Supporting information captions

Supplementary Tables:

 Table S1. Clinicopathological characteristics of patient cohorts I (CSS or OS)

Table S2. Clinicopathological characteristics of patient cohorts II (DFS)

Table S3. PCR primers used in this study

Table S4. Genes with strongest survival associations by SSAT analysis. A semi-supervised survival tool (SSAT), an R (Bioconductor) based script, was used *in silico* to identify genes whose expression correlated with overall survival in colon cancer. SSAT identified 400 and 269 such genes in two datasets, GSE17536 and GSE17537, respectively, of which 64 were in common to both datasets. Twenty genes, which were most significantly associated with survival based on a weighted rank score are shown in **Table S4**.

Table S5. MVA-1. A multivariate cox proportional hazard analysis (backward Wald) identified 3 genes (ULBP2, SEMA5A and PCDH7) that remained in the equation, in addition to stage. These 3 genes and stage were then used for a second MVA (backward Wald), this time using GSE17537 data. ULBP2 and SEMA5A were the only two genes whose upregulation were associated with worse and better overall survival, respectively, independent of stage in this analysis. Downregulation of ULBP2 and upregulation of SEMA5A was related to better overall survival.

Table S6. Univariate cox regression analyses of ULBP2 and SEMA5A gene expression with CSS

Table S7. Stage 2&3 restricted MVA of CSS with clinicopathological parameters and SU-GIB in GSE17536

Table S8. Cox regression analysis with GSE39582 MSS samples only.

Table S9. Summary of GIB and Oncotype MVA analyses. GSE17536: Stage, age, gender, grade, GIB (or Oncotype), MSI; GSE39582: Stage, age, gender, GIB (or Oncotype) and MSI

Table \$10. Summary of GIB and Oncotype MVA analyses - GSE39582

Table S11. Drugs that are significantly correlated with both SEMA5A and ULBP2 expression in colon cancer cell lines according to CGP (as tested for colon cancer cell lines)

Supplementary Figures

Figure S1. Representative **E&H** stained tumor sections. Tumors with well (A), intermediate (B), and poor differentiation (C) are shown. Arrow indicates a site with necrosis.

Figure S2. Survival graphs of colon cancer patients stratified based on either ULBP2 or SEMA5A gene expression I (GSE17536). Kaplan-Meier analyses (in silico) comparing "high" and "low" expression groups as defined by SSAT cut-off values for ULBP2 (A) and SEMA5A (B), which were 4 and 6, respectively. Log-rank p values are indicated. Cancer specific survival is in months. C & D: Log-rank test results plotted at all cut-off values: the graphic indicates log-rank values (shown as dots) obtained at every possible cut-off for ULBP2 (C) and SEMA5A (D). A red dot indicates the p value is associated with a HR larger than 1, when the low expression group is the reference, while blue indicates the reverse. Horizontal dotted line p=0.05. Vertical dotted lines: (from left to right) first 25th %, median, and 75th percentile.

Figure S3. Survival graphs of colon cancer patients stratified based on either ULBP2 or SEMA5A gene expression II (GSE17537). Kaplan-Meier analyses (in silico) comparing "high" and "low" expression groups as defined by SSAT cut-off values for ULBP2 (A) and SEMA5A

(B), which were 4 and 6, respectively. Log-rank p values are indicated. Cancer specific survival is in months. C & D: Log-rank test results plotted at all cut-off values: the graphic indicates log-rank values (shown as dots) obtained at every possible cut-off for ULBP2 (C) and SEMA5A (D). A red dot indicates the p value is associated with a HR larger than 1, when the low expression group is the reference, while blue indicates the reverse. Horizontal dotted line p=0.05. Vertical dotted lines: (from left to right) first 25th %, median, and 75th percentile.

Figure S4. Kaplan-Meier graphs for CSS of GSE17536 stratified based on either ULBP2 or SEMA5A gene expression for stage 2&3 patients. Respective log-rank p values are shown. Survival times are in months. ULBP2 and SEMA5A expression can predict cancer specific survival when restricted to stage 2&3 patients. ULBP2 and SEMA5A cut-off values were 4 and 6, respectively.

Figure S5. Survival graphs of colon cancer patients stratified based on either ULBP2 or SEMA5A gene expression III. Kaplan-Meier analyses (ex vivo) comparing "high" and "low" expression groups based on the cut-off with the smallest log rank p value within the 25-75th % interquartile ranges for ULBP2 (A) and SEMA5A (B) for the Ankara cohort. Log-rank p values are indicated. Overall survival is given in months. C & D: Log-rank test results plotted at all cut-off values: the graphic indicates log-rank values (shown as dots) obtained at every possible cut-off for ULBP2 (C) and SEMA5A (D). A red dot indicates the p value is associated with a HR larger than 1, when the low expression group is the reference, while blue indicates the reverse. Horizontal dotted line p=0.05. Vertical dotted lines: (from left to right) first 25th %, median, and 75th percentile.

Figure S6. Kaplan-Meier graphs based on the SU-GIB signature for GSE17536 (A), GSE17537 (B) and the Ankara cohort (C); restricted to stage 2&3 patients for *in silico* (A&B) and stage 3 patients for *ex vivo* (C) analysis. Respective log-rank p values are shown. Survival times are in months. SU-GIB signature cut-off values for ULBP2 and SEMA5A were 4 and 6, respectively for *in silico* analyses. For the Ankara cohort, cut-off values correspond to

the median values which were identical to the cut-off with the smallest log rank p value within the 25-75th % interguartile range for both genes.

