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Abstract 

It is a commonly held belief that infiltration of immune cells into tumor tissues and direct 
physical contact between tumor cells and infiltrated immune cells is associated with physical 
destructions of the tumor cells, reduction of the tumor burden, and improved clinical 
prognosis. An increasing number of studies, however, have suggested that aberrant infiltration 
of immune cells into tumor or normal tissues may promote tumor progression, invasion, and 
metastasis. Neither the primary reason for these contradictory observations, nor the 
mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elu-
cidated, making it difficult to judge the clinical implications of infiltration of immune cells within 
tumor tissues. This mini-review presents several existing hypotheses and models that favor 
the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, 
and also analyzes their strength and weakness. 
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Background 
Cancer has been detected in all epitheli-

um-derived tissues of the human body. Carcinogene-
sis in different organs is believed to share a similar 
process, i.e, sequential progression from normal to 

hyperplasia, to in situ, and then, to invasive or meta-
static cancer [1-4]. A vast majority of in situ cancer can 
be cured by surgical resection alone, while invasive 
and metastatic cancer accounts for over 90% of can-
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cer-related mortality [5-8]. The significant difference 
in clinical prognosis between in situ and invasive or 
metastatic cancer results predominantly from the 
presence or absence of the surrounding basement 
membrane (BM). All normal or pre-invasive tumor 
epithelia are normally devoid of lymphatic ducts and 
blood vessels and are also physically segregated from 
vascular structures within the stroma by the BM. The 
BM consists of mainly type IV collagen, laminins, and 
other molecules that form a continuous sheet (more 
commonly called the tumor capsule), surrounding the 
epithelial cells [9-12]. In human breast, prostate, and 
major salivary glands, the capsule is further rein-
forced by a single layer of elongated cells, which are 
named “myoepithelial” cells in the breast and salivary 
glands; and “basal cells” in the prostate. The basal or 
myoepithelial cell layer lies between the epithelial 
cells and the BM. In the gastrointestinal tract, the 
normal mucosa and in situ cancer are further sepa-
rated from the submucosa by the muscularis mucosa, 
a dense band comprised of two layers of smooth 
muscle cells [13]. Due to these structural relationships, 
the disruption of the tumor capsule and its associated 
physical barriers is an absolute pre-requisite for tumor 
cell invasion or metastasis.  

It is a commonly held belief that progression 
from in situ to invasive or metastatic cancer is caused 
by proteolytic enzymes produced by tumor cells that 
increase linearly in concentration with tumor pro-
gression, reaching their highest level at the in situ 
cancer stage. It has been proposed that these proteo-
lytic enzymes cause degradation or disruption of the 
tumor capsule and allow the in situ cancer cells to 
migrate into the adjacent stroma or to disseminate to 
distant organs [14-17]. The above model of tumor in-
vasion and metastasis is consistent with results ob-
tained from tissue culture and animal model studies 
[18-20]; however, it is hard to reconcile with a number 
of well-established observations: (1) although a vast 
majority of tumor cells express high levels of proteo-
lytic enzymes, only 10-30% of untreated in situ cancers 
progress to invasive or metastatic cancer [21-25]; (2) 
the outcomes of world-wide clinical trials with prote-
olytic enzyme-targeted inhibitors have yielded very 
disappointing results [26,27]; (3) prostate tissues from 
many cancer-free men harbor a DNA phenotype 
identical to that of invasive prostate cancer [28,29]; 
and (4) cancer of unknown primary site is one of the 
ten most frequent cancers and the 4th highest cause of 
cancer-related mortality, despite the lack of an identi-
fiable primary tumor to serve as a source of metastatic 
tumor cells [30]. Together, these facts argue that al-
ternative pathways may exist for tumor progression 
and subsequent invasion or metastasis. 

