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Abstract 

Angiogenesis is required for tumor growth. Dihydroartemisinin (DHA), a the effective anti-malarial 
derivative of artemisinin, demonstrated potent anti-angiogenic activities that closely related to the 
regulation of vascular endothelial growth factor (VEGF) signaling cascade. VEGF receptor 1 
(VEGFR1), a receptor in endothelial cells (ECs), coordinately regulate angiogenic activity triggered 
by ligand-receptor binding. Here we aimed to explore the effects of DHA on VEGFR1 expression in 
ECs. We found that DHA significantly increases VEGFR1 expression in human umbilical vein 
endothelial cells (HUVECs). In addition, DHA significantly upregulates the level of V-Ets Avian 
Erythroblastosis Virus E26 Oncogene Homolog 1 (ETS-1), a transcriptional factor which binds to 
the human VEGFR1 promoter. ChIP assay showed that DHA increases ETS-1 binding to the -52 ETS 
motif on the VEGFR1 promoter. Knockdown of ETS-1 by RNA interference abolished DHA-induced 
increase of VEGFR1 expression. Taken together, we demonstrated that DHA elevates VEGFR1 
expression via up-regulation of ETS-1 transcription in HUVECs. 
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Introduction 
Angiogenesis refers to the form of new vascular 

network by the proliferation and migration from the 
original vascular endothelial cells [1]. Angiogenesis is 
essential both in the adult new blood vessel formation 
and in embryogenesis, while abnormal angiogenesis 
is related to certain pathological states such as cancer 
[2, 3]. During cancer growth, newly formed blood 
vessels are required to provide nutrients and oxygen, 
and remove the waste products [3, 4]. 

Among the regulators of angiogenesis, VEGF is 
the most potent stimulator in physiological and 
pathological situations [5, 6]. To promote 
angiogenesis, VEGF acts through its receptor 

VEGFR2, which is highly expressed in ECs [7-9]. 
VEGFR1, another receptor of VEGF, is considered to 
be a ‘decoy’ receptor which isolates VEGF and 
reduces its incorporation to VEGFR2 [10-12]. Previous 
studies suggested that VEGFR1 suppresses the 
pro-angiogenic signals induced by VEGFR2 in ECs 
[13]. In addition, the soluble VEGFR1 which carries 
only the extracellular domain, is considered to be a 
natural inhibitor of VEGF-A [7].  

Dihydroartemisinin (DHA) is a semi-synthetic 
derivative of artemisinin, which is extracted from 
Chinese herb Artemisia annua [14, 15]. Like other 
artemisinin derivatives, DHA displayed strong 
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anti-inflammatory and anti-angiogenic activities 
[16-18]. Although DHA have a positive role in 
angiogenesis in zebrafish [19], it suppressed the 
growth, proliferation, migration, and tube formation 
of mammalian ECs, which are essential processes in 
angiogenesis [20-22]. In addition, DHA inhibited 
VEGF expression in cancer cells and reduced VEGF 
binding to its receptors in HUVECs [18, 23]. However, 
the role and mechanisms by which DHA affects 
VEGFR1 expression in ECs have not been studied.  

 ETS-1 is a member of the ETS transcriptional 
factor family which contains about 30 related proteins 
and a basic 80-90 aa DNA-binding domain [24]. As a 
transcription factor, ETS-1 is highly expressed in 
vascular system [25, 26]. In ECs, ETS-1 regulates 
downstream target genes including Tie1, Tie2, MMPs, 
p53 and VEGFR1 [27-30]. On the VEGFR1 promoter, 
ETS-1 binds to a conserved ETS responsive element 
between -49 and -52 region to promote VEGFR1 
expression [31].  

