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Abstract 

Background: Aberrant methylation of CpG islands in tumor cells in promoter regions is a critical 
event in non-small cell lung carcinoma (NSCLC) tumorigenesis and can be a potential diagnostic 
biomarker for NSCLC patients. The present study systemically and quantitatively reviewed the 
diagnostic ability of CDH13 methylation in NSCLC as well as in its subsets. Eligible studies were 
identified through searching PubMed, Web of Science, Cochrane Library and Embase. The pooled 
odds of CDH13 promoter methylation in lung cancer tissues versus normal controls were 
calculated by meta-analysis method. Simultaneously, four independent DNA methylation datasets 
of NSCLC from TCGA and GEO database were downloaded and analyzed to validate the results 
from meta-analysis. Results: Thirteen studies, including 1850 samples were included in this 
meta-analysis. The pooled odds ratio of CDH13 promoter methylation in cancer tissues was 7.41 
(95% CI: 5.34 to 10.29, P < 0.00001) compared with that in controls under fixed-effect model. In 
validation stage, 126 paired samples from TCGA were analyzed and 5 out of the 6 CpG sites in the 
CpG island of CDH13 were significantly hypermethylated in lung adenocarcinoma tissues but none 
of the 6 CpG sites was hypermethylated in squamous cell carcinoma tissues. Concordantly, the 
results from other three datasets, which were subsequently obtained from GEO database 
consisting of 568 tumors and 256 normal tissues, also consisted with those from TCGA dataset. 
Conclusion: The pooled data showed that the methylation status of the CDH13 promoter is 
strongly associated with lung adenocarcinoma. The CDH13 methylation status could be a 
promising diagnostic biomarker for diagnosis of lung adenocarcinoma. 

Key words: CDH13, DNA methylation, Non-small cell lung cancer, NSCLC, Diagnosis, Adenocarcinoma, 
Biomarker. 

Background 
Lung cancer is a complicated disease involving 

genetic and epigenetic variation, and is the leading 
cause of cancer death all over the world [1]. Lung 
cancer is currently poorly diagnosed in the early 
stages. Non-small cell lung cancer (NSCLC) 

comprises the majority of lung cancer and has an 
increasing incidence and mortality in the last two 
decades in China and in the world [2-4]. The overall 
five-year survival rates for late stage III and IV of 
NSCLC patients were just 5%-14% and 1% 
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respectively, however, the rate could come up to 63% 
for the early stage IA if treated with surgery properly 
[5, 6]. 

DNA methylation is one of the key epigenetic 
modifications in eukaryote, regulating genes and 
microRNAs expression [7], gene alternative splicing 
[8], playing an important role in carcinogenesis. 
Moreover, with the advantages of stable chemical 
property, detection ability in remote patient media, 
quantitative signal, relatively low cost in detection, 
DNA methylation has been regarded as a promising 
non-invasive biomarker for the early detection of lung 
cancer [9].  

The CDH13 (cadherin 13) gene was isolated 
recently and has been mapped to 16q24[8]. CDH13 
gene is a unique member of the cadherin superfamily 
due to the devoid of a transmembrane domain. 
Instead, it uses the glycosylphosphatidylinositol (GPI) 
anchor to attach to the exterior surface of the plasma 
membrane [10]. It was shown that the expression of 
CDH13 could be down-regulated through 
hypermethylation of gene promoter region [11]. 
Alterations, like promoter hypermethylation and loss 
of function of CDH13 gene have been detected in 
breast cancer [12] and lung cancer[13-15], in pituitary 
adenoma[16], diffuse large B cell lymphoma[17], and 
nasopharyngeal carcinoma[18]. Moreover, CDH13 
gene has been suggested as an promising early 
detecting marker for lung cancer [19]. 