Existing hypotheses of tumor infiltrating 
immune cells promoting tumor invasion 
and metastasis 

A great number of studies have shown that in-
filtration of the immune cells into tumor tissues and 
direct physical contact between infiltrating immune 
cells and tumor cells are associated with the physical 
destruction of tumor cells, reduction of the tumor 
burden, and an improved clinical prognosis [31-36]. 
On the other hand, a significant and steadily increas-
ing number of studies have shown that increased in-
filtration of immune cells may promote tumor pro-
gression and invasion. For example, several studies 
have documented that stage- and histopathological-
ly-matched pre-invasive prostate and esophageal 
tumors with increased immune cell infiltration have a 
significantly higher frequency of subsequent progres-
sion to invasive cancer than their counterparts with-
out aberrant immune cell infiltration [37-39]. Unfor-
tunately, the primary reasons for these contradictory 
observations remain elusive, making it difficult to 
judge the clinical implications of the infiltration of 
immune cells within tumor tissues. To address these 
issues, numerous studies [40-47] have been conduct-
ed, and a number of hypotheses [48-55] have been 
presented to explore the primary impact of tumor 
infiltrating immune cells on associated tumor tissues. 
Again, the outcomes of these studies are highly con-
tradictory and the primary impact of infiltrating im-
mune cells on associated tumors remains elusive 
[56-57]. In this mini-review, we present several exist-
ing hypotheses that favor the promoting impact of 
tumor-infiltrating immune cells on tumor invasion 
and metastasis and analyze their strengths and 
weakness. These specific hypotheses were selected for 
a number of reasons, including (1) they directly ad-
dress the impact of tumor infiltrating immune cells on 
tumor cell behavior, and (2) they appear to be appli-
cable to multiple, or perhaps all, epithelial-derived 
tumors.  

1. Tumor-educated macrophages (paracrine 
loop signaling)  

The main concept of this hypothesis was intro-
duced in 2004 [58] and was based on findings of a 
chemotaxis-based in vivo invasion assay and mul-
tiphoton-based intravital imaging on transgenic mice. 
The study shows that interactions between breast 
tumor cells and macrophages facilitates the migration 
of cancer cells into the primary tumor and also that 
tumor cell intravasation occurs in association with 
perivascular macrophages [59,60]. According to this 
hypothesis, “macrophages are recruited to the inva-
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sive front by expression of tumor-derived chemotactic 
factors and in response to the disruption of the base-
ment membrane. At this invasive site, macrophages 
enhance tumor cell migration and invasion through 
their secretion of chemotactic and chemokinetic fac-
tors including epidermal growth factor (EGF). They 
promote angiogenesis by the synthesis of angiogenic 
factors including vascular endothelial growth factor 
(VEGF), and they remodel the extracellular matrix 
and in particular, regulate collagen fibrillogenesis. A 
combination of these factors provides a tri-
ple-whammy, as the more mobile and invasive tumor 
cells track along collagen fibers that are also anchored 
to blood vessels, which are fabricated at sites of inva-
sion and through which macrophages potentiate tu-
mor cell intravasation” [61]. 

 The main strength of this hypothesis is that the 
assay system used in these studies allows direct visu-
alization of macrophage-assisted tumor cell migration 
and intravasation in mammary tumors. The primary 
weakness of this hypothesis is that it may not truly 
reflect the intrinsic events in humans for four im-
portant reasons. (1). Previous studies have shown that 
human macrophages are significantly different from 
mouse macrophages not only in their relative ratio to 
other immune cell types, but also in their use of argi-
nine for production of nitric oxide (NO), which is the 
most important component of the macrophage arsenal 
against intracellular pathogens [62-69]. The mouse 
macrophages produce large amounts of NO and 
L-citrulline from L-arginine via induction of the in-
ducible form of NOS (iNOS), and also synthesize the 
obligatory cofactor tetrahydrobiopterin (BH4), essen-
tial for stabilization and function of the iNOS enzyme 
protein [63,64]. The human macrophages, however, 
do not have NOS activity nor do they synthesize BH4 
[65-69]. (2). The human immune system is also fun-
damentally distinct from the mouse immune system 
in development, activation, and response to challenge, 
in both innate and adaptive immunity [70-73]. The 
human peripheral blood is neutrophil rich (50–70% 
neutrophils, 30–50% lymphocytes), whereas the 
mouse peripheral blood is predominantly lympho-
cytes (75–90% lymphocytes, 10–25% neutrophils) [70]. 
The putative human hemopoietic stem cells (HSC) 
express predominantly c-kitlow, flt-3+, whereas the 
mouse HSC express predominantly c-kithigh, flt-3− [71]. 
Similarly, the human neutrophils are a rich source of 
leukocyte defensins, whereas defensins are not ex-
pressed by neutrophils in mice [72-74]. (3). It has been 
well documented that the primary function of the 
human macrophages is to remove cell debris and in-
filtrated microorganisms after tissue injury [75-79]. It 
has also been documented that aberrant accumulation 

of macrophages often has destructive impact on their 
associated tissues [80]. (4). In the adult organs, only 
stem cells retain the potential for unlimited prolifera-
tion and multi-lineage differentiation, and, conse-
quently, stem cells have been considered as the pri-
mary source for invasive and metastatic lesions 
[81-85]. The paracrine loop signaling hypothesis, 
however, has failed to address the role of tumor stem 
cells in invasion or metastasis. Collectively, these 
weaknesses make it difficult to determine whether, or 
to what extent, this hypothesis truly reflects the in-
trinsic events of human tumor invasion or metastasis.  

