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Abstract 

Switching aerobic respiration to anaerobic glycolysis of cancer cells plays an important role in development and 
progression of acquired resistance. Since vitamin C enabled the inhibition of glycolysis of cancer cells, and 
erlotinib-resistant sub-line of HCC827 (ER6 cells) switched its metabolic features to higher glycolysis for 
survival, we hypothesize that vitamin C is able to inhibit glycolysis of ER6 cells. In this study, we found that both 
reduced vitamin C and oxidized vitamin C (DHA) could selectively suppress the viability of ER6 cells. DHA was 
efficient in inhibiting glycolysis and leading to energy crisis, which could be one mechanism for overcoming drug 
resistance to erlotinib of ER6 cells. Our data suggest that applying DHA could be a novel treatment strategy for 
NSCLC with acquired resistance to targeted therapy. 
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1. Introduction 
It has been well established that the first-line 

tyrosine kinase inhibitors (TKIs) which target 
epidermal growth factor receptor (EGFR) mutations 
in advanced non-small cell lung cancer (NSCLC) 
patients show better response than those patients 
treated with general chemotherapy [1-3]. 
Nevertheless, acquired resistance often occurs after 12 
months TKIs treatment on average [4, 5]. A major 
acquired resistant mechanism of NSCLC is molecular 
abnormalities, including EGFR-T790M mutation, AXL 
or MET over-expressions [6-10].  

Metabolism adaption of cancer, for example, the 
Warburg effect, has appealed great attention in drug 
resistance during tumor therapy [11]. 
Reprogramming of glycolytic activity and its 
corresponding changes of metabolites had been found 

in drug resistant cells and tissues of breast cancer, 
breast cancer-associated fibroblasts, human 
glioblastoma, pancreatic adenocarcinoma, gastric 
cancer, myeloid leukemia and non-small cell lung 
cancer [12-18].  

Targeting metabolite changes and its 
corresponding metabolic pathways has been novel 
ways to overcome drug resistance [19]. Data had 
proven that inhibition of GLUT1 activity and 
expression can sensitize head and neck cancer cells 
(Cal27 cells) to cisplatin treatment in both normoxic 
and hypoxic conditions [20]. Another data had shown 
that development of tamoxifen resistance may be 
driven by HIF-1α hyper-activation via modulation of 
Akt/mTOR and/or AMPK signaling pathways, and 
that inhibition of aerobic glycolysis and repression of 
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this signaling pathway enable the restoration of 
tamoxifen sensitivity in antiestrogen-resistant breast 
cancer cells [21]. Similar outcomes that inhibiting 
glycolysis with 2-deoxyglucose and 3-bromopyruvate 
propylester is able to reverse the drug resistance were 
also reported in oxaliplatin-resistant colon cancer 
cells, sorafenib-resistant HCC cells and leukemia cells 
[22-24].  

Vitamin C or ascorbic acid had been proposed as 
an anticancer agent that enables to reduce cancer 
incidence and cancer treatment-related side effects 
[25]. Data showed that vitamin C selectively kills 
KRAS and BRAF mutant colorectal cancer cells by 
targeting GAPDH due to increased uptake of oxidized 
vitamin C, dehydroascorbate (DHA), via the glucose 
transporter-GLUT1, which induces oxidative stress 
and suppresses GAPDH [26]. Other data also showed 
that vitamin C treatment generates reactive oxygen 
species (ROS) resulting in cell death in multiple 
myeloma tumor cells, cholangiocarcinoma cells, 
breast cancer cells and malignant melanoma cells 
[27-30]. Moreover, vitamin C treatment was 
dose-independent and transporter-independent, such 
as sodium-dependent vitamin C transporter 2 
(SVCT-2) [28, 30, 31]. In vivo xenograft experiment 
and case-control study had proven that vitamin C 
treatment is able to inhibit tumor growth and dietary 
intake of vitamin C protects against cancer [28, 32, 33]. 
A recent report found that vitamin C treatment 
mimics Tet2 restoration to block leukemia progression 
and vitamin C treatment in leukemia cells enhances 
their sensitivity to PARP inhibition [34]. 