Figure S7. Kaplan-Meier graphs for CSS of GSE17536 microsatellite-instable (MSI) and - stable (MSS) patients as stratified by SU-GIB. ULBP2 and SEMA5A cut-offs were determined previously SSAT (4 and 6, respectively). * MSI and MSS subgroups were predicted in silico (see Methods). The GSE17536 cohort, separated into MSI and MSS subgroups shows that the G, I and B stratification results in the expected trend in either MSI or MSS patient groups, although only the latter shows significance by the log-rank test.

Figure S8. Kaplan-Meier graphs for DFS of GSE17536 and GSE17537 patients as stratified by SU-GIB. G, I and B stratification of patients in both cohorts reveals that this can predict disease-free survival in both cohorts. ULBP2 and SEMA5A cut-offs were determined by SSAT (4 and 6, respectively). Log-rank test p values are shown.

Figure S9. TCGA based proteome analysis of colon cancer tumor tissue. RNA seq and proteome data for 132 colon cancer primary tumor tissues downloaded from "cancergenome.nih.gov" via the TCGA data portal were classified according to the SU signature (bad survivors: 40, good survivors: 37, intermediate survivors: 55) revealed increased phosphorylation at EGFR 992 (right) and Shc phosphorylation (left) among patients with better prognosis (p<0.01 and p<0.001, respectively, 1-way Anova).

Figure S10. TCGA based RNAseq analysis of colon cancer tumor tissue. TCGA colon tumor samples were divided into GIB groups using medians as cut-offs for ULBP2 and SEMA5A. RPKM values of TNF, TGFB3 and IL1R2 are plotted for 'good', 'intermediate' and 'bad' groups. The median and inter-quartile range for each group is indicated. Ttest p values between 'good' and 'bad' groups, *p < 0.05, **p < 0.01, ***p < 0.0001. RPKM: reads per kilobase per million mapped reads.

Figure S11. SU-GIB stratification is associated with EMT. Scatter plot for tumors in the GSE39582 dataset based on E-cadherin (201131_S_AT) and Vimentin (201426_S_AT) gene expression. While most of the patients with a good prognosis are also "E-cadherin high, Vimentin low", patients with bad prognosis show the opposite gene expression pattern (Chisq. p < 0.00001). Median expression was used as the threshold for both genes. Dotted lines indicate median expression values.

Supplementary Table 1. Clinicopathological characteristics of patient cohorts I (CSS or OS)

Patient characteristics	GSE1	CSS 1: 17536 (n =	177)	GSE	CSS 2: 217537 (n =	= 55)	OS:	Ankara co (n = 48)	hort
	<u>Nr.</u> #	HR*	<u>P</u>	<u>Nr.</u>	HR	<u>P</u>	<u>Nr.</u>	HR	<u>P</u>
Age									
≤65 (ref.)	83	0.808	0.432	33	0.992	0.990	24	2.173	0.104
>65	94			22			22		
Unknown	-			-			2		
Gender									
Male (ref.)	96	0.918	0.534	26	2.003	0.269	24	0.857	0.740
Female	81			29			24		
TNM Stage**									
1	24	3.623	<0.001	4	14.085	0.001	3	4.434	0.001
2	57			15			0		
3	57			19			38		
4	39			17			5		
Unknown	-			-			2		
Recurrence									
No (ref.)	109	42.869	<0.001	36	364.058	<0.001	NA		
Yes	36			19			NA		
Other/Unknown	32			-			NA		
Grade									
Well Differentiated	16	2.141	0.005	1	3.771	0.119	13	1.279	0.578
Moderately Differentiated	134			32			32		
Poorly Differentiated	27			3			3		
Other/Unknown	-			19			-		
Perineural Invasion									
0 (ref.)	NA			NA			31	4.131	0.003
1	NA			NA			15		
Other/Unknown	NA			NA			2		
Vascular Invasion									
0 (ref.)	NA			NA			23	3.739	0.012
1	NA			NA			23		
Other/Unknown	NA			NA			2		
Microsatellite Instability‡									
Low or stable (ref.)	146	1.319	0.415	NA			NA		
High	31			NA			NA		

^{*}Cox proportional hazards regression

^{**}Stage: For Ankara cohort - treated as a continuous variable (1: stage 1, 2: stage 3A and 3B, 3: stage 3C and 4). For GSE17536 and GSE17537 - treated as a continuous variable (1, 2, 3, 4)

[‡]MSI status: Determined in silico (see Methods) *Nr.: case numbers

Supplementary Table 2. Clinicopathological characteristics of patient cohorts II (DFS)

Patient characteristics	GSI	E17536 (n =	= 177)	GS	GSE17537 (n = 55)		GS	SE39582 (n=566)	
	Nr.#	HR*	<u>P</u>	Nr.	HR	<u>P</u>	Nr.	HR	<u>P</u>
Age									
≤65 (ref.)	83	0.585	0.114	33	0.677	0.429	150	0.859	0.317
÷65	94			22			415		
Unknown	-			-			1		
Gender									
Male (ref.)	96	1.000	0.999	26	2.037	0.150	310	0.790	0.124
Female	81			29			256		
TNM Stage**									
0	-	2.047	0.001	-	13.988	< 0.001	4	2.605	< 0.001
1	24			4			33		
2	57			15			264		
3	57			19			205		
4	39			17			60		
Grade									
Well Differentiated	16	1.848	0.076	1	1.347	0.721	NA		
Moderately Differentiated	134			32			NA		
Poorly Differentiated	27			3			NA		
Other/Unknown	-			19			NA		
Microsatellite Instability‡									
Low or stable (ref.)	146	1.152	0.285	NA			NA		
High	31			NA			NA		
Mismatch repair									
Proficient (ref.)	NA			NA			444	0.358	0.002
Deficient	NA			NA			75		
Unknown	NA			NA			47		
KRAS or BRAF mutation									
Wild Type (ref.)	NA			NA			255	1.210	0.019
Mutant	NA			NA			268		
Unknown	NA			NA			43		