2. Immune cell-based mediation 
This hypothesis is based on studies using the 

polyoma-middle-T-antigen (PyMT) transgeneic 
mouse model of mammary carcinogenesis [86]. Ac-
cording to this hypothesis, “IL-4-expressing CD4+ T 
lymphocytes indirectly promote invasion and subse-
quent metastasis of mammary adenocarcinomas by 
directly regulating the phenotype and effector func-
tion of tumor-associated CD11b+Gr1−F4/80+ macro-
phages that in turn enhance metastasis through acti-
vation of epidermal growth factor receptor signaling 
in malignant mammary epithelial cells”. More re-
cently, the same concept and similar pathways, have 
been extended to lymphocytes and their subtypes 
[87-90]. This includes the recruitment of macrophages 
through expression of colony-stimulating factor 1 
(CSF1) by mouse mammary epithelium [90].  

 The main strength of this hypothesis is that it 
presents a broader view of the potential impact of 
interactions among different immune cell types on 
tumor progression. The primary weakness of this 
hypothesis is that it is based on studies using mouse 
models and thus raises the same issues with applica-
bility to human tumor tissues as discussed above. In 
addition, the model focuses predominately on path-
ways that facilitate late-stage promotion of tumor 
progression to metastasis.  

3. Cancer cell-leukocyte fusion  
This hypothesis is the extension of a century-old 

theory introduced by a German pathologist, Aichel O, 
in 1911 [91]. Based on this hypothesis, macrophages 
ingest tumor cells leading to the fusion of genetic 
materials from the two cell types, resulting in the cre-
ation of a hybrid phenotype that exhibits chemotactic 
migration in vitro toward fibronectin and shows high 
frequencies of metastasis when implanted in mice 
[92-97]. 

The main strength of this hypothesis is its rele-
vance to human carcinogenesis as both cancer cell- 
and macrophage-specific molecules are detectable in a 
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subset of human clinical tumor samples [92-97]. The 
mechanism upon which this hypothesis is based, 
however, is not likely to represent a major route of 
metastatic cancer for a simple reason: if the fusion of 
macrophages and cancer cells is indeed the precursor 
of metastatic cancer, all metastatic cancer cells from 
different organs and histolological origins should 
share the same or similar morphology, specifically a 
giant cell population with polyploidy. However, it is 
well established that a majority of metastatic cancer 
cells are morphological and immunohistochemically 
similar to their primary tumors, which are highly 
heterogeneous in morphology.  

4. Regulatory T cells (Treg) induced immune 
suppression  

 This hypothesis is based on both clinical obser-
vations of ovarian cancer patients and laboratory 
findings from studies of the synegeneic ID8 ovarian 
cancer model [98,99]. According to this hypothesis, 
“recruitment of Treg cells to the tumor supports dis-
ease progression through a dual mechanism: (1) the 
canonical subversion of antitumor immunity, and (2) 
through the establishment of a proangiogenic repro-
gramming of the tumor microenvironment”. The au-
thors of this hypothesis believe that the recruitment of 
regulatory T cells to the tumors are mediated primar-
ily through the CCL28-CCR10 interaction [99].  

 The main strength of this hypothesis is that it is 
based on both clinical and laboratory data and that 
Treg-cell induced immune suppression has been well 
documented in multiple types of human cancer and 
diseases [100-104]. The main weakness of the hy-
pothesis is that CCL28 is not a widely distributed 
molecule; consequently, the applicability of this hy-
pothesis to other tumor types has yet to be estab-
lished. In addition, this hypothesis fails to address the 
impact of immune cells on tumor stem cells, which are 
now believed to serve as the “seeds” for both invasive, 
metastatic, and recurrent cancer.  

