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Abstract 

Integration of public genome-wide gene expression data together with Cox regression analysis is a 
powerful weapon to identify new prognostic gene signatures for cancer diagnosis and prognosis. 
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC), however, it remains 
largely unknown about the specific gene prognostic signature of HBV-associated HCC. Using 
Robust Rank Aggreg (RRA) method to integrate seven whole genome expression datasets, we 
identified 82 up-regulated genes and 577 down-regulated genes in HBV-associated HCC patients. 
Combination of several enrichment analysis, univariate and multivariate Cox proportional hazards 
regression analysis, we revealed that a three-gene (SPP2, CDC37L1, and ECHDC2) prognostic 
signature could act as an independent prognostic indicator for HBV-associated HCC in both the 
discovery cohort and the internal testing cohort. Gene set enrichment analysis showed that the 
high-risk group with lower expression levels of the three genes was enriched in bladder cancer and 
cell cycle pathway, whereas the low-risk group with higher expression levels of the three genes was 
enriched in drug metabolism-cytochrome P450, PPAR signaling pathway, fatty acid and histidine 
metabolisms. This indicates that patients of HBV-associated HCC with higher expression of these 
three genes may preserve relatively good hepatic cellular metabolism and function, which may also 
protect HCC patients from persistent drug toxicity in response to various medication. Our findings 
suggest a three-gene prognostic model that serves as a specific prognostic signature for 
HBV-associated HCC. 

Key words: Hepatitis B virus associated hepatocellular carcinoma, Robust Rank Aggreg analysis, Hub genes, 
Prognostic signature, Overall survival. 

Introduction 
In recent years, high-throughput expression 

profiling data from microarray chip and RNA 
sequencing (RNA-Seq) provide useful information 

regarding the mechanisms and diversity of various 
cancers, and are valuable for the diagnosis, 
therapeutic response prediction and prognosis 
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evaluation in those diseases [1]. However, there are 
many obstacles in data preparation, analysis and 
interpretation because the results from one individual 
study can be rather noisy. Therefore, integration of the 
public genome-wide gene expression data is a 
powerful weapon for cancer diagnosis and prognosis 
[2]. 

Hepatocellular carcinoma (HCC) is one of the 
most prevalent cancers worldwide and the second 
cause of death among malignancy tumors [3]. 
Although more than 40 prognostic gene signatures 
have been described in HCC, none has become a 
commercial marker useful for clinical 
decision-making [4, 5]. Therefore, identifying a more 
specific gene prognostic signature for HCC with a 
specific etiology still represents a critical approach for 
the diagnosis and prognosis of HCC.   

Over 50% of HCC cases worldwide are 
attributed to hepatitis B virus (HBV) infection. In 
areas with high HBV prevalence, such as Southeast 
Asia and sub-Saharan Africa, more than 80% of 
patients with HCC are due to HBV infection [6]. 
Chronic HBV infection plays critical roles in the 
progression of HCC and patients with 
HBV-associated HCC usually have poor clinical 
recovery and high rate of recurrence after treatment 
[7]. Control of HBV infection is effective to reduce the 
mortality of HCC patients in East Asia and Southern 
Europe [8]. Because of the integration of HBV DNA 
into host cellular DNA, and also the expression of 
HBV proteins that have direct effect on cellular 
functions [9], the pathogenesis of HBV-associated 
HCC has its own specific gene signatures as 
compared to other types of HCC [10-12]. Recently, 
semi-supervised methods to predict patient survival 
from gene expression data have been widely 
accepted. These methods allow us to use the 
expression of some critical genes, also known as 
prognostic genes, to predict the survival of future 
patients and also the efficiency of therapeutic 
treatment [13]. As such, screening of HBV specific 
prognostic gene models is ultimately important for 
the diagnosis and prognosis of patients with 
HBV-associated HCC. However, no specific gene 
prognostic model has been developed for 
HBV-associated HCC until now.  