In the past decades, a large number of DNA 
methylation-based biomarkers of NSCLC have been 
identified. The diagnostic abilities or risk associations 
for several of them have been quantitatively evaluated 
such as SHOX2 [20], APC [21], RASSF1A [22], FHIT 
[23], MGMT [24], RUNX3 [25], RARbeta [26], 
E-cadherin [27] and P16 [28]. Zhong and colleagues 
have conducted a meta-analysis to evaluate the 
association between CDH13 promoter methylation 
and NSCLC [29], while only case-control studies were 
included. We noticed that, recently, the Cancer 
Genome Atlas project (TCGA) and Gene Expression 
Omnibus (GEO) databases have collected several 
independent whole genome DNA methylation 
microarray datasets of NSCLC with comprehensive 
clinical and demographic information, providing 
additional resources that may be without publication 
bias [30]. Therefore, in order to give a more robust and 
unbiased conclusion of the association between 
CDH13 promoter methylation and NSCLC, we 
innovatively integrated these microarray datasets 
with the data from published articles to evaluate the 
diagnostic ability of the CDH13 methylation test in 
NSCLC comprehensively.  

Results 
Study characteristics 

The electronic search strategy identified 365 
potentially relevant articles (PubMed, 73; Web of 
science, 177; Embase, 115; Cochrane Library, 0), which 
were further screened for inclusion on the basis of 
their titles, abstracts, full texts, or a combination of 
these terms. The electronic search was supplemented 
from reference lists of relevant articles including 
reviews. Finally, 13 studies with data on the 
relationship between CDH13 gene promoter 
methylation and NSCLC were pooled for analysis 
(Table 1) [15, 19, 31-41]. All these articles were written 
in English. Given the diagnostic feature of our 
research, the quality of the selected papers were 
critically examined using the QUADAS tool (Table S5) 
[42]. In total, 1206 lung cancer tissues/serum and 644 
normal counterpart tissues/serum were collected 
(Some articles studied with serum and some studies 
with plasma, to simplify, we use serum instead of 
serum/plasma). The age of the subjects in the 13 
studies ranged from 26 to 87 years, with mean or 
median ranging from 59 to 70 years. As for the study 
aim, 5 articles were especially aiming at diagnosis, 
while the others were for prognosis, survival research, 
and so on. Among 13 studies, the proportions of stage 
I samples differed from 9.52 to 68.57%, and the 
percentage of male individuals in the NSCLC samples 
ranged from 52 to 80%. In terms of the methylation 
detection methods, 8 of 13 inclusions used 
methylation-specific polymerase chain reaction 
(MSP), while others used quantitative MSP (qMSP, 
such as Methylight, Pyrosequencing, and so on). Four 
kinds of methylation detection primers or probes 
were found to be utilized for most of the 13 studies 
(Table S1). 

Meta-analysis 
The pooled ORs for CDH13 methylation in 

cancer samples compared with that in normal controls 
were 6.47 (95% CI: 4.58 to 9.14, z = 10.59, P < 0.00001) 
in random effects model using DerSimonian and 
Laird method, and 7.41 (95% CI: 5.34 to 10.29, z = 
11.96, P < 0.0001) in fixed effects model using 
Mantel-Haenszel method, demonstrating a 
statistically significant increase in likelihood of 
methylation in lung cancer tissues comparing to 
controls. A homogeneity analysis revealed that the 
variation among them was not significant (I2 = 3.7%, 
tau2 = 0.015) (Figure 1). 
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Table 1. Characteristics of eligible studies considered in the report. 

Author Sample 
Type 

Agea Stage 
I% 

Stage 
(I+II)% 

Male% Patients 
(M/T) 

Control 
(M/T) 

Methods Aim Multiple 
target 

Control design Ad% Primer 
 set 

Dong et al tissue 63 0.580 0.761 0.795 26/88 7/88 MSP Non-Diagnosis Multi hom 0.398 1 
Feng et al tissue 64.3 0.429 0.776 0.531 11/49 1/49 qMSP Non-Diagnosis Multi hom 0.588 1 
Hanabata et al tissue NA 0.686 0.843 0.629 26/70 2/30 MSP Non-Diagnosis Multi hom 0.688 1 
Hsu et alb tissue 66.81 NA 0.651 NA 28/63 10/63 MSP Diagnosis Multi hom 0.759 1 
Jin et al tissue 66.7 NA NA 0.708 25/72 2/63 qMSP Non-Diagnosis Multi hom 0.652 3 
Nikolaidis et al tissue 65.58 NA 0.771 0.521 11/48 0/48 qMSP Diagnosis Multi hom 0.500 4 
Toyooka et al tissue NA NA NA NA 18/42 2/25 MSP Non-Diagnosis Single hom 0.738 1 
Toyooka et al tissue 63 NA NA 0.691 180/514 5/84 MSP Non-Diagnosis Multi hom 0.606 1 
Tsou et al tissue NA NA NA NA 39/51 24/49 qMSP Diagnosis Multi both 1 2 
Ulivi et al serum 70 0.557 0.721 0.803 14/61 0/15 qMSP Diagnosis Multi heter 0.692 1 
Wang et al tissue NA NA NA 0.607 15/28 3/12 MSP Diagnosis Multi hom 0.682 NA 
Zhai et al serum 62.39 0.095 0.143 0.762 23/42 0/40 MSP Non-Diagnosis Multi heter 0.762 1 
Zhang et alb tissue 59 0.321 0.744 0.744 38/78 8/78 MSP Non-Diagnosis Multi hom 0.455 1 