5. Monocyte-mediated protection against 
natural killer cell lysis of cancer stem cells 

This recently introduced hypothesis based on the 
findings that “increased NK cell cytotoxicity was seen 
when they were cultured with primary oral squamous 
carcinoma stem cells (OSCSCs) and Glioblastoma 
(GBM) stem cells and not with their more differenti-
ated counterparts. In addition, human embryonic 
stem cells (hESCs), human mesenchymal Stem Cells 
(hMSCs), and human dental pulp stem cells (hDPSCs) 
and human induced pluripotent stem cells (hiPSCs) 
were significantly more susceptible to NK 
cell-mediated cytotoxicity than their differentiated 

counterparts or parental cells from which they were 
derived, suggesting that NK cells were preferentially 
targeting and lysing stem cells and not their differen-
tiated counterparts. It was also found that inhibition 
of differentiation or reversion of cells to a 
less-differentiated phenotype by blocking NF-κB or 
targeted knockdown of COX2, significantly aug-
mented NK cell functions”. In addition, it was also 
found that “total population of monocytes and those 
depleted of CD16+ subsets were able to substantially 
prevent NK cell-mediated lysis of OSCSCs, MSCs and 
DPSCs” [105]. Furthermore, it was suggested that NK 
cells played a significant role in differentiation of the 
cells by providing critical signals via secreted cyto-
kines as well as direct cell-cell contact after the induc-
tion of split anergy which conditioned NK cells to lose 
cytotoxicity and gain the ability to secrete cytokines. 
To be conditioned to drive differentiation, NK cells 
had to first receive signals through their key surface 
receptors either from healthy stem cells or those 
which had been transformed. In addition, NK cells by 
targeting other inflammatory cells or fibroblasts in the 
tumor microenvironment may become conditioned to 
lose cytotoxicity and gain cytokine producing phe-
notype before they can aid in differentiation of stem 
cells. These alterations in NK cell effector function 
could ultimately aid in driving differentiation of a 
population of surviving healthy as well as trans-
formed stem cells. In cancer patients since the major-
ity of NK cells have lost cytotoxic activity, they may 
eventually contribute rather than halt the progression 
of cancer by allowing the growth and expansion of the 
pool of cancer stem cells.  

The main strength of this hypothesis is that it 
provides a general mechanism how immune cells may 
behave in inflammatory microenvironment for the 
ultimate goal of tissue regeneration and the resolution 
of inflammation. More importantly, this hypothesis 
provides a novel concept and approach to study the 
link between stem cells and carcinogenesis and cancer 
progression. Indeed, many correlates to this hypothe-
sis has been found in the clinical setting, such as sub-
stantially decreased levels of cytotoxicity in NK cells, 
or increased modulation of NK cell surface antigens in 
cancer patients [106-114]. The weakness of this hy-
pothesis may be that it is primarily based on findings 
from human cell cultures, and animal studies, and 
may not have taken the structural features of certain 
types of tumors into the consideration: the stem cell 
population in normal or pre-invasive cancer tissues 
are normally segregated from the immune cells by a 
dense fibrous epithelial capsule in certain tumors 
[9-12]. However, as noted below once the tumor cap-
sule is disrupted conditioned NK cells may get access 
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to drive differentiation of stem cells. On the other 
hand, unconditioned, cytotoxic NK cells should aid in 
the elimination of cancer stem cells [115-118]. Disrup-
tion of the extracellular matrix components in the 
tumor capsule may also be achieved via increased 
enzymatic digestion since conditioned NK cells and 
regulatory T cells are likely to secrete increased levels 
of degrading enzymes such as MMPs. Indeed, the 
presence of intraepithelial lymphocytes in the healthy 
and diseased gut mucosa is a good indication that 
CD8+ lymphocytes have access to both normal and 
transformed epithelial microenvironment and that 
their function may be important in the differentiation 
and maintenance of tissue integrity and repair. The 
events described in these studies share many common 
features with those described below and as such they 
may be complementary to our in vivo morphological 
observations in humans.  