^{*}Cox proportional hazards regression
**Stage: For Ankara cohort - treated as a continuous variable (1: stage 1, 2: stage 3A and 3B, 3: stage 3C and 4). For GSE17536 and GSE17537 - treated as a continuous variable (1, 2, 3, 4)

[‡]MSI status: Determined in silico (see Methods) *Nr.: case numbers

Supplementary Table 3. PCR primers used in this study

SEMA5A_F	TCTCTCTCCTTGGCACTTTCC
SEMA5A_R	ACTGGATGCTCGGTTCTCTG
ULBP2_F	GTGCAGGAGCACCACTCG
ULBP2_R	CATACACCGTAGGTCGTGGG
GAPDH_F*	GGAGCGAGATCCCTCCAAAAT
GAPDH_R*	GGCTGTTGTCATACTTCTCATGG
ACTB_F**	AGAGCTACGAGCTGCCTGAC
ACTB_R**	AGCACTGTGTTGGCGTACAG
18S_F	CGTGCATTTATCAGATCAAAACCAACC
18S_R	ATGGTAGGCACGGCGACTAC

^{*}References 8 and **9

Supplementary Table 4. Genes with strongest survival associations by SSAT

Gene		NCBI gene ID	Rank
ADAM12	(ADAM metallopeptidase domain 12)	8038	1
SFRP2	(secreted frizzled-related protein 2)	6423	2
ULBP2	(UL16 binding protein 2)	80328	3
KAL1	(Kallmann syndrome 1 sequence)	3730	4
SEMA5A	(sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A)	9037	5
PXDN	(peroxidasin homolog (Drosophila))	7837	6
PCDH7	(protocadherin 7)	5099	7
CTGF	(connective tissue growth factor)	1490	8
PRKD1	(protein kinase D1)	5587	9
COL11A1	(collagen, type XI, alpha 1)	1301	10
EBF1	(early B-cell factor 1)	1879	11
SCFD1	(sec1 family domain containing 1)	23256	12
SPP1	(secreted phosphoprotein 1)	6696	13
PIM1	(Pim-1 proto-oncogene, serine/threonine kinase)	5292	14
HTRA1	(HtrA serine peptidase 1)	5654	15
SPON1	(spondin 1, extracellular matrix protein)	10418	16
CRYAB	(crystallin, alpha B)	1410	17
FABP4	(fatty acid binding protein 4, adipocyte)	2167	18
CLDN11	(claudin 11)	5010	19
LAMC2	(laminin, gamma 2)	3918	20

Supplementary Table 5A. MVA-1 (GSE17536) - CSS

Parameters	Hazard Ratio	95%CI	P *
TNM Stage**	5.648	3.48-9.17	< 0.001
ULBP2 (3-8 vs. 1-2)	2.682	1.41-5.09	0.003
SEMA5A (4-8 vs. 1-3)	0.459	0.24-0.88	0.019
PCDH7 (4-8 vs. 1-3)	2.765	1.20-6.35	0.017

Supplementary Table 5B. MVA-1 (GSE17537) - CSS

Parameters	Hazard Ratio	95%CI	P *
TNM Stage**	13.829	2.78-68.87	0.001
ULBP2 (3-8 vs. 1-2)	5.808	1.46-23.09	0.012
SEMA5A (4-8 vs. 1-3)	0.257	0.07-0.95	0.042

^{*}Cox proportional hazards regression

^{**}TNM Stage: Treated as a continuous variable (1, 2, 3, 4)

Supplementary Table 6. Univariate cox regression analysis of ULBP2 and SEMA5A gene expression - CSS

Dataset	Parameters	Hazard Ratio	95%CI	P*
GSE17536	ULBP2**	1.335	1.173 - 1.519	< 0.001
	SEMA5A**	0.862	0.747 - 0.996	0.044
GSE17537	ULBP2**	1.670	1.119 - 2.492	0.012
	SEMA5A**	0.719	0.541 - 0.956	0.023

^{*}Cox proportional hazards regression

^{**}Treated as a continuous variable

Supplementary Table 7. Stage 2&3 restricted MVA of clinicopathological parameters and SU-GIB in GSE17536 - CSS $\,$

GSE17536		Hazard ratio	95% CI	P *
Stage (stage 3 vs 2)		2.176	0.936 - 5.058	0.071
	Baseline	1		0.001
SU- GIB	Intermediate vs good	3.501	1.374 - 8.922	0.009
	Bad vs good	7.176	2.546 - 20.225	< 0.001

^{*}Cox proportional hazards regression

Supplementary Table 8. Cox regression analysis with GSE39582 MSS samples - DFS

		Hazard Ratio	95%CI	P*
KRAS or BRAF mutation (Mutant vs. Wild type)**		1.135	0.797 - 1.616	0.482
	Baseline			< 0.001
Stage	Stage 2 vs 1	6.139	0.844 - 44.637	0.073
Stage	Stage 3 vs 1	10.297	1.423 - 74.501	0.021
	Stage 4 vs 1	36.488	4.973 - 267.726	< 0.001
	Baseline			0.016
SU-GIB	Intermediate vs good	1.472	0.959 - 2.259	0.077
	Bad vs good	1.978	1.241 - 3.154	0.004

^{*}Cox proportional hazards regression

^{**}KRAS or BRAF mutation: Samples are considered as wild type if only both genes are wild type, other situations are considered mutated.