We have successfully established a series of 
erlotinib-resistant subclonal cells (ER1-6) originated 
from HCC827 cells through de-sensitizing the 
HCC827 cells in gradually increasing erlotinib 
concentrations until 10 μM in the culture media and 
reported AXL kinase as a novel resistance molecule in 
ER1-5 cells [8, 18]. We also found that ER6 cells switch 
their metabolic features to higher glycolysis for 
survival and combining inhibitions of glycolysis and 
AKT/autophagy could overcome drug resistance in 
ER6 cells [18]. In this study, we explored the effects of 
reduced vitamin C and DHA on ER6 cells comparing 
to HCC827 cells, investigated the underlying 
mechanism of vitamin C to ER6 cells and HCC827 
cells, and evaluated the potential application of 
reduced or oxidized vitamin C for a potential 
adjuvant treatment of NSCLC with EGFR mutations. 

2. Materials and Methods 
2.1 Reagents & materials 

Reduced vitamin C (A103539-25g), nevirapine 
(N129779), glucose, NAD+, ATP, ADP and AMP were 

purchased from Aladdin chemicals (Shanghai, China). 
Oxidized vitamin C (261556-250mg), PMS (P9625) 
were purchased from Sigma-Aldrich (Shanghai, 
China). MTS Reagent Powder (G1112) was purchased 
from Promega Corportion (WI, USA). The antibody of 
GAPDH was purchased from abcam (Shanghai, 
China). The antibody of goat anti-rabbit was 
purchased from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA). The antibodies of 
phosphorlation-AMPK and AMPK were purchased 
from Cell Signaling Technologies (Beverly, MA, USA). 
The antibodies of HK-2, PK-M2 and PFK3 were 
purchased from Proteintech (Wuhan, China). 
RPMI-1640 (8116322) was purchased from Gibco 
Thermo Fisher Scientific (Guangzhou, China). 
GSH/GSSG test kit was purchased from Beyotime 
Biotechnology (Shanghai, China). HPLC acetonitrile 
and HPLC methanol were purchased from Oceanpak 
(Goteborg, Sweden). Deionized water was purchased 
from Watsons (Guangzhou, China). Seahorse XF24 
Cell culture microplate, XF24 extracellular flux assay 
kit, base medium, calibrate medium were purchased 
from Seahorse Agilent technologies (Beijing, China). 

2.2 Cell culture 
All cell lines were maintained in RPMI-1640 

medium supplemented with 10% fetal bovine serum 
and 1% Penicillin & Streptomycin in incubator under 
37℃, 5% carbon dioxide condition. 

2.3 Cell viability assay 
Cells were transformed to a 96-well plate in 100 

microliter full medium. When cells reached 50% 
confluence, flash medium or medium supplemented 
with reduced vitamin C or DHA replaced original 
medium. MTS-PMS mixed solution was added and 
incubated in incubator under 37℃, 5% carbon dioxide 
condition. Absorbance was measured following the 
instructions of the assay kit (Ye, M., et al. 2017). 

2.4 Protein expression assays 
Protein was isolated from cells using RIPA with 

10 μM PMSF. Lysates were standardized for protein 
content. The following procedure followed by the 
guideline of manufacturer. The immune-reactive 
proteins were visualized using ECL (Thermo Fisher 
Scientific). 

2.5 Extracellular flux analysis (OCR and ECAR) 
Cells were transferred into XF24 assay well then 

pretreated with or without DHA in normal medium. 
Finally, replacing and washing the normal medium 
with Seahorse assay medium without glucose. OCR 
and ECAR analysis followed the instructions of 
Seahorse Analyzer as reported previously (Ye, M., et 
al. 2017). 
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2.6 GSH and GSSG measurement 
Cells were cultured in 6-well plate. When 80% 

confluence was reached, cells were treated with DHA. 
Then cells were washed for three times with PBS and 
collected cells after trypsinization. The following 
procedure followed by the guideline of manufacturer. 

2.7 Metabolites measurement applied by 
UPLC-TOF 

Cells were cultured in 6-well plate. When cells 
had reached 80% confluence, adding DHA into 
medium and collecting metabolites after 2 hours. The 
whole metabolites test procedure was reported 
previously (Ye, M., et al. 2017). 