amean or median age from articles. bwith two records since there are tissue and serum data simultaneously in this article. M and T means number of methylation positive and 
total samples, respectively. qMSP is short for the quantitative methylation-specific polymerase chain reaction method. MSP is short for the methylation-specific polymerase 
chain reaction method. 

 
 

 
Figure 1. Forest plot of Meta-analysis for association between CDH13 promoter hyper-methylation and non-small cell lung cancer (NSCLC). Author, 
year, country of the studies and methylated (M) and total number of the sample (T) in case and control, combined odds ratio (OR) with 
95% confidence region were labeled in the left column of the figure. The DerSimonian-Laird estimator and Mantel-Haenszel method were 
selected to conduct combination estimation for the random effects model and fixed effect model, respectively. 

 
Subgroup analyses were conducted for different 

subtypes, including sample types (tissue or serum), 
age, counterpart categories, proportion of early stage, 
aim of the study (for diagnosis or non-diagnosis), 
proportion of adenocarcinoma samples (Ad%) and 
other possible confounding factors (Table 2). 
Significant differences were found only between the 
ORs of the diagnosis (4.70, 95% CI: 2.77 to 7.95) and 
non-diagnosis (9.33, 95% CI: 6.09 to 14.28) subgroups 
(P = 0.047) (Figure 2A). Both tissue and serum 
subgroups showed significant association between 
CDH13 methylation and NSCLC (OR = 6.75 and 9.07, 

respectively; P = 0.48) (Figure 2B) which suggested 
that CDH13 methylation can be taken as a potential 
biomarker for NSCLC diagnosis using either tissue or 
serum samples. No significant difference was found 
between subgroups of MSP and qMSP (OR = 7.26 and 
7.85, respectively; P = 0.84), suggesting the two 
methods were equivalent in methylation status 
detection (Figure 2C). In addition, there were no 
significant differences between the subgroups of 
proportion of male samples, proportion of early stage, 
proportion of adenocarcinoma samples, the primer 
sets as well as other factors (Table 2). 
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Figure 2. Subgroup meta-analysis and SROC Curve for the relationship between CDH13 promoter hypermethylation and non-small cell lung cancer 
(NSCLC). A) Subgroup meta-analysis based on aim (Diagnosis vs. Non-diagnosis). B) Subgroup meta-analysis based on sample type (Tissue vs. Non-tissue). C) Subgroup 
meta-analysis based on method (MSP vs. qMSP), qMSP is short for the quantitative methylation-specific polymerase chain reaction method, and MSP is short for the 
methylation-specific polymerase chain reaction method. D) Subgroup meta-analysis based on AD% in non-diagnosis subgroup (AD%<65 vs. AD% >=65%), Ad% represents the 
percent of lung adenocarcinoma samples. E) Diagnostic SROC (bivariate model) for CHD13 in NSCLC. 
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Table 2. Subgroup analysis for the main potential confounding 
factors with fixed effect model. 