 In this study, we reported that DHA 
significantly upregulates the expression of VEGFR1 
and ETS-1 in HUVECs. ChIP assays validated that the 
binding of ETS-1 on the VEGFR1 promoter was 
significantly increased by DHA treatment. In 
addition, knockdown of ETS-1 eliminates 
DHA-induced expression of VEGFR1. These results 
indicated that DHA elevates VEGFR1 expression via 
up-regulation of ETS-1 in HUVECs.  

Materials and Methods  
Cell culture  

HUVECs were obtained from Lonza (Basel, 
Switzerland) and cultured in DMEM (Corning, NY, 
USA) with 10% FBS (Lonza), 100 IU/ml penicillin and 
100 µg/ml streptomycin (Sigma-Aldrich, St. Louis, 
MO, USA). HUVECs were treated with DHA 
(Sigma-Aldrich) for different time points (0, 1, 6, 12, 24 
h) or concentrations (0, 5, 10, 25, 50, 100 μM). 

Western blotting 
After treatment with DHA, HUVECs were lysed 

in RIPA lysis buffer with 0.1% SDS, 1 mg/ml 
leupeptin and 1 mM PMSF on ice. Proteins were 
quantified by BCA assay (Bio‑Rad, Hercules, CA, 
USA). The protein samples were loaded and 
separated on a 8% SDS‑polyacrylamide gel, then 
electroblotted onto the PVDF membranes. The 
membranes were blocked 1 h in 5% skim milk in 
TBS-T (TBS containing 0.05% Tween-20), and then 
incubated with the primary antibody at 4˚C 
overnight. The primary antibodies include 
anti-VEGFR1 antibody (Abcam, Cambridge, MA, 
USA), anti-ETS-1 antibody (Abcam) and anti-β-actin 

antibody (Sigma-Aldrich). The membranes were 
washed in TBS-T, and incubated with a HRP-linked 
goat anti-rabbit secondary antibody (Proteintech, 
Chicago, IL, USA) for 2 h at room temperature. The 
protein bands were visualized with an ECL kit 
(Millipore, Billerica, MA, USA). 

RNA extraction and quantitative real-time 
PCR(qRT-PCR)  

Total RNA of HUVECs was isolated using Trizol 
(Invitrogen, Carlsbad, CA, USA), and the cDNAs was 
generated from the reverse transcription by the 
RevertAid First Strand cDNA Synthesis Kit 
(ThermoFisher, Grand Island, NY, USA). Then the 
mRNAs levels were evaluated by qRT-PCR executed 
by a Applied Biosystems PCR System (Waltham, MA, 
USA) with SYBR supermix (TaKaRa Biotechnology, 
Shiga, Japan) and following the thermocycling 
conditions: 94°C 1 min; 95°C 1 min; 95°C 12 s, 62 °C 1 
min; 40 cycles from step 3 to 4. The primers are as 
follows: VEGFR1: sense, 5ˊ-TGGCCATCACTAAGGA 
GCACTCC-3ˊ; anti-sense, 5ˊ-GGAACTGCTGATGGC 
CACTGTG-3ˊ; ETS-1: sense, 5ˊ-TTCACTAAAGAACA 
GCAAC-3ˊ; anti-sense, 5ˊ-TGTCCCCAACAAAGTC 
TG-3ˊ; β‑actin: sense, 5ˊ-TTGCCGACAGGATGCAG 
AA-3ˊ; anti-sense, 5ˊ- GCCGATCCACACGGAGTA 
CT-3ˊ. Results was normalized against β‑actin. 

Immunofluorescence (IF) 
HUVECs were grown fluency on cover glass. 

After DHA treatment, 4% paraformaldehyde was 
added to fix the cells. Then the cells were penetrated 
with Triton X-100 (0.1%) for 10 min and blocked with 
5% BSA. Proteins were labeled with primary antibody 
against VEGFR1 (Abcam) at 4˚C overnight and an 
Alex-546 labelled anti-rabbit IgG secondary antibody 
(Molecular Probes, Eugene, OR, USA) for 1 h at room 
temperature. The cell nucleus was stained with DAPI 
(ThermoFisher). Positive staining were detected using 
a fluorescence microscopy (Olympus, Tokyo, Japan). 