2.8 Statistical analysis. 
Mean values and SD were calculated by 

GraphPad Prism 5 software. The analysis of variance 
(ANOVA) was used to identify statistical differences 
between experimental factors using SPSS17.0. P<0.05 
was considered as statistically significant. 

3. Results  
3.1 Reduced vitamin C decreases viability of 
ER6 cells in both normal and glucose free 
condition  

ER6 cells have higher glycolysis than their 
parental cells HCC827 [18]. We wondered whether 
some key kinases of glycolysis such as HK-2, PK-M2 
are overexpressed. Unfortunately, the expression of 

both HK-2 and PK-M2 did not increase in ER6 cells 
compared to HCC827 cells (Figure 1A). The 
expression of PFK3, another key kinase of glycolysis 
was not detected in both ER6 cells and HCC827 cells 
(data not shown). When treated with reduced vitamin 
C for 24 hours, cell viability of ER6 cells and HCC827 
cells was not impacted in the normal glucose medium 
(Figure 1B). When treated with reduced vitamin C for 
48 hours, cell viability of ER6 cells was depressed in 2 
mM dosage, while this same treatment was not able to 
inhibit viability of HCC827 cells (Figure 1C). 

We had reported that ER6 cells are more 
addicted to glucose previously [18]. When treated 
with reduced vitamin C after glucose deprivation for 
24 and 48 hours, the viability of ER6 cells was 
suppressed in 1 mM dosage treatment, while this 
same dosage treatment was not able to affect the 
viability of HCC827 cells (Figure 1D, 1E). This 
indicates that reduced vitamin C enables to suppress 
ER6 cells selectively in both normal and glucose free 
medium.  

3.2 DHA decreases viability of ER6 cells more 
effectively than reduced vitamin C in normal 
glucose medium, and DHA decreases viability 
of both ER6 cells and HCC827 cells in glucose 
free condition 

When treated with 1 mM DHA for 24 and 48 
hours, the viability of ER6 cells was depressed, while 
the viability of HCC827 cells was not inhibited in the 
normal glucose medium (Figure 2A, 2B). 

 

 
Figure 1. Reduced vitamin C decreases viability of ER6 cells in both normal and glucose free condition. A. Protein expressions of HK-2 and PK-M2 of ER6 and 
HCC827 cells analyzed by western blot; B&C. Viability analysis of ER6 and HCC827 cells with supplement of reduced vitamin C for 24 hrs (B) and 48 hrs (C) in normal glucose 
medium. ** represents p<0.01 comparing to ER6 control group; D&E. Viability analysis of ER6 and HCC827 cells with reduced vitamin C and glucose starvation for 24 hrs (D) 
and 48 hrs (E). ** represents p<0.01 comparing to ER6 control group. 
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Figure 2. DHA decreases viability of ER6 cells more effectively than reduced vitamin C in normal glucose medium, and DHA decreases viability of both 
ER6 cells and HCC827 cells in glucose free condition. A&B. Viability analysis of ER6 and HCC827 cells with supplement of DHA for 24 hrs (A) and 48 hrs (B) in normal 
glucose medium. ** represents p<0.01 comparing to ER6 control group; C. Viability analysis of ER6 and HCC827 cells with DHA and glucose starvation for 24 hrs. ** represents 
p<0.01 comparing to control group; D. Western blot analysis of protein levels of p-AMPK and t-AMPK after 6 hrs treatment with glucose deprivation and/or DHA in both ER6 
and HCC827 cells. 