6. Aberrant lymphocyte infiltration-induced 
focal capsule disruptions 

Our research group has attempted to identify 
more effective approaches to assess the intrinsic im-
pact of tumor-infiltrating immune cells on tumor in-
vasion and metastasis. In our recent studies, we 
compared the frequency of lymphocyte infiltration in 
stage- and morphology-matched human breast and 
prostate tumors with and without focally disrupted 
capsules. Of 191 breast tumor nests with focally dis-
rupted capsules, 186 (97%) had distinct lymphocyte 
infiltration, compared to 46 (22%) in 207 morpholog-
ically similar counterparts with non-disrupted cap-
sules [119]. Similarly, distinct lymphocyte infiltration 
was seen in 183 (91%) of 201 prostate tumor nests with 
focally disrupted capsules, compared to 67 (33%) in 
201 morphologically similar counterparts with 
non-disrupted capsules [120]. Subsequent studies 
revealed that residual cells within focally disrupted 
myoepithelial or basal cell layers had a significantly 
lower expression of tumor suppressor and cell prolif-
eration-related proteins, but showed a significantly 
higher frequency of degeneration-related changes 

than their morphologically similar counterparts lo-
cated in regions devoid of focal disruptions [121-123]. 
Using double immunohistochemistry to simultane-
ously elucidate the BM and associated basal cell lay-
ers, all the BM-overlying focally-disrupted basal cell 
layers demonstrated either the presence of correlated 
disruptions (76 of 89, 85%) or significant attenuation 
of immunostaining intensity (13 of 89, 15%) [124]. 
Correlated BM and myoepithelial cell layer alterations 
were also seen in human breast tissues. In contrast to 
the basal or myoepithelial cells, tumor cells overlying 
focally disrupted capsules had a significantly higher 

level of proliferation and greater expression of tumor 
stem cell- and growth factor-related genes than their 
adjacent counterparts distant from the disruptions 
[125-131].  

These findings suggest that focal basal or my-
oepithelial cell degeneration, aberrant lymphocyte 
infiltration, and capsule disruptions are likely to be 
correlated events that contribute to tumor progression 
and invasion. These findings have led to a novel hy-
pothesis that tumor invasion or metastasis is triggered 
by focal capsule degeneration-induced lymphocyte 
infiltration that causes physical disruptions within the 
capsule, which selectively favors proliferation and 
dissemination of overlying tumor stem cells [121,122]. 
Based on this hypothesis, aberrant lymphocyte infil-
tration promotes capsule disruptions and tumor in-
vasion through the following pathways. (1). Myoepi-
thelial and basal cells belong to a self-renewal popu-
lation that must constantly undergo both proliferation 
and differentiation to replace aged or injured basal 
cells [132-134]. Both internal and external insults, such 
as a predisposition of genetic defects, exposure to 
chemicals or radiation, and chronic inflammation, 
may through chronic or acute mechanisms, damage 
the normal stem cells in these layers, resulting in a 
“senescent” cell population that is prone to degenera-
tion. (2). Degradation products of degenerated basal 
and myoepithelial cells, or diffusible molecules from 
the overlying epithelial cells, can function as 
self-epitopes to attract the trafficking and infiltration 
of immune cells into the affected sites. (3). The direct 
physical contact of immune cells with degenerated 
basal or myoepithelial cells results in the discharge of 
their proteolytic enzymes, leading to the physical 
degradation of the degenerate myoepithelial or basal 
cells and the surrounding local basement membrane, 
resulting in focal disruptions in these structures. (4). 
As both the basal or myoepithelial cell layers are the 
sole source of tumor suppressor p63 and maspin 
[135-138], a focal disruption could lead to several 
consequences: (a) a localized loss of tumor suppres-
sors and paracrine inhibitory function would confer 
tumor cells with growth advantages and allow them 
to escape from programmed cell death [139-143], (b) a 
localized alteration of permeability for nutrients, 
growth factors, and oxygen, would selectively favor 
proliferation of the overlying stem cells [144-146], (c) a 
localized increase of lymphocyte infiltration would 
disrupt inter-cellular junctions and cell surface adhe-
sion molecules, facilitating cell “budding” from the 
tumor core [147-150]; and (d) direct physical contact 
between epithelial and stromal cells would facilitate 
the epithelial-mesenchymal transition [151-154]. As 
epithelial stem cells are believed to be located over-
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lying the basal cell layer and the BM, a focal capsule 
disruption at the site of genetically-altered stem cells 
may favor their exit from quiescence.  