Chromatin immunoprecipitation (ChIP) 
A ChIP assay Kit (Millipore) was used as 

previously described [32]. HUVECs were exposed to 
1% paraformaldehyde for 10 min to achieve in vivo 
crosslinking, then the crosslinked DNA were sheared 
to 200-1000 bp fragments by sonication. The 
chromatin fragments were immunoprecipitated with 
antibodies against ETS-1 (Abcam) and IgG (Millipore) 
using protein A/G agrose beads. The 
immunoprecipitated gDNA was enriched by 
centrifuging and purified by Phenolic chloroform 
isoamyl alcohol (25:24:1). The immunoprecipitated 
fragments of the VEGFR1 promoter were amplified by 
PCR. The primers are as follows: forward, 
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5ˊ-CCCTCGGCTGCTCTTCATC-3ˊ; reverse, 5ˊ-TTCC 
TCCCAGGCTCGCTTCC-3ˊ.  

siRNA transfection 
Transfection of siRNAs was performed when 

HUVECs were reached 60% confluent using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). 
Briefly, transfection reagent was mixed with siRNAs 
(Genepharma, Shanghai, China) with Opti-MEM 
(Invitrogen) separately. The mixture were incubated 
for 20 min and added into the cell culture. The cells 
were collected 48 h later. The following siRNAs were 
used: ETS-1 siRNA: sense, 5ˊ-AUAGAGAGCUACG 
AUAGUUdTT-3ˊ; anti-sense, 5ˊ-AACUAUCGUAGC 
UCUCUAUdTT-3ˊ; control siRNA: sense, 5ˊ-UUCUC 
CGAACGUGUCACGUTT-3ˊ; anti-sense, 5ˊ-ACGUG 
ACACGUUCGGAGAATT-3ˊ. 

Statistical analysis 
Statistical significance was evaluated with 

paired-sample t-test by using SPSS 19.0 software 

(SPSS Inc., Chicago, IL, USA). p<0.05 was considered 
significant. 

Results 
The effects of DHA on VEGFR1 expression in 
ECs 

HUVECs were treated with DHA at different 
dose and time course. We found that DHA 
remarkably increased the mRNA (Fig. 1A) and 
protein level (Fig. 1B) of VEGFR1 at a concentration of 
50 µM and 100 µM. By treatment with 50 µM DHA, 
the mRNA and protein level of VEGFR1 was 
significantly increased in a time-dependent manner 
(Fig. 1C, D). Immunofluorescence staining with 
VEGFR1 antibody showed that the VEGFR1 
expression on the EC membrane was remarkably 
increased by DHA treatment (Fig. 1E). Together, DHA 
increases VEGFR1 expression in HUVECs.  

 

 
Figure 1: DHA up-regulates VEGFR1 expression in ECs. (A) Relative VEGFR1 mRNA expression in HUVECs treated with increasing concentrations of DHA for 24 h. n 
= 6; n.s., non-significant; *, P < 0.05; **, P < 0.01. (B) Representative immunoblots of VEGFR1 from HUVECs treated with increasing concentrations of DHA for 24 h. (C) Relative 
VEGFR1 mRNA expression in HUVECs treated with 50 μM DHA at different time points. n = 5; n.s., non-significant; *, P < 0.05. (D) Representative immunoblots of VEGFR1 from 
HUVECs treated with 50 μM DHA at different time points. (E) Immunofluorescence staining of VEGFR1 in HUVECs treated with 50 μM DHA for 24 h. 
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Figure 2: DHA up-regulates ETS-1 expression in ECs. (A) Relative ETS-1 mRNA expression in HUVECs treated with increasing concentrations of DHA for 24 h. n = 6; 
n.s., non-significant; *, P < 0.05; **, P < 0.01. (B) Representative immunoblots of ETS-1 from HUVECs treated with increasing concentrations of DHA for 24 h. (C) Relative ETS-1 
mRNA expression HUVECs treated with 50 μM DHA at different time points. n = 6; n.s., non- significant; *, P < 0.05; **, P < 0.01. (D) Representative immunoblot of ETS-1 from 
HUVECs treated with 50 μM DHA at different time points. 

