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Abstract 

Considerable attention and an enormous amount of resources have been dedicated to cancer 
biomarker discovery and validation. However, there are still a limited number of useful bi-
omarkers available for clinical use. An ideal biomarker should be easily assayed with minimally 
invasive medical procedures but possess high sensitivity and specificity. Commonly used 
circulating biomarkers are proteins in serum, most of which require labor-intensive analysis 
hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA 
(miRNA) is associated with cancer development and progression, profiling of circulating 
miRNAs has been used in a number of studies to identify novel minimally invasive miRNA 
biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their 
carriers in blood. We summarize the clinical use and function of potentially promising miRNA 
biomarkers in a variety of different cancers, along with their downstream target genes in 
tumor initiation and development. Additionally, we analyze some technical challenges in ap-
plying miRNA biomarkers to clinical practice. 
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Background 

miRNAs are a class of small (18–24 nt) 
non-coding regulatory RNAs that are involved in 
regulating gene expression at the post-transcriptional 
level. According to miRBase Release 18 (November 
2011), 1,898 unique mature human miRNAs have 
been identified [1] [2]. These RNA molecules regulate 
numerous biological processes [3] [4], potentially up 
to one third of all protein-coding genes based on 
computational predictions [5]. Primary miRNA 
(pri-miRNA) is cleaved by endonuclease RNase III 
Dorsha in the nucleus, releasing the stem-loop 
pre-miRNA [6]. Then the pre-miRNA is exported into 
the cytoplasm and cleaved by endonuclease Dicer 
before becoming mature miRNA, which is integrated 

into the RNA-induced silencing complex (RISC) to 
regulate target gene expression [7, 8]. Perfectly or 
imperfectly base pairing the 3’ UTR of the target 
mRNA with the 5’ end of miRNA causes genomic 
instability and transcriptional degradation, as well as 
translational repression [6, 9-11]. However, it is also 
reported that miRNA can induce target gene overex-
pression [12]. The miRNA genome is often located at 
fragile genomic sites which are closely related to 
cancer. Their expression is deregulated due to ge-
nomic instabilities [13, 14]. We showed that the ex-
pression of the TAR miRNA protects infected cells 
from apoptosis and acts by down-regulating cellular 
genes involved in apoptosis [15]. The role of miRNAs 
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in cancer was first suspected when it was observed in 
C. elegans and Drosophila that miRNAs controlled as-
pects of cell proliferation and apoptosis [16] [17]. Ex-
pression of various miRNAs has been reported to be 
differentially altered across a variety of tumor types, 
suggesting their direct involvement in oncogenesis 
[18] [19] [20]. Deregulated miRNA expression profiles 
were identified in many human cancers using miRNA 
profiling techniques. miRNAs are associated with 
embryogenesis and stem cell maintenance in mam-
mals [21], hematopoietic stem cell differentiation [22], 
and cancers [23] [24] [25]. Many studies show that 
miRNA expression appears to be deregulated in can-
cer [26, 27]. 

Origin of the circulating miRNAs and their 
carriers 

MicroRNAs (miRNAs), a novel class of gene 
regulators, have recently been studied as biomarkers 
in peripheral circulation for cancer detection. How-
ever, the origin and value of these miRNAs have yet 
to be elucidated. It is widely believed that the circu-
lating miRNAs might not only come from circulating 
tumor cells [28, 29], but also be released into the blood 
stream directly via blood cells [30] or other tissue cells 
affected by disease [31]. It is becoming clearer that the 
majority circulating miRNAs are chaperoned by var-
ious carriers, such as exosomes, Ago2, HDL, etc.[32], 
as carrier-free miRNAs will be degraded by RNase 
digestion and other environmental factors [33-35]. 
However, it is still debatable whether or not miRNAs 
are highly enriched in exosomes or in Arg-2 protein 
complexes [36, 37], which may explain the differences 
of miRNA abundance between isolating from whole 
blood and from plasma or serum.  

 Heneghan et al. claimed that a whole blood 
sample is preferable to serum and plasma for detect-
ing miRNAs in the circulation since the concentration 
of miRNAs extracted from whole blood is higher than 
from serum or plasma [29]. This raises a basic concern 
toward the origin of miRNAs in circulation. By se-
quencing miRNAs in serum and blood cells of healthy 
subjects, Chen et al. noticed that most miRNAs de-
tected in serum were almost the same type as in blood 
cells [31], implying that serum miRNAs are not only 
derived from primary disease sites, but also from 
circulating blood cells [28]. Based on those observa-
tions, we believe using whole blood as the starting 
material may increase the background signal noise in 
terms of screening for disease-derived miRNAs. In the 
future, for any circulating miRNA research, differen-
tiating between cellular miRNAs and cell-free miR-
NAs is crucial.  