In this current study, the R package called 
Robust Rank Aggreg (RRA) was used to integrate 
several HBV-associated HCC experimental sources, 
which is helpful to identify evidence-supported 
findings and to increase the signal as well as to 
minimize rates of false positive findings [14]. By using 
the gene cluster of differential expressed genes 
acquired from RRA, we performed bioinformatics 
analysis of weighted gene co-expression network 

analysis (WGCNA) [15] to identify key gene modules, 
following by construction of the protein-protein 
interaction (PPI) networks for the key gene modules 
in order to further identify hub genes. Lastly, we 
identified a three-gene prognostic signature in these 
hub genes by univariate and multivariate Cox 
regression analysis from the GSE14520 dataset. 

Materials and Methods  
Collection of HBV-associated HCC gene 
expression datasets  

All HBV-associated HCC datasets were 
downloaded from GEO (http://www.ncbi.nlm.nih 
.gov/geo/). Every dataset was estimated thoroughly 
through full text. The selection criteria used in this 
study are as follows: 1. gene expression profiling 
datasets that included gene microarray chip 
technology or RNA-Seq technique; 2. studies 
comparing gene expressions between HBV-associated 
cancer and non-cancerous liver tissue in human 
samples; 3. expression studies using cell lines or body 
fluid (such as serum, saliva, peripheral blood, etc.) 
were excluded; 4. sample size should be larger than 
three pairs. According to the above screening criteria, 
7 datasets were finally included in this study: 
GSE77509 [16], GSE62232 [17], GSE25097 [18], 
GSE54238 [19], GSE50579 [20], GSE14520 [21], and 
GSE55092 [22] (Table 1).  

 

Table 1. Characteristics of the studies 

First author and 
reference 

Region Number of 
samples 

Year GEO 
accession 

Platforms Data 
Type 

Yang Y et al [9] China 17 pair 2017 GSE77509 GPL16791 RNA-seq 
Schulze K et al 
[10] 

France 10T,10N 2015 GSE62232 GPL570 Gene 
Chip 

Sung WK et al [11] USA 223T,243N 2011 GSE25097 GPL10687 Gene 
Chip 

Yuan SX et al [12] USA 26T,10N 2016 GSE54238 GPL16955 Gene 
Chip 

Neumann O et al 
[13] 

Germany 8T,10N 2012 GSE50579 GPL14550 Gene 
Chip 

Roessler S et al 
[14] 

USA 212 pair 2010 GSE14520 GPL571 
GPL3921 

Gene 
Chip 

Melis M et al [15] USA 39T,81N 2014 GSE55092 GPL570 Gene 
Chip 

Note: T, tumor samples; N, non-cancerous samples; pairs, tumor tissues and 
non-cancerous tissues from the same patient. 

 

Datasets processing and statistical analysis  
Series matrix files of each dataset were 

downloaded from GEO. Normalization of the 
microarray datasets was performed by the package 
limma of R (version 3.3.3), and normalization of the 
RNA-seq datasets was performed by the package 
edgeR of R (version 3.3.3) [23]. We used R package 
RRA to identify the most significant genes, and the 
new data frame results were constructed with the 
standard of P value < 0.01 [14]. 
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Enrichment analysis 
To conduct enrichment analyses, the package 

cluster Profiler (version 3.2.14) of R (version 3.3.3) was 
used for analyzing the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways and Gene Ontology 
(GO) processes, as described previously [24, 25]. 

WGCNA 
WGCNA is a typical systemic biological method 

for describing correlation patterns among genes and 
identifying modules of highly correlated genes by 
using average linkage hierarchical clustering coupled 
with the topological overlap dissimilarity measure 
based on high-throughput chip data or RNA-Seq data 
[26-28]. In current study, WGCNA package (version 
1.60) in R was used to merge highly correlated genes 
and identify key modules based on the expression 
levels of the most significant genes, identified by RRA 
methods above, from the data of GSE77509 [16]. Here, 
the power of β = 18 (scale free R2 = 0.8) was selected as 
the soft-thresholding to ensure a scale-free network. 
The cut Height = 0.7 and min Size = 10 were used to 
identify key modules. The gene modules were labeled 
with different colors and the grey module showed the 
genes that cannot be merged. 