Subgroup Number of study OR Lower Upper I2 P-value 
Overall 13 7.41 5.34 10.29 0.00%  
Age<64.3 4 8.64 5.23 14.26 31.30%  
Age>=64.3 5 8.50 4.50 16.04 7.30% 0.97 
Stage I<49.3% 3 13.22 6.33 27.60 33.70%  
Stage I>=49.3% 3 6.06 2.88 12.78 0.00% 0.14 
Stage I+II<75.2% 4 8.20 4.72 14.25 43.20%  
Stage I+II>=75.2% 4 7.73 3.88 15.38 0.00% 0.90 
Male %<70% 5 8.71 4.60 16.49 0.00%  
Male %>=70% 5 9.68 5.67 16.53 25.60% 0.80 
MSP 8 7.26 4.95 10.65 0.00%  
qMSP 5 7.85 4.17 14.78 30.50% 0.84 
Diagnose 5 4.70 2.77 7.95 0.00%  
Non-diagnose 8 9.33 6.09 14.28 0.00% 0.047 
Heterogeneous 2 33.79 4.65 245.37 22.10%  
Autogenous 10 7.45 5.15 10.77 0.00% 0.14 
Plasma/Serum 4 9.07 4.29 19.17 58.60%  
Tissue 11 6.75 4.82 9.45 0.00% 0.48 
Ad%<65% 5 8.10 4.94 13.28 0.00%  
Ad%>=65% 8 6.83 4.41 10.58 25.90% 0.61 
Asian 7 7.44 4.92 11.24 23.60%  
Caucasian 6 7.38 4.33 12.58 0.00% 0.98 
qMSP is short for the quantitative methylation-specific polymerase chain reaction 
method. MSP is short for the methylation-specific polymerase chain reaction 
method. Ad% represents the percent of lung adenocarcinoma samples. 

 
 
Because of the significant differences between 

the diagnosis and non-diagnosis subgroup, we 
conducted further research in the non-diagnosis 
subgroup. However, when we focused on the studies 
not aiming at diagnosis, the OR was found to be 
considerably reduced in Ad% <65% subgroup (7.56, 
95% CI: 4.56 to 12.52) than in >=65% subgroup (14.98, 
95% CI: 6.64 to 33.81) (P = 0.16) (Figure 2D). 

Summary receiver operating characteristic 
curve for diagnostic capacity of CDH13 
methylation 

Pooled sensitivity and specificity were 0.400 
(95%CI: 0.317 to 0.488) and 0.906 (95%CI: 0.840 to 
0.946) for all the studies based on the presupposition 
of the fixed effects model. The sensitivity of the tissue 
subgroup was higher than that of the serum 
subgroup, 0.405 (0.316 to 0.500) versus 0.356 (0.247 to 
0.484), while the specificity of the tissue subgroup was 
lower than that of the serum subgroup, 0.900 (0.823 to 
0.945) versus 0.937 (0.803 to 0.982), which suggested 
that reduced sensitivity but increased specificity 
could be expected when conducting the methylation 
test with the serum of patients instead of the cancer 
tissues in NSCLC. 

Although sensitivity and specificity were two of 
the most important features of a diagnostic test, in 
some occasions, pooling sensitivity or specificity 
could be misleading. Therefore, we constructed the 
summery receiver operating characteristic (SROC) 
curve to depict the overall stability and accuracy of 

the methylation test’s diagnostic ability. The area 
under the curve (AUC) of the SROC was 0.691, 
suggesting a fair ability for NSCLC diagnosis (Figure 
2E). 

Bias analysis and robust estimation of pooled 
OR 

A funnel plot of methylation status of lung 
cancer tissues versus normal tissues showed no 
significant publication bias (Harbord test, t = 1.11, P = 
0.29) and no study exceeded the 95% confidence limits 
(Figure S1).  

In order to eliminate the effect of publication 
bias, trim and fill analysis was performed with the 
fixed effects model. The adjusted pooled ORs were 
5.58 (95% CI: 4.05 to 7.67) in the fixed effects model 
and 5.64 (95% CI: 3.84 to 8.27) in the random effects 
model. Both results demonstrated a significantly 
positive association between CDH13 
hypermethylation and NSCLC (Figure S2). 

Sensitivity analysis was performed by omitting 
one study at a time and calculating the pooled ORs for 
the remaining studies. The overall ORs after omitting 
one study were between 7.04 (95% CI: 5.03 to 9.87) 
and 8.22 (95% CI: 5.74 to 11.77) using fixed effects 
model, which suggested that the pooled OR was 
consistent and reliable (Figure S3). 