Supplementary Table 9. MVA analyses for stage 2 & 3 patients

GSE17536 - DFS	Hazard ratio	95% CI	P *
Age (>65 vs ≤65)	0.422	0.187 - 0.956	0.039
Gender (male vs female)	1.005	0.688 - 1.467	0.98
Stage (stage 3 vs. 2)	1.732	0.802 - 3.742	0.162
Grade***	0.91	0.424 - 1.954	0.809
MSI status (Instable vs. Stable)**	2.157	0.856 - 5.437	0.13
Oncotype (High vs. Low risk)****	2.471	1.179 - 5.181	0.017
GSE17536 - DFS	Hazard ratio	95% CI	P *
Age (>65 vs ≤65)	0.459	0.209 - 1.008	0.052
Gender (male vs female)	0.988	0.681 - 1.435	0.952
Stage (stage 3 vs 2)	1.872	0.864 - 4.057	0.112
Grade***	0.925	0.468 - 1.830	0.824
MSI status (Instable vs stable)**	1.135	0.415 - 3.107	0.805
SU-GIB****	2.004	1.158 - 3.469	0.013

GSE3958	2 - DFS	Hazard ratio	95% CI	P*
Age (>65	vs ≤65)	0.921	0.647 - 1.312	0.65
Gender (fe	emale vs male)	0.795	0.557 - 1.135	0.206
Stage (sta	ge 3 vs 2)	1.734	1.214 - 2.475	0.002
MSI statu	s (Instable vs Stable)	2.008	1.049 - 3.842	0.035
Oncotype (High vs low risk)****		1.207	1.012 - 1.439	0.037
GSE3958	2 - DFS	Hazard ratio	95% CI	P *
Age (>65	vs ≤65)	1.016	0.712 - 1.450	0.929
Gender (fe	emale vs male)	0.708	0.488 - 1.026	0.068
Stage (sta	ge 3 vs 2)	1.806	1.263 - 2.583	0.001
MSI status (Instable vs stable)		0.367	0.186 - 0.726	0.004
	Baseline			0.002
SU-GIB	Intermediate vs good	1.731	1.104 - 2.713	0.017
	Bad vs good	2.47	1.494 - 4.083	< 0.001

^{*}Cox proportional hazards regression

^{**}MSI status: Determined in silico (see Methods)

^{***}Grade: Treated as a continuous variable; poorly differentiated (1), moderately differentiated (2), well differentiated (3); not available for GSE39582.

^{****}Oncotype: Determined in silico (see Methods)

^{*****}SU-GIB: Treated as a continuous variable (1: Good, 2: Intermediate, 3: Bad)

Supplementary Table 10. MVA analyses for stage 2 & 3 patients including both Oncotype and SU-GIB

GSE39582 – DFS - stage 2 & 3		Hazard ratio	95% CI	P *
Age (>65 vs ≤65)		1.022	0.717 - 1.458	0.903
Gender (female vs male)		0.72	0.497 - 1.043	0.082
Stage (stage 3 vs 2)		1.73	1.203 - 2.488	0.003
MSI status (Instable vs stable)		0.37	0.187 - 0.732	0.004
Oncotype (High	vs low risk)**	** 1.131 0.944 - 1.356		0.183
	Baseline			0.006
SU-GIB	Intermediate vs good	1.665	1.059 - 2.619	0.027
	Bad vs good	2.296	1.374 - 3.837	0.002

^{*}Cox proportional hazards regression

^{**}Oncotype: Determined in silico (see Methods)

Supplementary Table 11. Drugs that are significantly correlated with both SEMA5A and ULBP2 expression in colon cancer cell lines according to CGP

			SEMA5A			ULBP2		
Drugs	Target	Ranksum	Pearson's r	р	rank	Pearson's r	р	rank
NVP-BEZ235	PI3K/MTOR	5	0.60	< 0.001	1	-0.47	0.006	4
Bortezomib	PARP	8	0.43	0.013	6	-0.51	0.002	2
AZ628	Farnesyltransferase	8	0.47	0.005	3	-0.47	0.006	5
Sorafenib	PDGFRA, PDGFRB, KDR, KIT, FLT3	12	0.38	0.029	9	-0.52	0.002	3
Bleomycin	DNA Damage	12	0.46	0.007	5	-0.43	0.013	7
Etoposide	Topoisomerase 2	12	0.49	0.004	2	-0.37	0.032	10
AG-014699	PARP1/2	13	0.37	0.034	12	-0.54	0.001	1
BI-D1870	HSP90	16	0.47	0.006	4	-0.35	0.048	12
Thapsigargin	Ca++ transporting ATPase	19	0.35	0.043	13	-0.47	0.006	6
AZD7762	Chk 1/2	19	0.38	0.031	11	-0.39	0.023	8
CEP-701	FLT3, JAK2, NTRK1, RET	19	0.38	0.029	10	-0.38	0.029	9
17-AAG	HSP90	19	0.38	0.028	8	-0.37	0.033	11
Tipifarnib	Farnesyl-transferase	20	0.41	0.017	7	-0.35	0.049	13