PPI network construction and clusters analysis 
STRING (https://string-db.org/) was employed 

to construct PPI networks for distance-related genes 
by using the genes in the biggest module identified by 
WGCNA [29]. The PPI networks were then exported 
from STRING and imported into Cytoscape. We then 
used the “Molecular Complex Detection (MCODE)” 
Cytoscape app to identify discrete clusters from the 
former PPI networks using default settings (K-Core: 2; 
degree cutoff: 2; max. depth: 100 and node score 
cutoff: 0.2 were used as the cutoff criteria for the 
identification of network modules) [30]. The top 
clusters were screened under the conditions of 
minimum size = 6 and minimum score = 6. 

Generation and validation of prognostic 
signature and statistical analysis  

The data of Roessler S’s study (GEO DataSet: 
GSE14520), which contained the data of both gene 
expression levels and clinical signatures of 212 
HBV-associated HCC patients, were used for the 
generation and validation of prognostic signature 
using the package of survminer and survival of R 
(version 3.3.3). Firstly, the univariate Cox 
proportional hazards regression model was used to 
evaluate the associations between overall survival 
(OS) and the expression level of each hub gene that 
belong to the top cluster identified by PPI networks 
and MCODE Cytoscape app (P < 0.05 was considered 

significant). Hazard ratios (HRs) were applied to 
identify protective (HR < 1) and risk genes (HR > 1). 
Secondly, we divided the data of these 212 patients 
randomly into two groups: a discovery cohort (N = 
106) and an internal testing cohort (N = 106). Thirdly, 
in the discovery cohort, protective or risk genes 
identified by univariate Cox analysis were selected to 
calculate the association with OS by multivariable 
Cox analysis, and the risk scores for predicting OS 
was calculated with the formula based on the 
protective or risk genes: Risk scores = expgene1*β1 + 
expgene2*β2 +…+expgenen*βn. The “β” value is the 
estimated regression coefficient of gene derived from 
the multivariate Cox analysis and “exp” indicates the 
expression profiles of gene [31]. Kaplan-Meier 
survival analysis with the log-rank test (P < 0.05) was 
used to examine the proportional assumptions for 
Cox proportional hazard model. Lastly, the 
prognostic signature of indicated genes generated in 
the discovery cohort was further confirmed in the 
internal testing cohort. The statistical significance was 
defined as P < 0.05.  

Gene Set Enrichment Analysis (GSEA) 
GSEA was performed with indicated prognostic 

genes using phenotype labels “high-risk” vs “low-risk” 
by the GSEA software (http://software.broadinstitute 
.org/gsea/index.jsp). Gene sets used in this work 
were c2.cp.kegg.v5.2.symbols.gmt downloaded from 
the Molecular Signatures Database (MSigDB, 
http://software.broadinstitute.org/gsea/msigdb/in
dex.jsp) 

Statistical Analysis 
Statistical analyses were accomplished using R 

(version 3.3.3). The association between clinical 
characteristics and group was determined using 
chi-square test, wilcoxon rank sum test or unpaired t 
test according the data type of clinical characteristics. 
Univariate and multivariate Cox regression models 
were used to evaluate prognostic significance. 
Survival analysis was performed using Kaplan-Meier 
and log-rank test. The Student's t-test was used for 
comparisons of two independent groups. A P value < 
0.05 was considered statistically significant. 

Results 
Identified significance genes by integrated 
analysis 

In order to identify significance genes in 
HBV-associated HCC, we setup a workflow showing 
in Figure 1. By using the method of RRA to integrate 7 
datasets, 82 up-regulated genes and 577 
down-regulated genes were identified as the most 
significant genes [Table S1, P < 0.01]. The top 50 
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significantly up-regulated and down-regulated genes 
were listed in Figure 2A. KEGG pathway enrichment 
analysis of the most significant up-regulated genes 
showed that the top 5 enriched pathway is cell cycle, 
cellular senescence, melanoma, p53 signaling 
pathway, and ECM-receptor interaction. All of these 
pathways were reported with important roles in 
cancer [32-35] (Figure 2B). Whereas the top 5 KEGG 
pathway enriched in the down-regulated genes, 

including valine, leucine and isoleucine degradation, 
retinol metabolism, PPAR signaling pathway, fatty 
acid degradation and complement and coagulation 
cascades, also have been studied to be important 
pathways involved in tumor growth and metastasis 
(Figure 2B and Table S2) [36-39]. Together with the 
data of GO analysis (Figure 2C, 2D, and Table S3), 
these significant genes are shown to be mainly 
involved in tumor metabolism and growth. 