 
When cells were treated with 1 mM DHA in 

glucose free medium for 24 hours, the viabilities of 
both ER6 cells and HCC827 cells were suppressed 
(Figure 2C). Previously, we had reported that glucose 
deprivation is able to increase the phosphorylation of 
AMPK [18]. We wondered whether DHA treatment 
could affect the activation of AMPK. We found that 
DHA treatment was able to depress the activation of 
AMPK, especially after glucose deprivation in ER6 
cells, while the depression of AMPK phosphorylation 
was only significant in glucose deprivation groups in 
HCC827 cells (Figure 2D). These data revealed that at 
the dosage of 1 mM DHA decreased the viability of 
ER6 cells selectively in normal glucose condition, 
while decreased the viability of both ER6 and HCC827 
cells in glucose free medium. This phenomenon is 
closely related to the decrease of AMPK 
phosphorylation under both conditions, which might 
imply inhibition of further self-protection 
mechanisms by DHA, such as energy balance or 
autophagy etc. Clinically, it is difficult to deprive cells 
of glucose, so the selective depression of cell viability 
of ER6 cells by DHA with the presence of glucose is 
more valuable, which is a key focus of our following 
mechanism study. 

3.3 DHA treatment interrupts the intracellular 
energy balance of ER6 cells and HCC827 cells  

When treated with 1 mM DHA for 2 hours, the 
abundance of NAD+ was decreased both in ER6 cells 

and HCC827 cells comparing with control group 
(Figure 3A). Importantly, we found the dramatically 
decreased ATP abundance in ER6 cells in 1 mM DHA 
treatment group, while relatively higher abundance of 
AMP and ADP levels compared to HCC827 cells 
under the same treatment (Figure 3B-D). When the 
ratio of AMP/ATP was calculated, we found 
significant increase of the ratio of AMP/ATP in ER6 
cells compared to HCC827 cells in 1 mM DHA 
treatment group (Figure 3E). In addition, the ratio of 
AMP/ATP was also much higher in 1 mM DHA 
treatment group compared to control group in ER6 
cells. This data showed the significant energy 
disturbance in ER6 cells when 1 mM DHA was 
applied.  

3.4 DHA treatment does not affect oxidative 
stress status in ER6 cells and HCC827 cells  

Intracellular DHA was not able to be detected in 
control group without DHA addition into the culture 
medium, while 1 mM DHA supplement indeed 
enabled to increase intracellular DHA abundance. The 
concentration of intracellular DHA was higher in ER6 
cells than that in HCC827 cells (figure 4A). Oxidative 
stress status in ER6 cells and HCC827 cells was not 
capable to be disturbed when they were treated with 
DHA in 1 mM or 2 mM dosage for 2 hours (figure 4B, 
4C). This indicates that DHA treatment might not 
affect intracellular redox status in ER6 and HCC827 
cells.  
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Figure 3. DHA treatment interrupts the intracellular energy balance of ER6 cells and HCC827 cells. Intracellular abundance of NAD+ (A), ATP (B), AMP (C), AMP 
(D) and AMP/ATP (E) in ER6 and HCC827 cells supplemented with 1 mM DHA for 2 hrs. ** represents p<0.01 comparing to corresponding control group; && represents p<0.01 
comparing to corresponding ER6 group. 

 
Figure 4. DHA treatment does not affect oxidative stress status in ER6 cells and HCC827 cells. A. Intracellular DHA abundance supplemented with DHA for 2 
hrs, ** represents p<0.01 comparing to corresponding HCC827 group; && represents DHA was non-detected in control group; B. Total of intracellular GSH and GSSG, control 
group was set as 100% in both ER6 cells and HCC827 cells; C. Intracellular GSSG abundance, control group was set as 100% in both ER6 cells and HCC827 cells.  

 

3.5 DHA treatment depresses glycolysis of ER6 
cells and HCC827 cells 

When pretreated with 2 mM DHA for 2 hours 
then replaced it with medium without glucose and 
DHA, glycolysis of ER6 cells and HCC827 cells was 
depressed after adding 10 mM glucose (Figure 5A, 
5B). Then, we expected to see whether supplement of 
DHA can affect glycolysis of ER6 cells and HCC827 
cells with 10 mM glucose. Fortunately, glycolysis of 