 

 
Figure 3: DHA enhances ETS-1 binding to the VEGFR1 promoter. (A) ChIP 
assay for ETS-1 binding to VEGFR1 promoter in HUVEC with 50 µM DHA treatment 
for 24 h. (B) Binding ratio relative to total input chromatin in the ChIP reaction. n = 6; 
n.s., non-significant; *, P < 0.05. 

 

The effects of DHA on ETS-1 expression in 
ECs 

Because ETS-1 is a major regulator of VEGFR1 
[33, 34], we next investigated the effects of DHA on 

expression of ETS-1. qRT-PCR analysis showed that 
the ETS-1 mRNA expression levels were significantly 
increased by DHA treatment at 50 µM and 100 µM for 
24 h (Fig. 2A). Western blot analysis showed a 
similarly pattern of increase of ETS-1 protein levels by 
50 µM and 100 µM DHA treatment (Fig. 2 B). At a 
concentration of 50 µM, DHA significantly increase 
the mRNA and protein levels of ETS-1 after 12 h and 
24 h treatment (Fig 2C, D). These results indicated 
ETS-1 expression is enhanced during DHA treatment 
in HUVECs. 

DHA enhances ETS-1 binding to the VEGFR1 
promoter 

Previously studies reported that the promoter of 
VEGFR1 gene contains ETS binding motifs [29, 31, 34]. 
To examine the effects of DHA on the interactions 
between ETS-1 and VEGFR1 promoter, HUVECs were 
treated with 50 µM DHA for 24 h and collected for 
CHIP assay. As shown on Fig. 3, ETS-1 binds to -52 
ETS motif on the VEGFR1 promoter (Fig. 3A) and 
DHA further enhanced the binding of ETS-1 to the 
motif (p<0.05)(Fig. 3B).  

Knockdown of ETS-1 eliminates DHA-induced 
expression of VEGFR1 in ECs 

To confirm the role of ETS-1 in DHA induced 
VEGFR1 expression, ETS-1 were knocked down in 
HUVECs by siRNA interference. Transfection of 
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ETS-1 siRNA in HUVECs reduced both ETS-1 
(P<0.01) (Fig. 4A) and VEGFR1 transcription 
(P<0.05)(Fig. 4B), and induced measureable decrease 
of ETS-1 (Fig. 4C) and VEGFR1 protein (Fig. 4D). 
Next, HUVECs with ETS-1 siRNA transfection were 
treated with 50 µM DHA for 24 h. In the 
ETS-1-silenced HUVECs, no increase in VEGFR1 
mRNA (Fig. 4E) and protein (Fig. 4F) was observed 
after DHA treatment. Therefore, DHA-induced 
elevation of VEGFR1expression is mediated by ETS-1.  

Discussion 
DHA is an effective anti-malarial agent with few 

side effects [15, 20]. Recent studies revealed a potent 
anti-tumor and anti-angiogenic activity of DHA [35, 
36]. On cellular level, DHA exerted a significant 
inhibitory effect on apoptosis, migration and tube-like 
formation of ECs [37]. Several signaling cascades 
including NF-κB, PKC, ERK, JNK, and p38 MAPK 
pathway have been reported to mediate the effects of 
DHA [38-42]. For example, DHA activates JNK 
signaling pathway and then increases the expression 
of cyclooxygenase-2 and matrix metalloproteinase-13 
(MMP-13) [43]. Moreover, DHA plays a negative role 
in the expression of hypoxia inducible factor (HIF)-1α, 
angiogenic mediators VEGF, MMP9, MMP11, and 
collagens [30, 44]. Structurally, DHA may bind to 
VEGF and its receptors [45]. Although dozens of 
papers have been published regarding the role of 
DHA on endothelial cell function, to date the effects of 
DHA on VEGFR1 expression in ECs have not been 

reported. In this study, we found that transcriptional 
factor ETS-1 mediates dihydroartemisinin-induced 
VEGFR-1 expression. This novel finding was 
validated by mRNA and protein expression analyses, 
siRNA interference and examination of protein-DNA 
interactions. 