 

 
Figure 1. Flowchart describing the schematic overview of the study design. After integrated analysis and different bioinformatics analysis of HBV-associated HCC genome 
expression datasets, we identified hub genes in Cluster 1. Hub genes were then analyzed individually for prognostic significance by univariate Cox proportional hazards and 
Kaplan-Meier survival analysis. 10 hub genes were significantly associated with the survival of patients with HBV-associated HCC (UVA Cox analysis, P < 0.05, and log-rank test 
P < 0.05). The HBV-associated HCC cohort (GSE14520, N = 212) were randomly divided in to discovery cohort (N = 106) and internal testing cohort (N = 106). Next, we used 
multivariable Cox proportional hazards stepwise regression analysis with forward selection to build a prognostic model that included 3 genes: SPP2, ECHDC2, and CDC37L1. 
This model was used to calculate risk scores for discovery cohort (risk score = expSPP2* − 0.1941 + expCDC37L1* − 0.5466 + expECHDC2* − 0.4714), and the cut-off point 
was chosen. This risk score calculation and cut-off point were further validated in internal testing cohort. Lastly, GSEA analysis of the high-risk and low-risk group was used to 
further inquiry the 3 genes prognostic signature.  UVA Cox:  univariate Cox; MVA Cox: multivariate Cox. 
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Figure 2. Identified significance genes and enrichment analysis. (A) Heatmap showed the fold change of the top 100 significantly genes in different studies (50 up-regulated genes 
and 50 down-regulated genes) by Robust Rank Aggreg (RRA) methods from 7 different datasets. Each row represents the same mRNA and each column represents the same 
study. The fold change intensity of each mRNA in one study is represented in shade of red or blue. Red represents the fold change of up-regulated genes and blue represents the 
fold change of down-regulated genes, respectively, in comparison to non-tumor tissues. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the 
significant genes. Up-regulated KEGG pathways are showed with horizontal axis > 0, and down-regulated genes are showed with horizontal axis < 0, respectively. The size of the 
horizontal axis shows the numbers of enriched genes in each KEGG pathway and the color shade of bar reflects P value. (C-D) Gene Ontology (GO) enrichment analysis of 
up-regulated (C) and down-regulated genes (D). The vertical and horizontal axes represent GO term and −log10 (P value) of the corresponding GO term, respectively. The 
number in each bar reflects the enriched gene number of each GO term. Different colors reflect main categories of GO terms: BP, biological process; CC, cellular component; 
MF, molecular function. 
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WGCNA and PPI analysis 
Co-expression network by WGCNA analysis 

revealed that the most significant genes mentioned 
above were grouped into 3 modules, of which the 
turquoise module was the most significant one 
(Figure 3A and Table S4). KEGG pathway enrichment 
analysis showed that the turquoise module is mainly 
involved in the PPAR signaling and different 
metabolism pathway, similar to the enriched KEGG 
pathways involving by the most significant genes 
[40-42] (Figure 3B). We further constructed the PPI 
networks of the turquoise module by STRING, of 
which the largest connected master network 
containing 396 nodes (Figure 4A). In this largest 
connected master network, three discrete sub-clusters 
were extracted using the MCODE app by Cytoscape 
software [30] (Figure 4B). GO enrichment analysis of 
these three discrete sub-clusters revealed that Cluster 
1, the largest cluster containing 32 genes was mainly 
involved in platelet degranulation, fatty acid 
metabolic process and exocytosis (Figure 4C and 
Table S5). KEGG pathway analysis revealed that 
Cluster 1 was mainly involved cellular metabolism: 
including fatty acid degradation, fatty acid 
metabolism and valine, leucine and isoleucine 
degradation (Figure 4C and Table S5). This indicates 
that Cluster 1 may play a critical role in the 
pathogenesis of HCC, as platelet degranulation, fatty 
acid metabolism and degradation have been reported 
to have important roles in the development of HCC 
[36, 43, 44].  