ER6 cells and HCC827 cells was also depressed 
immediately by 2 mM DHA in 10 mM glucose 
medium (Figure 5C). After that, we further explored 
whether pretreatment of cells with DHA for 2 hours 
and then supplement of DHA after adding 10 mM 
glucose could depress glycolysis of ER6 cells and 
HCC827 cells. Unfortunately, reinforcement effect did 
not exist (Figure 5D). It indicates that DHA depresses 
glycolysis of both ER6 cells and HCC827 cells.  
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Figure 5. DHA treatment depresses glycolysis of ER6 cells and HCC827 cells. A-D. ER6 and HCC827 cells were plated on Seahorse plate, and cultured for 24 hrs. 
Extracellular acidification rate analysis (ECAR) was performed according to the instructions of the manufacturer; A. Extracellular acidification rate analysis (ECAR) of HCC827 
cells pretreated with 2 mM DHA for 2 hrs, ** represents p<0.05 comparing to corresponding base group; ## represents p<0.05 comparing to corresponding glucose group; base 
group (glucose-free); glucose group (10 mM glucose); B. ECAR of ER6 cells pretreated with 2 mM DHA for 2 hrs, ** represents p<0.05 comparing to corresponding glucose 
group, ns represents p＞0.05 comparing to corresponding base group; C. ECAR of ER6 and HCC827 cells supplemented with 2 mM DHA in 10 mM glucose; ** represents p<0.05 
comparing to corresponding ER6 glucose group; ## represents p<0.05 comparing to corresponding HCC827 glucose group; D. ECAR of ER6 and HCC827 cells pretreated with 
2 mM DHA for 2 hrs, then extra 1 mM DHA was added in 10 mM glucose, ** represents p<0.05 comparing to corresponding ER6 DHA glucose group; ## represents p<0.05 
comparing to corresponding HCC827 DHA glucose group. 

 

4. Discussion 
The fact that cancer cells increase glycolysis 

rather than oxidative phosphorylation to meet energy 
requirements under physiological oxygen conditions 
had been reported to have strong correlation with 
drug resistance [11]. Recently, we reported that ER6 
cells have higher glycolysis potential and overexpress 
GLUT1 and MCT4, which are more sensitive to 
glucose deprivation. Deficiency of energy under 
glucose deprivation is one cause of decreased viability 
of ER6 cells [18]. However, clinical deprivation of 
glucose only to cancer cells is not practical, other 
intervention methods have to be considered. One 
study indicated that reduced vitamin C selectively 
kills KRAS and BRAF mutant colorectal cancer cells 
by targeting GAPDH, which is due to increased 
uptake of the oxidized vitamin C via GLUT1 [26]. A 
recent article showed that pharmacologically-dosed 
vitamin C enables to selectively kill multiple myeloma 
tumor cells [27]. High level vitamin C was reported to 
be able to be autoxidized, which provides an electron 
to oxygen to generate H2O2, thus excessive 
intracellular H2O2 leads to death of breast cancer cells 
[29]. To have better understanding of the effects of 
vitamin C on ER6 cells and HCC827 cells, we applied 
reduced vitamin C on ER6 cells and HCC827 cells and 
found that treating cells with 2 mM reduced vitamin 
C for 48 hours was able to decrease the viability of 
ER6 cells in the presence of 2 g/L glucose. Since ER6 

cells are more sensitive to glucose deprivation, as 
mentioned above, lower concentration (1 mM) and 
shorter incubation time (24 hrs) of reduced vitamin C 
could selectively decrease viability of ER6 cells under 
glucose starvation condition. It is consistent to the 
report that high-dose vitamin C treatment selectively 
induces death of glycolysis-addicted KRAS and BRAF 
driven cancer cells [26]. Other article showed that 
doxycycline combined with vitamin C is a way to 
eradicate doxycycline-resistant cancer stem cells 
(CSCs) population [35].  

Vitamin C uptake is mediated by two families of 
transport proteins, including sodium-dependent 
vitamin C transporters (SVCTs) 1 and 2, and the 
glucose transporters (GLUTs). GLUTs, mainly GLUT1 
and GLUT3, transport the DHA, into cells and SVCTs 
transport reduced vitamin C directly into the cell [26, 
31]. Considering that ER6 cells overexpress GLUT1, 
we wondered whether DHA treatment would be 
more efficient to suppress ER6 cells than HCC827 
cells. We found that treatment with 1 mM DHA for 24 
and 48 hours selectively decreased the viability of ER6 
cells in normal glucose level, and 1 mM DHA 
combined with glucose deprivation treatment for 24 
hours enabled to suppress both ER6 cells and HCC827 
cells. Consistent to the reports that overexpression of 
GLUT1 enables to transport DHA more efficiently 
into cells [26, 36], we did find that ER6 cells have 
higher intracellular DHA concentration after DHA 
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treatment than HCC827 cells. It indicates that 
overexpression of GLUT1 in ER6 cells facilitates ER6 
cells to transport more DHA than HCC827 cells, 
which is the underlying mechanism of the selective 
suppression of reduced vitamin C and DHA on ER6 
cells. 