Validation by independent TCGA and GEO 
lung cancer dataset 

Data from The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) was used to 
validate the findings from the meta-analysis. In TCGA 
dataset, lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC) methylation 
datasets were obtained for further analysis [43]. There 
were 6 CpG sites sharing the same CGI (CpG Island) 
with the primers used in the included studies of the 
meta-analysis, and the overall methylation status of 
the six CpG sites could be used to represent the 
methylation status of CDH13 gene promoter. 
Surprisingly, the result from LUAD dataset and LUSC 
dataset differed and differential methylation profiles 
were shown between these two subtypes (Figure 3). In 
LUAD methylation dataset, 5 out of the 6 CpG sites 
showed significantly differential methylation level 
between cancer tissues and paired adjacent normal 
tissues according to the criteria (See Method). While 
in LUSC dataset, though 5 of the 6 CpG sites had 
p-values less than 0.05 after multiple correction, the 
absolute mean differences were less than 0.1 for all 
and thus couldn’t be considered as significantly 
differential methylation sites as well (Table 3). 

In order to draw a more robust conclusion, GEO 
dataset GSE39279 as well as GSE52401 were further 
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downloaded and combined from Gene Expression 
Omnibus. There were 322 lung adenocarcinomas and 
122 lung squamous cell carcinomas and 244 normal 
tissues in the combined dataset, which is of sufficient 
sample size to be an independent validation database. 
We performed the same analysis as before and 
obtained the result consistent with the TCGA dataset 
(Figure S4). Due to the large sample size, p-values of 
all the CpG sites in LUAD and LUSC datasets were 
less than 0.05 after multiple corrections. However, In 
LUAD dataset, 5 out of the 6 CpG sites showed 
absolute mean differences above 0.1 and thus could be 
regarded as significantly differential methylated sites 
while none of the CpG sites passed the criteria in 
LUSC dataset (Table S2). Moreover, another 
independent GEO dataset GSE56044 with 83 lung 
adenocarcinomas and 23 lung squamous cell 
carcinoma tissues and 12 adjacent normal tissues, was 
also downloaded for further validation (Figure S5). 
Unsurprisingly, the result was nearly the same with 
the previous two datasets. According to our criteria, 6 
out of 7 CpG sites were significantly hypermethylated 
in LUAD dataset while none of the 7 CpG sites was 
differentially methylated in LUSC dataset (Table S3). 
Further, we then combined the TCGA and GEO 
datasets for evaluation of the diagnosis ability of 
CDH13 methylation status. After quality control, four 
shared CpG sites within the CpG island were selected. 

The AUCs of logistic regression models based on the 
CpG sites were 0.83-0.94 for Ads and 0.60-0.75 for 
SqCs, showing that the diagnostic ability of CDH13 
methylation status is much better in Ads than in SqCs 
(Table S4).  

 

Table 3. Differential CDH13 methylation, odds ratio between 
adenocarcinoma, squamous cell carcinoma and their counterparts 
from TCGA dataset 

Type CpG site Position McaM McoM ∆β P-value 
LUAD cg08747377 chr16:82660670 0.32 0.1 0.22 1.95×10-5 

cg05374412 chr16:82660727 0.21 0.03 0.18 2.27×10-5 
cg00806490 chr16:82660873 0.28 0.13 0.15 1.05×10-4 
cg08856946 chr16:82661421 0.19 0.04 0.15 2.27×10-5 
cg09189772 chr16:82661638 0.29 0.16 0.13 8.32×10-4 
cg19369556 chr16:82661725 0.26 0.22 0.04 2.92×10-1 

LUSC cg08747377 chr16:82660670 0.13 0.08 0.05 1.50×10-2 
cg05374412 chr16:82660727 0.07 0.02 0.05 9.00×10-3 
cg00806490 chr16:82660873 0.15 0.11 0.04 6.00×10-3 
cg08856946 chr16:82661421 0.05 0.03 0.02 3.00×10-2 
cg09189772 chr16:82661638 0.16 0.14 0.02 7.61×10-1 
cg19369556 chr16:82661725 0.14 0.18 0.04 2.26×10-5 

McaM and McoM represent the mean of case methylation (Beta) and mean of 
control methylation (Beta). Methylation levels are calculated with formula: Beta = 
(M/M + U). 
LUAD is short for lung adenocarcinoma, and LUSC is short for lung squamous cell 
carcinoma 
Position represents the chromosome position of each CpG site according to 
GRCh37/hg19. 
P-values are calculated from Wilcoxon signed-rank test after false discovery rate 
(FDR adjustment). 