 This new hypothesis entitled “aberrant lym-
phocyte infiltration-induced focal capsule disrup-
tions” differs fundamentally from the linear model of 
tumor progression and the proteolytic enzyme theory 
of tumor invasion in the followings. (1) The direct 
cause of tumor capsule disruptions. According to the 
proteolytic enzyme theory, the disruption of the tu-
mor capsule is directly caused by tumor cell-produced 
proteolytic enzymes. The new hypothesis proposes 
that the disruption of the tumor capsule results from 
focal basal cell degeneration-induced immune cell 
infiltration. Although the enzymes of immune cells 
may belong to the same proteolytic enzyme family, 
they are discharged only upon physical contact with 
aged or injured basal or myoepithelial cells. Thus, 
their impact is focal and independent of the tumor 
stage and histological grade. (2) The stage of tumor 
invasion. According to the enzyme theory, the level of 
proteolytic enzymes increases linearly with tumor 
progression and reaches the highest level at the in situ 
cancer stage, in which invasion occurs. Based on the 
new hypothesis, invasion can take place at any stage 
of carcinogenesis, requiring only that the focal capsule 
disruption occur at a site where the overlying epithe-
lial layer contains tumor progenitors or stem cells. (3) 
The cellular origin of invasive lesions. Based on the 
proteolytic enzyme theory, all in situ cancer cells 
could contribute equally to invasive lesions. Accord-
ing to our hypothesis, invasive lesions are predomi-
nantly derived from tumor stem cells overlying fo-
cally disrupted tumor capsules. (4) Potential ap-
proaches for treatment, prevention, and detection of 
tumor invasion. According to the proteolytic enzyme 
theory, administration of corresponding enzyme in-
hibitors is the only regime for treatment and preven-
tion of tumor invasion. Based on the new hypothesis, 
there are at least five such approaches: (a) to neutral-
ize the molecules that attract immune cell infiltration, 
(b) to reduce the specific subtype of immune cells as-
sociated with focal capsule disruptions, (c) to develop 
therapeutic agents to specifically target stem cell 
clusters overlying focally disrupted capsules, (d) to 
develop therapeutic agents to stabilize the BM, and (e) 
to stimulate basal cell growth.  

 The main strength of this hypothesis is that its 
essential conclusions are based on morphological, 
immunohistochemmical, and molecular findings from 
multiple types of untreated human tumor tissue 
samples, and thus, is more likely to accurately reflect 
the intrinsic events of human carcinogenesis. This 
hypothesis has been recognized as more compatible 

with existing experimental evidence than the tradi-
tional “protoelytic enzyme” theory by a number of 
previous publications and a recently published re-
view article from internationally recognized experts 
in the field [155-157]. The man weakness of this hy-
pothesis is that it has not been able to pinpoint the 
specific degradation product(s) to attract lymphocyte 
infiltration, or the specific enzyme(s) accounting for 
disruptions of the tumor capsules. In addition, this 
hypothesis has not been able to elucidate the under-
lying molecular pathways that link the entire process 
of capsule disruptions and tumor invasion. More 
importantly, the clinical significance of focal capsule 
disruptions, immune cell infiltration near the disrup-
tions, and “budding” cells from the disruptions has 
not been evaluated with clinical follow-up studies.  

7. Lymphocyte-mediated cell dissemination 
and metastasis (the Piggy-back theory)  

This new hypothesis for tumor cell dissemina-
tion and metastasis is an expansion of the hypothesis 
presented above (aberrant lymphocyte infiltra-
tion-induced focal capsule disruptions), which is 
based on new findings from our more recent studies 
of multiple types of human cancer, including those 
from breast, prostate, lung, cervix, skin, and colorec-
tum [158-160]. These recent studies have detected 
almost identical frequency and pattern of focal cap-
sule disruptions, immune cell infiltration, and cell 
“budding” from focally disrupted capsules, as those 
seen in our previous studies of breast and prostate 
[119-131]. More importantly, these new studies have 
consistently shown that aberrant tumor-infiltrating 
lymphocytes can trigger tumor metastasis through 
three correlated pathways: (a) the physical movement 
of infiltrated lymphocytes into the budding tumor cell 
nest can disrupt intercellular junctions and surface 
adhesion molecules, causing dissociation of some cells 
from the tumor core; (b) lymphocytes can conjoin with 
dissociated tumor cells through cell membrane fusion 
to form tumor-lymphocyte chimeras (TLCs); and (c) 
the natural ability to migrate and to cross intercellular 
barriers allows lymphocytes to physically drag tumor 
cells to remote sites and to intravasate into blood 
vessels or lymph ducts[158-160].  