Studies had shown that vitamin C treatment kills 
cancer cells is ascribed to the cause of energy crisis 
due to glycolysis inhibition [26, 28, 30, 37]. We have 
recently proven that glucose deprivation enables to 
cause energy crisis and selectively depress the 
viability of ER6 cells [18]. Hence we hypothesized that 
DHA treatment is able to reduce energy production. 
We found that treatment with 1 mM DHA for 2 hours 
enabled to decrease intracellular abundance of NAD+ 
in both ER6 cells and HCC827 cells. And we also 
found the dramatically decreased ATP abundance in 
ER6 cells in 1 mM DHA treatment, while relatively 
higher abundance of AMP and ADP levels compared 
to HCC827 cells under the same treatment. It is 
consistent to the results of these metabolite levels 
under glucose deprivation treatment as we reported 
before [18]. We also found that DHA treatment 
suppressed AMPK both in normal glucose and 
glucose deprivation, which is in accordance with the 
previous finding [18, 26]. We have found that glucose 
deprivation stimulates AMPK and increases 
autophagy [18]. AMPK protects tumor cells from 
metabolic crisis through different mechanisms: 
autophagy induction, maintaining proper ATP levels 
[38, 39]. Hence, it suggests that DHA might depress 
the viability of ER6 cells through disturbing 
intracellular energy equilibrium and inhibiting AMPK 
phosphorylation. Studies had shown that metformin 
targets cancer stem cells in breast cancer, pancreatic 
cancer, glioblastoma and colon cancer by inhibiting 
oxidative phosphorylation and by reducing 
mitochondrial ATP production resulting in energy 
crisis [40]. Another research showed that 
neoalbaconol, a novel small-molecular compound 
isolated from the fungus, induces energy depletion by 
reducing the consumption of glucose and ATP 
generation [41]. It indicates that disturbance of energy 
balance by suppressing ATP production of ER6 cells is 
the underlying mechanism of viability depression of 
ER6 cells by DHA.  

To better understand the underlying 
suppression mechanism of DHA to ER6 cells, we 
applied XF24 extracellular flux analyzer (Seahorse 
Biosciences Agilent technologies) to measure real time 
glycolysis ability, and found that DHA pretreatment, 
DHA supplement and combined DHA pretreatment 
with DHA supplement were able to suppress 
glycolysis in ER6 cells and HCC827 cells. What we 
found is consistent with previous reports [26, 28, 30, 

37]. Studies had shown that increased DHA uptake 
causes oxidative stress as intracellular DHA is 
reduced to vitamin C, which depletes glutathione 
[26-29]. Unfortunately, we did not find DHA 
treatment impacted redox state of ER6 cells and 
HCC827 cells. We had previously reported that the 
antioxidation ability of ER6 cells is destroyed and 
produces more ROS than HCC827 cells without any 
treatments ascribed to mitochondria dysfunction [18]. 
A paper showed that treatment of cells with vitamin C 
and quercetin did not modulate cellular reduced 
glutamine levels in breast cancer cells [42]. It suggests 
that DHA treatment disrupts energy production of 
ER6 cells by inhibiting glycolysis directly rather than 
promoting oxidative stress in the way of consuming 
reduced glutathione.  

In conclusion, DHA is more efficient than 
reduced vitamin C in depressing the viability of ER6 
cells in the presence of glucose. Inhibiting glycolysis 
which results in energy crisis might be a mechanism 
of the suppression of the viability of ER6 cells by 
DHA. DHA supplement could be a potential strategy 
against acquired resistance to TKIs in NSCLCs’ 
targeted therapies.  
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