 

 

 
Figure 3. CpG sites on the Illumina Infinium HumanMethylation450 Beadchip across CDH13 gene region and Gene expression scatterplot with paired 
data from TCGA dataset. Methylation and gene expression status for CDH13 gene (TCGA lung cancer dataset). LUAD is short for lung adenocarcinoma, and LUSC 
represents lung squamous cell carcinoma. A-B each represents the different methylation status of lung cancer subtypes versus normal lung tissues in different datasets. For A-B, 
the x-axis shows the different CpG sites in CDH13 genes and the y-axis shows the beta value of each CpG site to represent the methylation level of each CpG site. C-D each 
represents the gene expression status of paired samples. The x-axis of the two figures shows the different types and y-axis shows the gene expression level using RPKM as 
measurement. 
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Gene Expression data with TCGA RNA-Seq 
dataset 

DNA methylation is one of the key regulators for 
gene expression. It is found that DNA methylation 
change correlates with gene expression level 
inversely, especially in gene promoter region. As a 
result, we downloaded the level 3 RNA-Seq dataset 
from TCGA. Reads per kilo base per million mapped 
reads (RPKM) was used as the measurement for gene 
expression quantification. After calculating the fold 
change and p-value with multiple correction, 
significantly differential expression of CDH13 was 
shown in LUAD (P = 5.03×10-8, fold change = 0.437) 
but not shown in LUSC (P = 0.97, fold change = 1.138) 
samples when compared with normal tissues. And 
the expression profiles of CDH13 were in accordance 
with the methylation profiles drawn from the 
microarray datasets, further strengthening our 
conclusions (Figure 3). 

Discussion 
The CDH13 gene has been reported to be 

hypermethylated in many types of cancers. In this 
study, we performed an integrated analysis to 
quantify the ability for the CDH13 promoter 
methylation test in NSCLC diagnosis, and a 
significant association was identified between CDH13 
methylation and NSCLC (OR = 7.41, 95% CI: 5.34 to 
10.29, P < 0.0001). Four imputed studies were filled 
when trim and fill test was performed to eliminate the 
influence of publication bias in the fixed effects 
model, and the overall OR (5.58, 95% CI: 4.05 to 7.67) 
was still significant, indicating the existence of a 
strong association between CDH13 promoter 
methylation and NSCLC.  

In order to validate the result from the 
meta-analysis, we downloaded four independent 
datasets from TCGA and GEO database. And 
unexpectedly, the methylation profile in the two 
subsets of lung cancer differed dramatically. All of the 
datasets from TCGA and GEO showed significant 
hypermethylation in the promoter CpG sites of lung 
adenocarcinoma tissues when compared with normal 
tissues. However, none of the CpG sites was 
significantly differential methylated between lung 
squamous cell carcinoma tissues and normal tissues. 
Furthermore, we also conducted logistic regression 
model to evaluate the diagnosis ability of CDH13 
methylation status in the lung adenocarcinoma and 
lung squamous cell tissues as well. Unsurprisingly, 
the AUCs of the former (AUC: 0.828-0.936) was much 
better than the latter (AUC: 0.596-0.744). Moreover, 
the expression data from TCGA level 3 RNA-Seq data 
was also concordant with this conclusion. The 

expression level of CDH13 was significantly lower in 
lung adenocarcinoma tissues but not in lung 
squamous cell carcinoma tissues when compared 
with normal tissues. This result was partially 
confirmed when we focused on the studies not aiming 
at diagnosis, the OR was found to be largely reduced 
in Ad%<65% subgroup (7.56, 95% CI: 4.56 to 12.52) 
than in Ad%>=65% subgroup (14.98, 95% CI: 6.64 to 
33.81). 

In summary, different results were drawn from 
meta-analysis and microarray datasets for the 
association of CDH13 promoter methylation and lung 
squamous cell carcinoma. As for the relatively 
inconsistent result, firstly, qMSP is the 
semi-quantitative method especially being used in 
low dose methylation. Secondly, the sparseness of 
CpG sites in HumanMethylation 450K array may be 
another key factor. The HumanMethylation 450K 
array only covers less than 2% of the whole genome 
CpG sites and thus can’t explore all the promoter 
region of CDH13 and therefore might be misleading 
[44]. Besides, no method comparison between qMSP 
and HumanMethylation 450K has been conducted to 
our knowledge. As a result, more comprehensive and 
advanced methods like WGBS (whole genome 
bisulfite sequencing) and RRBS (restricted region 
bisulfite sequencing) are needed to draw a more 
robust conclusion [45-47]. 