 The main strength of this hypothesis is that: (1) it 
can reasonably explain all major events involved in 
metastasis, which includes dissociation from the pri-
mary site, intravasation, extravasation, migration, and 
colonization at distant sites, (2) it is applicable to all 
epithelium-derived tumors, and (3) it provides, for the 
first time, a morphologically defined precursor of 
metastatic cancer. The main weakness is that it is de-
scriptive in nature primarily based on morphological 
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and immunohistochemical findings on tissue sections. 
In addition, it has not been able to elucidate the mo-
lecular and mechanistic pathways or the specific 
molecules, which account for the formation of TLCs. 
Furthermore, the clinical significance of the presence 
of TLCs within the vascular structures remains to be 
established.  

Collectively, there are three central tenants of 
these new hypotheses. The first is that tumor stem 
cells are co-localized with normal, benign, and ma-
lignant cells within capsules, while they are the only 
ones retaining the potential for unlimited prolifera-
tion and multi-lineage differentiation. The second is 
that tumor invasion or metastasis may occur at any 
stage of carcinogenesis if a focal capsule disruption 
occurs at a site where the overlying epithelium con-
tains tumor stem cells. The third is that the interaction 
of lymphocytes with tumor stem cells can lead to sta-
ble adhesions between the two creating a TLC that 
facilitates dissemination of tumor stem cells. Based on 
this new hypotheses, the apparent contradiction in the 
role of tumor infiltrating immune cells may result 
primarily from the differences in tumor stages and 
distributions of infiltrating immune cells. As the pri-
mary tumor infiltrating immune cell types, including 
cytotoxic T-lymphocytes, natural killer and Mast cells, 
have to physically contact their targets in order to 
exert their cytotoxic functions [161-164], it is likely 
that infiltrating immune cells may be involved pri-
marily in the physical destructions of altered epithe-
lial capsules at the pre-invasive stage, and thus, to 
promote tumor invasion into the stroma. On the other 
hand, immune cell infiltration into the invasive tumor 
nests may lead to physical destruction of the tumor 
cells and reduction of the tumor burden. These hy-
potheses could reasonable explain the contradictory 
reports and statements regarding the impact and 
clinical significance of immune cell infiltration into 
tumor tissues. More importantly, as the disruption of 
the tumor capsule is an absolute prerequisite for tu-
mor invasion and metastasis, local or systematic ad-
ministration of anti-inflammatory agents to prevent 
immune cell infiltration-induced capsule destruction 

may be beneficial in preventing tumor progression. A 
recent report published in Lancet Oncology has re-
vealed that regular use of Aspirin, a non-steroidal 
anti-inflammatory drug, reduces the long-term risk of 
CRC and other cancer and the risk of distant metasta-
sis [165]. 

The main contents of the aberrant lymphocyte 
infiltration-induced focal capsule disruption and-
lymphocyte-mediated cell dissemination and metas-
tasis hypotheses are depicted in Figure 1. 

 
 

Conclusions  
The impact of tumor-infiltrating immune cells 

has been subject of debate for decades. A great num-
ber of studies have shown that tumor-infiltrating 
immune cells are associated with the physical de-
struction of the tumor cells, reduction of the tumor 
burden, and improved clinical prognosis. On the oth-
er hand, a significant and steadily increasing number 
of studies have shown that increased infiltration of 
immune cells may promote tumor progression and 
invasion. In an effort to elucidate the primary impact 
and mechanism of tumor infiltrating immune cells on 
associated tumor tissues, a great number of studies 
have been conducted and a number of hypotheses 
have been presented. In this mini-review, we present 
several existing hypotheses that favor the promoting 
impact of tumor-infiltrating immune cells on tumor 
invasion and metastasis, and also analyze their 
strengths and weaknesses. These hypotheses were 
selected for a number of reasons, including (1) they 
specifically address the direct impact of tumor infil-
trating immune cells on tumor behavior, and (2) they 
appear to be applicable to multiple or all epitheli-
al-derived tumors. Each of these hypotheses has their 
individual strengths and weaknesses and are sup-
ported by laboratory findings and/or clinical data, 
suggesting that tumor-infiltrating immune cells may 
impact, directly or indirectly, associated tumors 
through multiple pathways and mechanisms. 
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Figure 1. Aberrant lymphocyte infiltration-induced focal capsule disruption andlymphocyte-mediated cell dissemination and metastasis 
hypotheses. 
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