Identification of hub genes in Cluster 1 by 
univariate Cox proportional hazards 
regression model 

The above findings that Cluster 1 genes were 
mainly involved in platelet degranulation, fatty acid 
metabolism and degradation prompted us to explore 
its prognostic value in HBV-associated HCC. To 
identify prognosis-related genes in this network, we 
first used an univariate Cox proportional hazards 
regression model to evaluate the associations between 
the expression level of the involved genes in Cluster 1 
and OS by using the data reported by Roessler S et al 
(GEO DataSet: GSE14520) [21]. The data revealed that 
10 out of 32 genes, including acyl-CoA 
dehydrogenase, C-4 To C-12 straight chain (ACADM), 
acyl-coA synthetase medium-chain family member 3 
(ACSM3), cell division cycle 37 like 1 (CDC37L1), 
crystallin lambda 1 (CRYL1), enoyl-CoA hydratase 
domain containing 2 (ECHDC2), coagulation factor 
VIII (F8), glutaryl-CoA dehydrogenase (GCDH), 
histidine rich glycoprotein (HRG), methylmalonyl- 
CoA mutase (MUT) and secreted phosphoprotein 2 

(SPP2), were all negatively relevant to OS in patients 
of HBV-associated HCC (P < 0.05, and log-rank test P 
< 0.05) (Figure 5 and Table S6).  

Generation and validation of multiple-gene 
prognostic signature by multivariable Cox 
proportional hazards regression analysis 

By randomly dividing the data of 212 
HBV-associated HCC patients in Roessler et al’s study 
(GEO DataSet: GSE14520) [21] into a discovery cohort 
(N = 106) and an internal testing cohort (N = 106) 
(Table 2, and Table S7). The 10 genes that were 
significantly associated with OS of HBV-associated 
HCC were used for prognostic module building by 
using forward conditional stepwise regression with 
multivariable Cox analysis in the discovery cohort. 
This procedure selected a prognostic model 
containing three genes, including SPP2, CDC37L1 and 
ECHDC2. The risk scores of these three genes 
signature for each sample in the discovery cohort 
were calculated by using the following formula: Risk 
score = expSPP2*−0.1941 + expCDC37L1* − 0.5466 + 
expECHDC2* − 0.4714 and ranked according to the 
values of Risk score. Using the median risk score 
(-9.158) as the cut-off point, patients were divided into 
a high-risk group (score > -9.158, N = 53) and a 
low-risk group (score ≤ -9.158, N = 53) (Figure 6A). 
Patients in high-risk group tended to express low 
levels of these three genes and shorter survival time 
(Figure 6B-C). Consistently, patients in high-risk 
group had lower OS rates than those in low-risk 
group, suggesting that patients in the high-risk group 
was more likely to have higher mortality than that in 
the low-risk group (Log-rank test, P < 0.05) (Figure 
6D). 

To test our findings, this three-gene risk score 
model was further evaluated using the internal 
cohort. With the same risk-score formula and cut-off 
point derived from the discovery cohort, the internal 
cohort was divided into high-risk group (N = 61) and 
low-risk group (N = 45). The data in internal cohort 
revealed a similar finding as that in the discovery 
cohort (Figure 6E-H).  