Figure S1

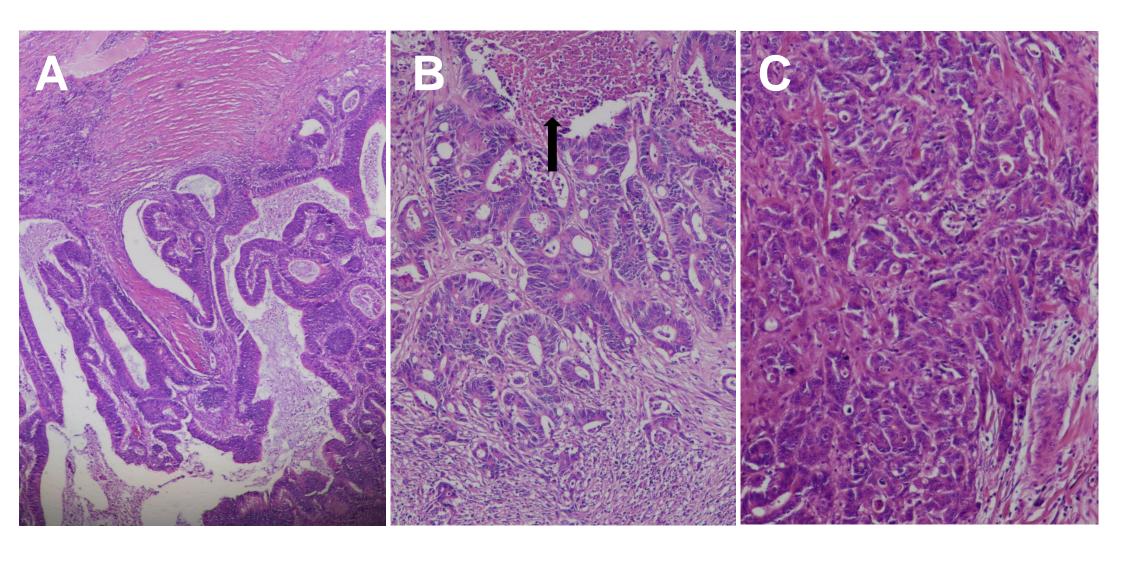


Figure S2

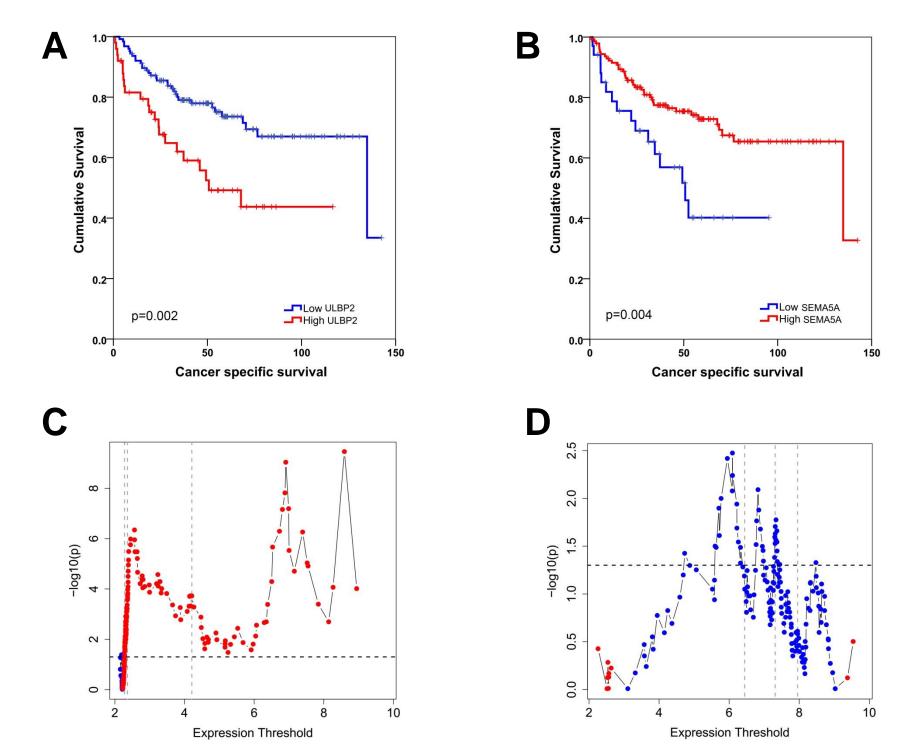


Figure S3

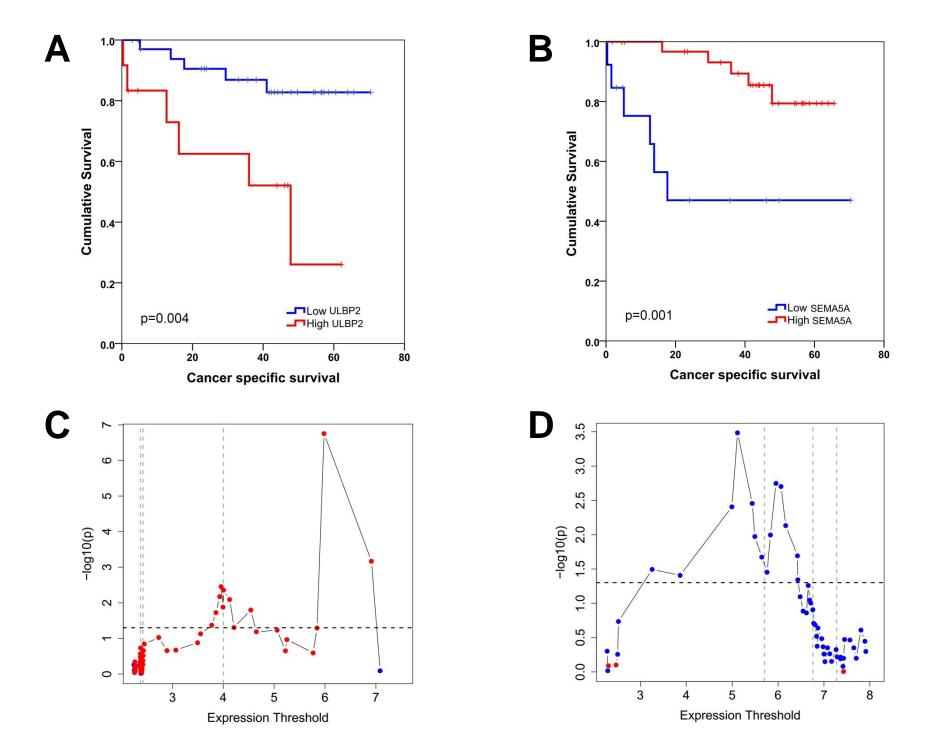