VEGFR1 is a one of the major regulators in 
vascular development and angiogenesis [7, 46]. The 
responses of VEGFR1 are influenced by the binding of 
ligands and the indirectly interaction with VEGFR2 [7, 
29]. Loss of VEGFR1 increases VEGFR2 
phosphorylation and activity, resulting in vessel 
overgrowth [47, 48]. Overexpression of VEGFR1 
suppresses VEGFR2-mediated EC proliferation [13, 
49]. In addition, VEGFR1 directly mediates a series of 
signal responses during angiogenesis and might 
prevent tumor growth [48]. In this study, we 
demonstrated that DHA treatment significantly 
enhances the expression of VEGFR1, which may 
suppresses VEGFR2-mediated pro-angiogenic 
responses. Therefore, our study provided a novel 
mechanism of the anti-angiogenic effect of DHA.  

ETS-1 is a master regulator of endothelial gene 
transcription [50]. The transcriptional regulation of 
VEGFR1 by ETS-1 during embryonic or tumorous 
angiogenesis has been systematically studied [33, 34]. 
Binding of ETS-1 on -52 site activates VEGFR1 
expression [51]. Our results showed that DHA 
significantly upregulates the expression of ETS-1 in 
HUVECs. ChIP assay also showed that DHA 
increases ETS-1 binding to the -52 ETS motif on the 

 
Figure 4: Knockdown of ETS-1 eliminates DHA-induced expression of VEGFR1 in ECs. HUVECs were transfected with control siRNA or siRNA against ETS-1. The 
expression of ETS-1 were assessed by qRT-PCR (A) and by Western blot (B). n = 4; *, P < 0.05; **, P < 0.01. After transfection, the expression of VEGFR1 were assessed by 
qRT-PCR (C) or by Western blot (D). HUVECs with ETS-1 siRNA interference were treated with 50 µM DHA. VEGFR1 expression was assessed by qRT-PCR (E) or by 
Western blot (F) at different time points. n = 6; n.s., non-significant. 
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VEGFR1 promoter. In addition, knockdown of ETS-1 
abolished DHA-induced VEGFR1 expression. To our 
knowledge, this is the first study which validated the 
functional relevance between DHA and ETS-1. This 
suggest that ETS-1 as a novel mediator for the cellular 
functions of DHA and other artemisinin derivatives.  

Although VEGFR-1 is highly expressed in ECs, it 
has also been detected in monocyte/macrophages, 
hematopoietic stem cells, and a subset of epithelial 
cancer cells [52, 53]. In other types of cells, VEGFR-1 
also involves in regulation of cellular functions, e.g., it 
supports the growth and survival of human breast 
carcinoma [53]. ETS-1 is widely expressed in most cell 
types, and facilitates malignant transformation and 
tumour progression [54]. Therefore, ETS-1-regulated 
VEGFR-1 expression might exist in non-endothelial 
cells, which could also be effected by DHA treatment. 
Further studies are needed to explore the role of DHA 
on VEGFR-1 expression in non-endothelial cells, 
particularly in tumor cells.  

In this study, we demonstrated that DHA 
induces VEGFR1 expression by up-regulating ETS-1 
transcription factor. This is a novel mechanism 
contributing towards the effect of DHA on 
endothelium, and helps explore its clinical 
applications in chemotherapy. 
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