GSEA analysis 
According to the above results, this three-gene 

model can distinguish survival difference from 
HBV-associated HCC patients. GSEA analyses of the 
data of the GSE14520 revealed that the high-risk 
group showed gene-enrichment in bladder cancer and 
cell cycle pathway (Figure 7). And the oncogenes in 
bladder cancer pathway were overexpressed in the 
tumor tissues of HBV-associated HCC patients in the 
high-risk group, such as MYC that can trigger specific 
gene amplification to promote cell growth and 
proliferation [45].  
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Figure 3. WGCNA analysis of the significant genes and KEGG analysis of the key modules from WGCNA. (A) Gene clustering and module identification by WGCNA analysis 
based on the dataset of GSE77509. Top: clustering dendrogram showed the result of hierarchical clustering, and each line represents one gene. Bottom: the colored row below 
the dendrogram indicates module membership identified by the static tree cutting method. Different color represents different co-expression network modules for the 
significantly genes. (B) KEGG analysis of the top three modules from WGCNA. The vertical and horizontal axes represent the KEGG pathways and different modules, 
respectively. The size and the color intensity of a circle represent gene number and –log10 (P value), respectively.  
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Figure 4. Identified discrete clusters and enrichment analysis of the turquoise module in Figure 3. (A) PPI network of genes in the turquoise module. The color intensity in each 
node represents the fold change of the gene in comparison to non-tumor samples (up-regulation of a gene is shown in red and down-regulation of a gene is shown in blue). The 
size of the circle is proportional to the score of PPI based on the STRING database. (B) Main sub-clusters from the master PPI networks. The color intensity in each node was 
proportional to fold change of each gene expression in comparison to non-tumor samples (up-regulation in red and down-regulation in blue). (C) KEGG and GO enrichment 
analysis of the top three sub-clusters. The vertical and horizontal axes represent the GO biological process /KEGG pathways and different sub-clusters, respectively. The size and 
the color intensity of a circle represent gene number and –log10 (P value), respectively. 
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Figure 5. Kaplan-Meier survival plots of the association between the expression levels of hub genes and overall survival probability in patients of HBV-associated HCC. P values 
were obtained from Log-rank test. Yellow and blue line represent the samples with the gene higher expressed and lower expressed, respectively. The table below the 
Kaplan-Meier survival plots showed the number of patients at the risk. Abbreviations: ACADM, acyl-CoA dehydrogenase, C-4 To C-12 straight chain; ACSM3, acyl-coA 
synthetase medium-chain family member 3; CDC37L1, cell division cycle 37 like 1; CRYL1, crystallin lambda 1; ECHDC2, enoyl-CoA hydratase domain containing 2; F8, 
coagulation factor VIII; GCDH, glutaryl-CoA dehydrogenase; HRG, histidine rich glycoprotein; MUT, methylmalonyl-CoA mutase; SPP2, secreted phosphoprotein 2. 

 

Table 2. Clinical characteristics of the patients 

Clinical Variable Discovery Cohort  
(n = 107) 

Internal Testing Cohort 
 (n = 107) 

P value 

Sex    
Male 92 91 1b 
Female 14 15  
Age, y    
Median (range) 51(71-27) 50 (77-21) 0.6054a 
ALT    
Negative (≤50 U/L)  67 57 0.2097b 
Positive (＞50 U/L) 39 49  
Tumor size    
Large(＞5cm) 31 43  
Small(≤5cm) 74 63 0.1245b 
No data 1 0  
TNM stage    
I 47 42  
II 37 39 1c 
III-IV 22 25  
AFP    
Low 56 59  
High 50 44 0.6117b 
No data 0 3  

AFP, α-fetoprotein; ALT, alanine transferase; a Unpaired t test; b chi-squared test (χ2 
test); c wilcoxon rank sum test. 

 
Other overexpressed genes of bladder cancer 

pathway in the tumor tissue of patient in the high-risk 
group, such as vascular endothelial growth factor B 
(VEGFB), matrix metallopeptidase (MMP) 1, 2 and 9, 
are also reported to be involved in tumor invasion 
and metastasis [46-49]. In the cell cycle pathway, 
genes associated with the proliferative capacity of 
tumor cells were also higher expressed in patients of 

high-risk group, such as minichromosome 
maintenance (MCM) complex [50]. While, the low-risk 
group showed gene-enrichment in drug 
metabolism-cytochrome P450, PPAR signaling, and 
fatty acid metabolism pathway (Figure 7). These 
pathways, associated with hepatic metabolism of 
cholesterol, fatty acid and drug, are usually 
down-regulated in HCC patients [51, 52]. This 
indicates that patients in the low-risk group preserve 
relative good capacity of hepatic function, which 
might also protect HCC patients from persistent drug 
toxicity in response to various medication. These 
results showed a highly similar manner with the 
significant changed KEGG pathways of the most 
significant genes in total tumor samples of 
HBV-associated HCC as compared to healthy tissue 
presented by integrational analysis (Figure 2B). 