Figure S4

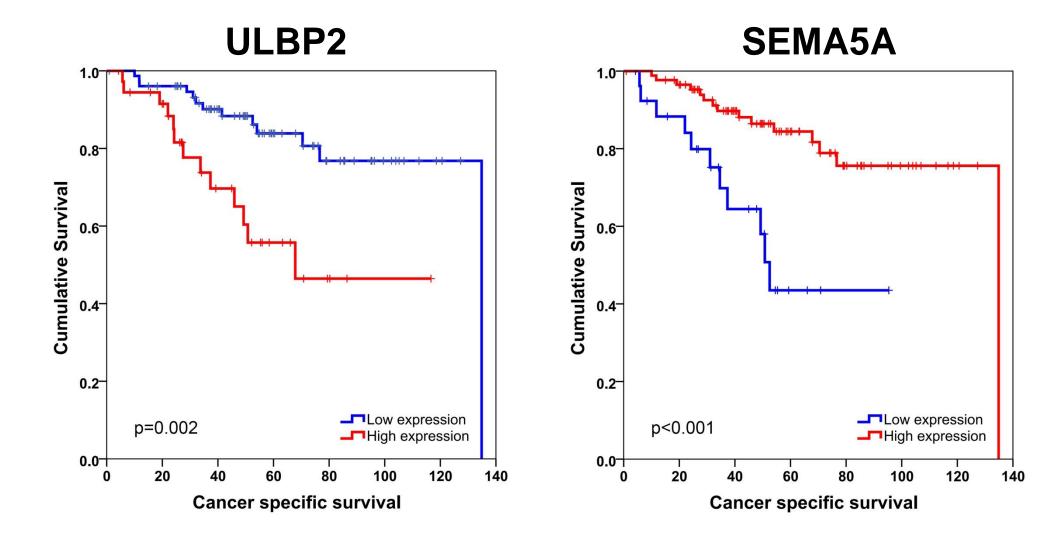


Figure S5

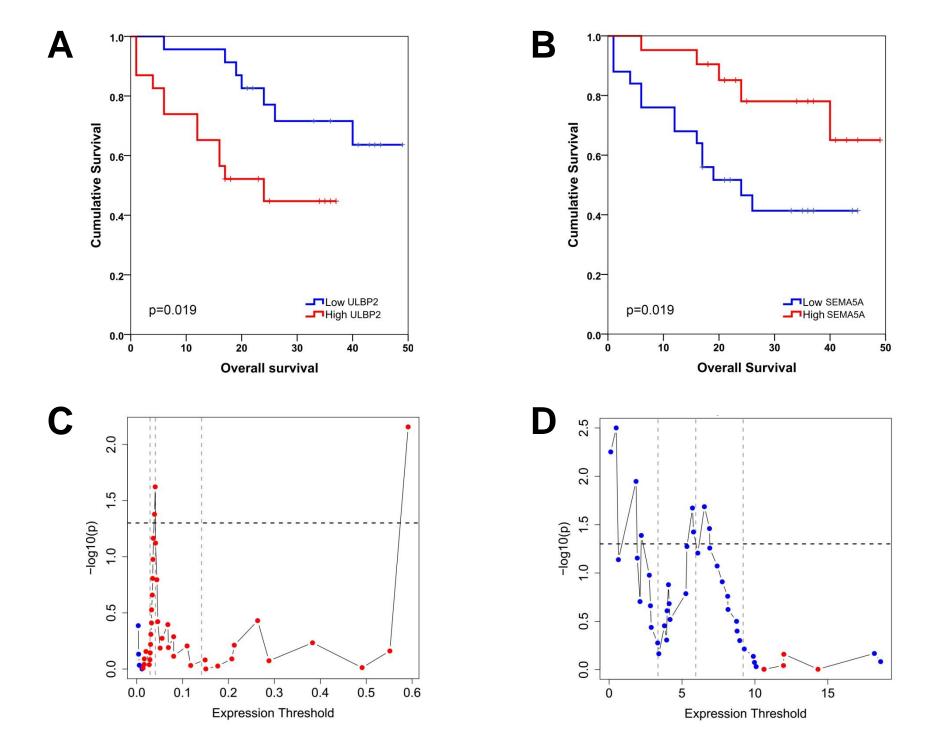


Figure S6

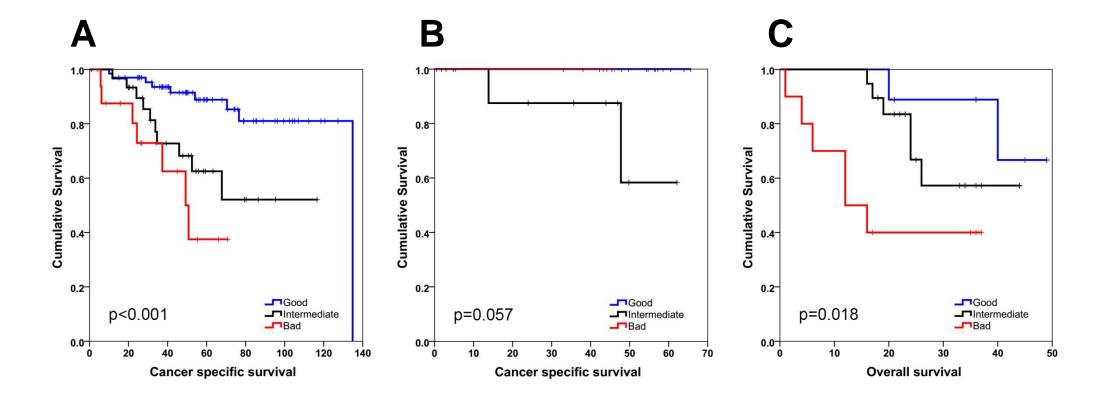