To summarize, according to the previous results 
drawn from meta-analysis and microarray data 
analysis, CDH13 may be a powerful potential 
biomarker for the diagnosis of lung adenocarcinoma 
while the association of CDH13 methylation and lung 
squamous cell carcinoma needs more data to draw a 
robust conclusion. In addition, due to the different 
methylation profile of CDH13 in NSCLC subtypes, 
CDH13 methylation test could also be a promising 
biomarker to distinguish the lung adenocarcinoma 
and lung squamous cell carcinoma which might 
provide evidence for accurate chemotherapy and 
targeted therapy. 

Conclusion 
This integrated analysis of the pooled data 

provides strong evidence that the methylation status 
of the CDH13 promoter is significantly associated 
with lung adenocarcinoma. The aberrant CDH13 
methylation could be a promising diagnostic 
biomarker for non-invasive lung adenocarcinoma 
detection. 
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Methods 
Search strategy, selection of studies and data 
extraction 

This pooled study involved searching a range of 
computerized databases, including PubMed, 
Cochrane Library, OVID Medline and Web of Science 
for articles published in English by December 2014. 
The study used a subject and text word strategy with 
(CDH13 OR CDHH OR P105 OR H-cadherin OR Cdht 
OR T-cadherin OR Tcad OR CH211-122A20.1 OR 
BOS_16969 OR cdhh) AND (lung or non-small) as the 
primary search terms. Wildcard character of star, 
dollar or some other truncations were applied 
according to the rules of the databases to allow 
effective article collection. 

Two independent reviewers (Geng, Guo) 
screened the titles and abstracts derived from the 
literature search to identify relevant studies. The 
following types of studies were excluded: animal and 
cell experiments, case reports, reviews or 
meta-analyses and studies of non-case-control studies 
or studies with insufficient data or those inaccessible 
after making contacts with the authors. The remaining 
articles were further examined to see if they met the 
inclusion criteria: 1) the patients had to be diagnosed 
with NSCLC (Ad and Sc), 2) the studies had to contain 
CDH13 gene promoter methylation data from tissue, 
blood or serum, 3) the studies had to be case-control 
studies which included tissue-tissue, blood-blood or 
serum-serum in case and controls respectively. The 
reference sections of all retrieved articles were 
searched to identify further relevant articles. 
Potentially relevant papers were obtained and the full 
text articles were screened for inclusion by two 
independent reviewers (Geng, Guo). Disagreements 
were resolved by discussion with LXT, SDC, and LJ. 
Included studies were summarized in data extraction 
forms. Paper quality was assessed using Quality 
Assessment Tool for Diagnostic Accuracy Studies 
(QUADAS) criteria. Authors were contacted when 
relevant data was missing. The name of the first 
author, year of publication, sample size, age (mean or 
median), gender proportion (Male%), the proportion 
of TNM stage I samples (proportion of early stage of 
NSCLC samples), the percentage of adenocarcinoma 
(Ad%), publication aim (for diagnosis or not), 
analyzing multiple genes or not (one or more genes 
detected simultaneously in studies design), control 
type (autogenous or heterogeneous counterpart) and 
methylation status of the CDH13 promoter in human 
NSCLC and normal or control tissues were extracted. 