Discussion 
Although increasing chip and RNA-seq profiling 

studies were performed to find differentially 
expressed genes in HBV-associated HCC, these 
reports often presented inconsistent results across 
different studies. In our current work, we used an 
integrated analysis by using the RRA method to 
identify significant differentially expressed genes 
from 7 independent datasets of HBV-associated HCC 
profiling experiments, which could overcome the 
rather noisy from different individual studies [53].
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Figure 6. Three-gene predictor-score analysis of HBV-associated HCC patients in both the discovery and internal cohort. (A) and (E) Three-gene risk score distribution in both 
the discovery (A) and internal testing cohort (E), respectively. Each point represents one patient; the vertical and horizontal axes represent the risk score calculated from the 
three-genes model and results sorted by the size of the risk score, respectively; red and blue represent patients with high and low risk scores identified by cut-off, respectively. 
The black dotted line represents the median mRNA risk score cut-off dividing patients into low-risk or high-risk groups. (B) and (F) Patients’ survival status and time in both the 
discovery (B) and internal testing cohort (F), respectively. Each point corresponds to the same patient as above; the vertical and horizontal axes represent the survival time and 
results sorted by the size of the risk score, respectively; red or blue represent patient dead or live in the end, respectively. (C) and (G) Heatmap of gene expression profiles in 
both the discovery (C) and internal testing cohort (G), respectively. Each row represents the same gene and each column represents the same patient corresponded to the above 
point. The expression intensity of each gene in one patient is represented in shade of red or grey, indicating its expression level above or below the median expression intensity 
across all patients, respectively. (D) and (H) The Kaplan-Meier overall survival plots for HBV-associated HCC risk groups obtained from both the discovery (D) and internal 
testing cohort (H), respectively. Red and green line represent the patient with high or low risk, respectively. 
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Figure 7. GSEA analysis of the three prognostic genes. GSEA analysis of the differentially expressed genes between the high-risk versus low-risk group. Only two significantly 
functional gene sets were enriched for high-risk group (marked in red), whereas only four most significantly enriched functional gene sets were listed for low-risk group 
(markered in blue) in HBV-associated HCC samples. 

 

The expression levels of each gene were 
re-ranked and their significances were re-determined 
by giving a P-value for each gene. Finally, 82 
up-regulated and 577 down-regulated integrated 
significant genes were identified. Many of them have 
been proven to be oncogenic, such as aldo-keto 
reductase family 1 member B10 (AKR1B10) [54], 
maternal embryonic leucine zipper kinase (MELK) 
[55], and aldehyde dehydrogenase 3 family member 
A1 (ALDH3A1) [56]). Some are considered as 
anti-oncogenes, such as hydroxyacid oxidase 2 
(HAO2) [57], C-type lectin domain family 1 member B 
(CLEC1B) [58] and secreted phosphoprotein 2 (SPP2) 
[59] in HCC. The result of enrichment analysis also 
showed that these significance genes were highly 
related to HCC, such as the cell cycle pathway and 
p53 signaling pathway [32, 33]. In addition, we also 
identified many significantly expressed genes, the 
role of which are still unclear and need further 
research in HCC, such as EH domain containing 3 
(EHD3), aspartoacylase (ASPA) and melanocortin 2 
receptor accessory protein 2 (MRAP2). This method 
could also be used in other human diseases such as 
neurological disorders [60, 61]. 

In this study, we also used WGCNA 
combination with PPI network to identify hub genes 
that link with HBV-associated HCC. Three clusters 
identified by PPI network from the most significant 
module by WGCNA were mainly involved in 
metabolism correlation pathways, cell cycle pathways 
and cytokine-cytokine receptor interaction, which are 
closely related to HCC [33, 62]. In Cluster 1, the 
expression levels of 10 genes were significantly 
correlated with OS of HBV-associated HCC patients 
by univariate Cox proportional hazards regression 
model and Kaplan-Meier survival analysis, which had 
differences not only in the expression but also in 
survival. Therefore, seeking genes in the largest 
cluster, Cluster 1, for hub genes is more useful and 
precise for the generation and validation of prognostic 
signature by multivariable cox analysis. 

