer 
where expression of EBI3 and p35 was higher and 
correlated with clinicopathological factors of gastric 
ulcer [99]. Another study manifested that IL-35 
applies its anti-inflammatory effects through 
downregulating the expression of IL-17, IL-22 and 
Retinoic acid receptor-related orphan receptor gamma 
t (RORγt) by inducing the EBI3 subunit [100].  

Interplay of IL-35 and TH17 in cancer 
IL-35 signaling is also reported to cause the 

suppression of immune cells-led anti-tumor activities 
in TME thorough inhibiting the Th17 cells growth [50, 
101]. The exact role of Th17 in cancer development 
remains a controversial subject itself due to Th17 cells 
plasticity. Both pro-inflammatory and anti-inflamma-
tory effects of Th17 are put forward, but number of 
studies in relation to IL-35 is not enough to be 
conclusive. For example, one study manifests Th17 as 
pro-tumor attributed largely to the secretion of IL-17 
[102, 103], while other exerts anti-tumor actions by 
promoting immune cells into tumors, activating 
effector CD8(+) T cells, or directly through converting 
toward Th1 phenotype and producing IFN-γ [104]. 
Although IL-35 inhibits the Th17 cells [38], but it is 
premature to jump to conclusion that it can also play a 
role in cancer immunity as Th17 cells inhibition can 
also lead to the suppression of its anti-tumor action 
via different mechanism described above. Therefore it 
may be plausible to say that IL-35 induced Th-17 
inhibition inconclusively and/or partially suppresses 
the anti-tumor activities.  

Functional Contradiction of IL-35  
There are some contradictory results as well, 

pressing the point that IL-35 does not act in a same 
way in all types of cancer and hence its role can be 
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unique in different kind of immune situations. For 
example it was shown that IL-35 might have 
inhibitory actions in colon cancer growth. Not only 
was the expression of IL-35 in colon cancer low but 
the anti-tumor effects of IL-35 on colon cancer cell 
lines also appeared in a dose dependent manner [105]. 
It was found that mechanistically the inhibition of 
β-catenin is involved in the IL-35 induced blunting 
action on colon cancer. Authors indicated that the 
reason for these contradictory results are unclear and 
requires further investigation. Such paradoxical 
results are also endorsed by Jun Long et al. in one 
clinical study which revealed the data form 75 
Hepatocellular carcinoma (HCC) patients. IL-35 
expression in advance stages of HCC was lowered as 
compared to early stages of the disease. The 
expression of IL-35 changed inversely as the key 
feature of HCC e.g. tumor size, microvascular 
invasion, and histological grades advanced [106]. 
Conversely, Fu et al. highlighted that overexpression 
of IL-35 is correlated with the HCC aggressiveness 
[107]. Correspondingly, the effects of IL-35 in 
inhibiting cancer development, curtailing tumor 
growth and inducing the apoptosis in human cancer 
cells were reported by Long et al. in 2013 [23]. 

Although ongoing symphony of IL-35 effects on 
cancer is still in infancy and are not well understood 
yet few studies have pointed the possible targets 
against IL-35. For instance, a group of scientist has 
showed that IL-15 can help enhance cytotoxicity of 
CIK cells via suppressing Treg cells and IL-35 
concomitantly [108]. Understanding IL-35 and its 
signal transduction can be helpful in the formulation 
of vaccines against various inflammatory ailments 
including particular kind of cancers [109]. 

IL-35 in other inflammatory states 
Despite that IL-35 remains a culprit in cancer 

therapeutics yet it plays an important regulator role in 
many autoimmune diseases. IL-35 is expectedly 
credited as therapeutic option for autoimmune 
diseases and pro-inflammatory states due to its anti- 
inflammatory effects, suppression of T cells and 
proliferation of Treg cells. Beneficial effects of IL-35 
are described in atherosclerosis [110, 111], allergic 
airways disease [112-114], and smoke-induced lung 
inflammation [115]. Likewise decreased level of IL-35 
has been correlated with patients suffering from 
stable angina pectoris, unstable angina pectoris, and 
acute myocardial infarction [116]. Ectopic expression 
of IL-35 in pancreatic β cells prevents development of 
diabetes mellitus in NOD mice. Bettini et al. found that 
IL-35 expression protects animals from autoimmune 
diabetes via curbing T-cell infiltration and 
proliferation [117]. Similarly, intraperitoneal injection 

of rIL-35 has showed to decrease the incidence, 
intensity and progression of collagen-induced 
arthritis (CIA). Yuejun Liu et al. described that IL-35 
can reduce acute graft-versus-host disease (aGVHD) 
by expanding Tregs and repressing Th1 responses 
[118]. EBI3-/- mice have confirmed the anti- 
inflammatory properties of IL-35 in various diseases. 
For instance, Corona virus-induced encephalomyelitis 
and experimental autoimmune encephalomyelitis 
(EAE) were worsened in EBI3-/- mice [119]. 
Controversial reports have been observed regarding 
IL-35 role in rheumatoid arthritis [120-123]. In 
addition, raised liver inflammation in induced liver 
fibrosis in IL-12p35-/- mice has been observed by 
Tsuda et al. [124]. The detailed review about possible 
role of IL-12 family including IL-35 in inflammation, 
autoimmune disease and infections can be read 
elsewhere [125, 126]. 

IL-35 as Drug Target 
 Although the research on IL-35 has not reached 

a conclusive stage, but it has been increasingly 
realized as a potential drug target. Until now, there 
are no significant efforts reported which target IL-35 
for cancer therapies. The lack of scientific attention is 
partly due to shorter span since IL-35 has been put to 
light. Its pleitropic effects, multiple inducing 
molecules and more than one subunit with 
independent transductions can be other reasons why 
it has not been yet. While it’s relatively hard to target, 
the benefits to overcome it may be huge. Immune 
evasion has remained a hardest nut to crack in cancer 
therapies and targeting IL-35 can be possible way 
forward.  

Conclusion  
 It is plausible to conclude that IL-35 is a key 

player in TME which plays its part in progression of 
various cancers. It acts via activating receptor 
consisting of two distinct subunits which lead to 
STAT1 and STAT3/4 phosphorylation to exert its 
suppressive actions on immune system. The 
inhibitions on immune system exerted by IL-35, 
primarily through forming iTr35 and feedback 
upregulation of its own expression spur the onset of 
tumor immune evasion. Although various studies in 
last decade have implicated IL-35 in TME, its exact 
mechanism is still elusive. Furthermore there are 
some studies that contradict the generally accepted 
and well reported role of IL-35 in cancers. This review 
analyzed the array of studies on cancer since the 
inception of IL-35. It can be safely concluded that role 
of IL-35 in cancer is developing but still in infancy and 
requires further data to exactly locate its functions in 
TME. This review can be important not only for future 
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studies in this direction but may also help scientific 
community searching anti-IL-35 therapies to treat 
cancers.  

Future outlook  
 IL-35 is relatively new to the spectrum of 

cytokines, which promise potentials to be a drug 
target. The research on IL-35 has not reached its peak 
and many dimensions are yet to be explored. Whether 
it’s completely an inhibitory cytokine in cancer 
biology? To what extent immune evasion is 
dependent on IL-35 and at what level? And can we 
block IL-35 to curtail its effects if answer to all above 
question is yes? These, among others, remain 
questions for scientific community needing to be 
answer.  
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