Meta-analysis and SROC analysis 
Data were analyzed and visualized mainly using 

R Software (R version 3.1.0) including meta [48], 
metafor[49] and mada packages[50]. The strength of 
association was expressed as pooled odds ratio (OR) 
with corresponding 95% confidence intervals (95% 
CI). Data were extracted from the original studies and 
recalculated if necessary. Heterogeneity was tested 
using the I2 statistic with values over 50% and 
Chi-squared test with P ≤ 0.1 indicating strong 
heterogeneity between the studies [21]. Tau-squared 
(τ2) was used to determine how much heterogeneity 
was explained by subgroup differences. The data 
were pooled using the DerSimonian and Laird 
random effects model (I2 > 50%, P ≤ 0.1) or fixed 
effects model (I2 < 50%) according to heterogeneity 
statistic I2 [51]. A two-sided P ≤ 0.05 was considered 
significant without special annotation. With a lack of 
heterogeneity among included studies, the pooled 
odds ratio estimates were calculated using the fixed 
effects model [52]. Otherwise, the random-effects 
model was used [53]. Sensitivity analysis was 
performed to assess the contributions of single studies 
to the final results with the abandonment of one 
article each time. Publication bias was analyzed by 
funnel plot with mixed-effects version of the Harbord 
test. If bias was suspected, the conventional meta-trim 
method was used to re-estimate the effect size.  

Compared with traditional SNP association 
studies, methylation-associated research might be 
involved with different methylation-definition 
thresholds. In these cases, traditional weighted 
averages (pooled sensitivity and specificity) would 
not reflect the overall accuracy of the test, because the 
extremes of threshold criteria could skew the 
distribution, known as the threshold effect [54]. Thus, 
SROC analysis was applied to meta-analysis of 
diagnostic tests [54, 55]. The SROC curve showed the 
performance of the diagnostic ability of CDH13 
methylation to NSCLC. Each study produced values 
for sensitivity, specificity and therefore true positive 
rate (TPR) and false positive rate (FPR), and the plots 
were placed over the TPR and FPR points to form a 
smooth curve. A linear regression model was selected 
to fit the SROC curve where sensitivity and 
(1-specificity) were transformed into complex 
logarithmic variables. The exact AUC for the SROC 
function was used to assess the accuracy of the test. 

TCGA and GEO data extraction and analysis 
TCGA DNA methylation dataset which included 

23 lung adenocarcinoma and 40 lung squamous cell 
carcinoma tissues as well as 63 paired adjacent tissues, 
were collected from TCGA project 
[http://cancergenome.nih.gov/]. And GEO datasets 
including GSE39279 and GSE52401 and GSE56044 
were downloaded from Gene Expression Omnibus 
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[http://www.ncbi.nlm.nih.gov/geo/], including a 
sum of 568 NSCLC tissues and 256 adjacent or normal 
lung tissues. Illumina HumanMethylation450K 
beadchip was used to detect the methylation level for 
all of the above datasets. The estimation of 
methylation for each CG probe was calculated 
between methylated (M) and unmethylated (U) 
alleles. Specifically: 

beta = max(M,0)
max(M,0)+max(U,0)

 

Both M and U represented mean signal 
intensities for about 30 replicates on the array. Beta 
value of the CpG sites were used as the measurement 
of methylation. CpG site would be immediately 
omitted when it was missing in one or more samples. 
The number of CpG sites of CDH13 gene in TCGA 
dataset and GEO datasets was not completely the 
same due to the quality control procedure previously 
mentioned. 6 or 7 CpG sites located in the same CpG 
island with the primers mentioned in the 
meta-analysis were the signatures for the methylation 
status of CDH13 (Table S1). Wilcoxon rank sum test or 
Wilcoxon signed-rank test along with logistic 
regression were conducted and generated a p-value 
for each comparison. Multiple comparison of the 
differential methylation was conducted with 
Benjamini and Hochberg at 5% FDR as the threshold. 
The diagnosis model was conducted using logistic 
regression along with 5-fold cross-validation. The 
statistical analysis was performed using R version 
3.1.0 [56]. 

RNA-Seq data extraction and analysis 
Level 3 RNA-Seq dataset was obtained from 

TCGA database, which includes 114 lung 
adenocarcinoma and 104 lung squamous cell 
carcinoma tissues as well as 218 normal tissues. Reads 
per kilo base per million mapped reads (RPKM) was 
regarded as the measurement for gene expression 
quantification. We assessed the significance of the 
differential gene expression by comparing the tumor 
tissues with paired adjacent normal tissues using 
Wilcoxon signed-rank test. For identification of 
differentially expression genes, p-value≤0.05 and fold 
change ≥2.0 or ≤ 0.5 was set as the criteria. All the 
data analysis procedures were conducted with 
open-source R software (version 3.1.0). 

Supplementary Material  
Supplementary figures and tables.  
http://www.jcancer.org/v07p2280s1.pdf  
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