Using clinical information, pathological 
classification and the expression of protective or risk 
genes could provide information for the diagnosis 
and prognosis in different types of cancer [63-65]. 
Recently, some prediction models for risk assessment 
in HCC has been reported, such as 4-aminobutyrate 
aminotransferase (ABAT), alanine-glyoxylate amino-
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transferase (AGXT), aldehyde dehydrogenase 6 
family member A1 (ALDH6A1), cytochrome P450 
family 4 subfamily A polypeptide 11 (CYP4A11), 
D-amino-acid oxidase (DAO) and enoyl-CoA 
hydratase and 3-hydroxyacyl CoA dehydrogenase 
(EHHADH) [66-68]. Several studies have identified 
prognostic signatures by combining multiple genes, 
which contained more than 6 genes, for HCC [66, 69, 
70]. Because many variables need to be controlled, 
these prognostic signatures are difficult to develop as 
diagnosis markers in the future. Li B et al recently 
identified a three-gene prognostic signature (UPB1, 
SOCS2 and RTN3) for HCC without considering the 
etiology of disease by using datasets from The Cancer 
Genome Atlas project (TCGA) [71]. RTN3 is not a 
significant gene in HBV-associated HCC, which may 
limit its use in HBV-associated HCC [Table S1]. In the 
current study, we discovered a three-gene model 
(SPP2, CDC37L1, and ECHDC2) that contributes a 
specific prognostic signature for HBV-associated 
HCC, none of which were reported in previous 
prediction models. These three genes are specifically 
highly expressed in healthy liver tissue but lose their 
expression in HCC tissues (Data not shown). SPP2 is 
localized mainly in the extracellular region, which 
could inhibit the growth of HCC in vivo [59]. 
CDC37L1 is localized mainly in cytoplasm and 
extracellular region, which participates in unfolded 
protein and heat shock protein binding [72], and has 
been considered as a promising marker in HCC. 
ECHDC2 is a mitochondrial-related gene, which takes 
part in the metabolic process and fatty acid 
biosynthesis [73]. 

These three hub genes may have protective roles 
in HBV-associated carcinogenesis mainly by 
involving drug metabolism-cytochrome P450, PPAR 
signaling pathway and many metabolic pathways, 
pathways of which are enriched in patients of the 
low-risk group by GSEA analysis. Previous studies 
revealed that abnormality of PPAR signaling and 
drug metabolism-cytochrome P450 pathway can be 
the characteristics of early stages of HCC [51, 52, 74]. 
Reprogramming of metabolic pathways, such as fatty 
acid metabolism, is also associated with angiogenesis, 
cell adhesion and invasion of tumor tissue [75, 76]. In 
patients in the low-risk group, higher expression 
levels of genes in these pathways, such as aldehyde 
dehydrogenase family, cytochrome P450 family, 
enoyl-CoA hydratase and 3-hydroxyacyl CoA 
dehydrogenase (EHHADH), help maintain good 
metabolic function in liver [77-79], which in turn 
might protect HCC patients from persistent drug 
toxicity in response to various drug treatments. 
Therefore, this three-gene prognostic signature may 
be a promising prognostic marker for HBV-associated 

HCC, which warrants further functional and 
mechanistic studies. It may also be beneficial to 
develop a commercial detection kit for diagnosis and 
prognosis prediction based on this three-gene 
prognosis signature.  

Limitations exist in our study. Only the 
GSE14520 dataset was selected for this work, resulting 
in limited samples for the 3-gene signature model of 
prognosis. Also, little was known on the functions 
and mechanisms of these three genes in HBV- 
associated HCC. As a result, further validation studies 
of our model with independent larger cohorts and 
further characterization of the functions of these 3 
genes in HBV-associated HCC are required in the 
future.  

In conclusion, WGCNA analysis of differentially 
expressed genes acquired by RRA from 7 datasets 
following by multivariable Cox regression analysis 
identifies a three hub gene module (SPP2, CDC37L1, 
and ECHDC2) as a specific prognostic signature for 
HBV-associated HCC. The higher expression levels of 
these three genes may improve the prognosis of 
patients with HBV-associated HCC by influencing 
drug metabolism-cytochrome P450, PPAR signaling 
pathway and many other metabolic pathways.  
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