Figure S7

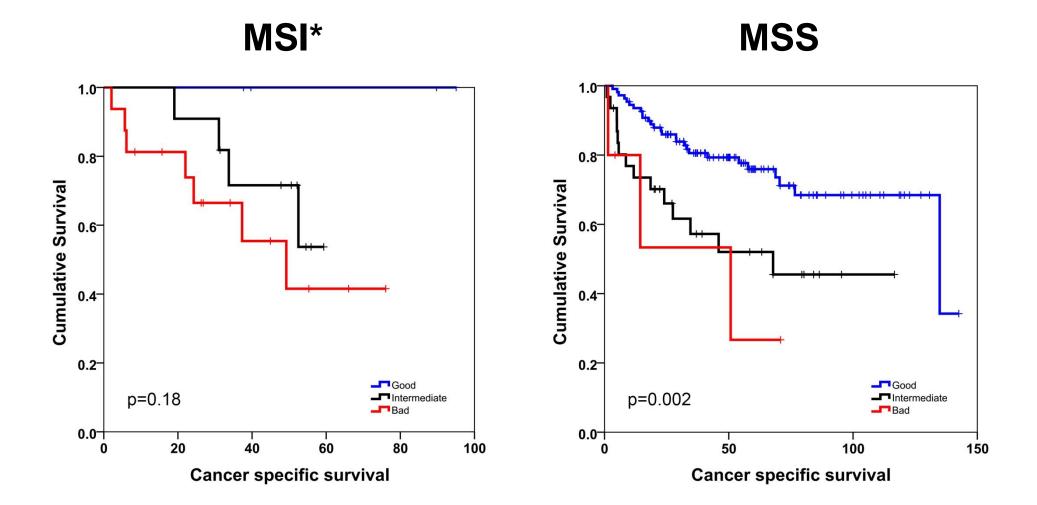
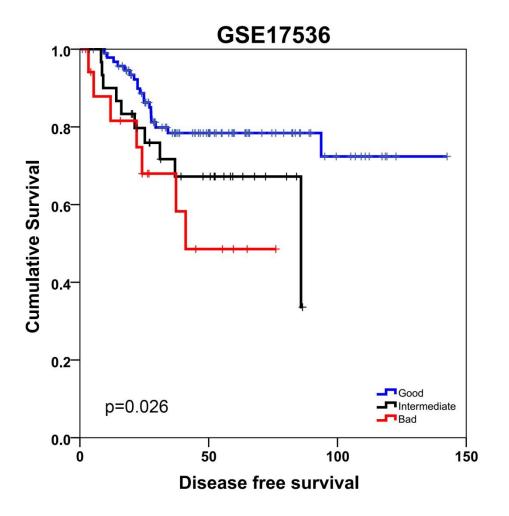
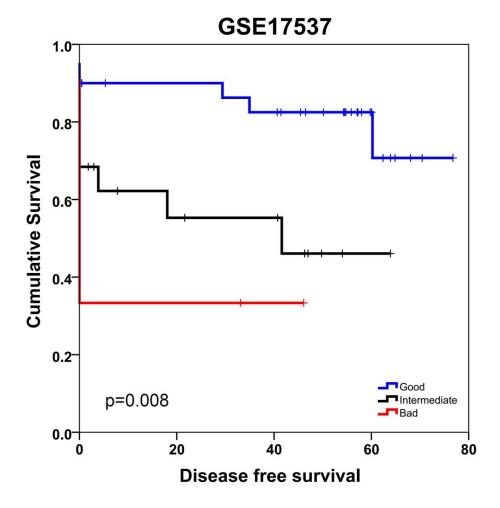




Figure S8

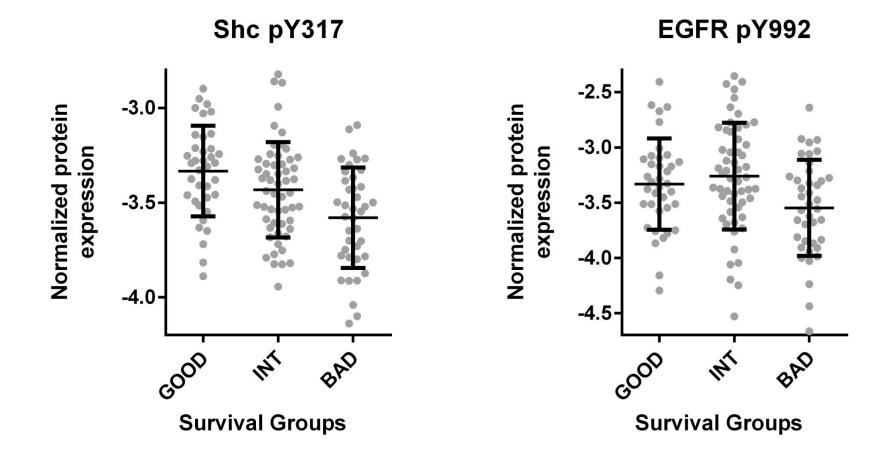


Figure S10

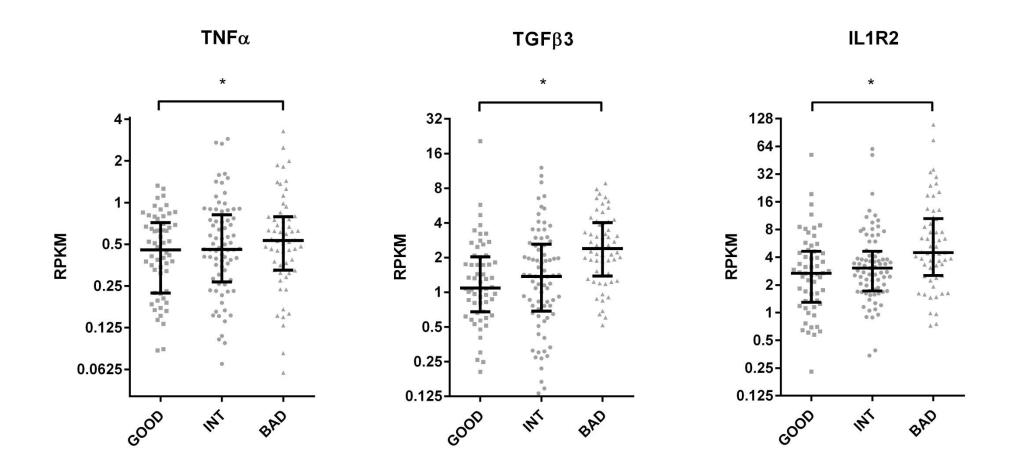
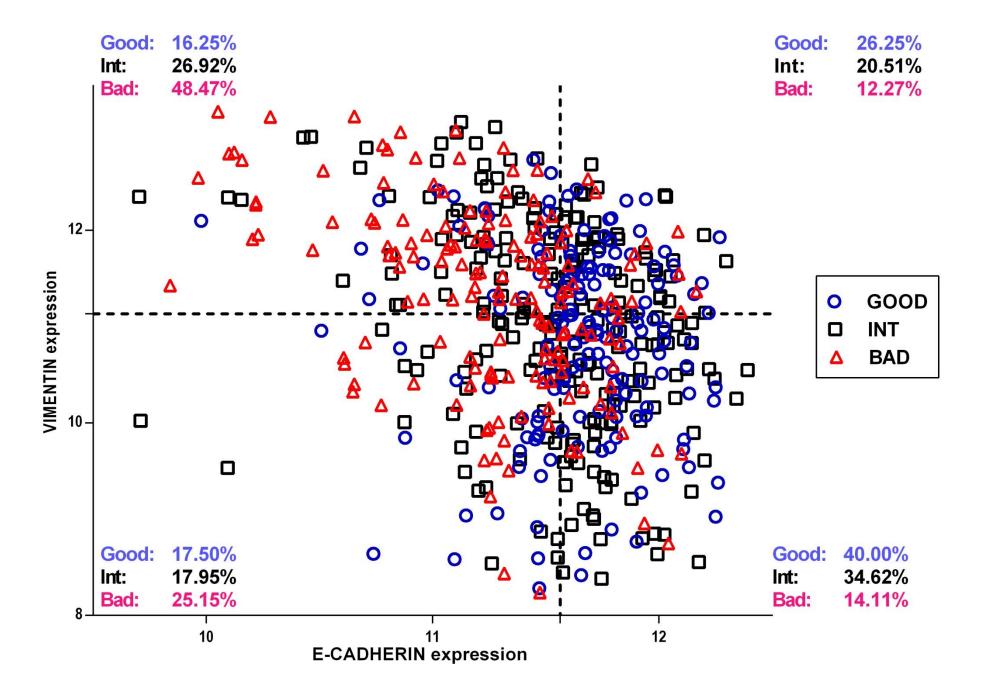



Figure S11