It is known that signatures of plasma/serum 
miRNAs can reflect correlations to physiological or 
disease conditions. LaConti et al. observed a correla-
tion of miRNA deregulations between tissue and se-
rum in both the KrasG12D transgenic animals and the 
prostate cancer patients [38]. On the other hand, sev-
eral studies demonstrated that circulating oncogenic 
miRNA levels declined after tumor resection, such as 
miR-21 in esophageal squamous cell carcinoma 
(ESCC) [39], miR-31 in patients with oral squamous 
cell carcinoma (OSCC) [40], mir-29a and mir-92 in 
colorectal cancer CRC [41], miR-21 and miR-106b in 
gastric cancer [42], and miRNA-195 and let-7a in breast 
cancer[29]. Inversely, the levels of tumor-suppressor 
miRNAs were increased, such as miR-92a/ miR638 
ratio in hepatocellular carcinoma (HCC) [43]. The al-
teration of miRNA expression in postoperative sam-
ples, compared to preoperative ones, robustly sup-
ported the notion that specific circulating miRNAs 
were from tumor cells. Furthermore, in a xenograft 
mice system, relatively elevated levels of miR-629 and 
miR-660 were detected in the plasma of mice xeno-
grafted with 22Rv1 cells, as compared to those of a 
control group [44]. Both miR-629 and miR-660 are 
expressed in 22Rv1 human prostate cancer cells and 
are absent of murine homologs. Taken together, this 
evidence might substantiate the claim that circulating 
miRNAs could be directly derived from tumor tis-
sues, and that the alternation of miRNAs might di-
rectly reflect the biological activity of cancers. 

Exosomes. Bearing the possibility that miRNAs 
secreted from tissue could be inferred by the miRNAs 
from blood cells in the circulating environment, re-
searchers are trying to find an alternative by propos-
ing exosomes (40-100nm) as carriers of the circulating 
miRNAs released by exocytosis. This model is sup-
ported by the detection of exosomes associated with 
miRNAs [45-48] and vesicle encapsulated miRNAs in 
serum and plasma [34, 49-51]. Exosomes are small 
(50–90 nm) lipoprotein-membranous vesicles of en-
docytic origin, which is the fusion of multivesicular 
bodies (MVB) with plasma membranes secreted into 
extracellular space. Exosomes mediate cell–cell com-
munications via ligand-receptor interaction and 
transport intracellular components, including deliv-
ering miRNAs in exosomes to recipient cells by fusion 
or endocytosis [52]. A variety of cells are capable of 
releasing exosomes, including reticulocytes [53], 
dendritic cells [54], B cells [55], T cells [56], mast cells 
[57], epithelial cells [58] and tumor cells [52, 59]. Some 
believe that exosomal miRNAs are secreted by a 
ceramide-dependent secretory mechanism [60]. 
Kosaka et al. demonstrated that over-expression of 
nSMase2, the rate-limiting enzyme of ceramide bio-
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synthesis, stimulated the secretion of exosomes as 
well as an abundance of extracellular miRNA [60]. For 
tumor growth and progression, these reports raised 
the possibility that tumor-derived exosomal miRNAs 
affect the surrounding cells through silencing tumor 
suppressing gene expression [61]. On the other hand, 
the inhibition of cell growth could be induced by re-
leasing tumor suppressor miRNAs [60].  

Taylor et al. first showed the presence of tu-
mor-derived exosomes in the circulation of ovarian 
cancer patients [62]. They subsequently demonstrated 
that tumor-derived exosomes in circulation could be 
isolated from other normal exosomes by applying 
specific magnetic beads linked with a tu-
mor-associated antibody, e.g. EpCAM, CD24 [63, 64]. 
By enriching tumor-derived exosomal miRNAs from 
other cellular miRNAs, they observed a noteworthy 
correlation between miRNAs and ovarian tumor 
samples. The similarity between circulating tu-
mor-derived exosomal miRNAs and tissue miRNAs 
was also observed in paired tissue and plasma sam-
ples from patients with lung cancer [65]. However, 
marker proteins that allow for the separation of tu-
mor-derived exosomes from normal vesicles are less 
defined. 

HDL & LDL. Besides exosomes, Vickers et al. 
found that high density lipoprotein (HDL) and light 
density lipoprotein (LDL) have the capability to carry 
and deliver miRNAs in plasma to distant recipient 
cells [66]. Furthermore, certain miRNAs were 
demonstrated to be exclusively encapsulated in either 
HDL or exosomes. These findings strengthen the ves-
icle carrier model by introducing more microvesicles 
as miRNA carriers. However, this also raises addi-
tional questions. For example, do cells choose specific 
carriers for different miRNAs depending on particu-
lar bio-functions [67], regulated by different up-taking 
pathways, such as endocytosis[68, 69] or membrane 
fusion[70, 71]? 

Ago2. Nevertheless, the vesicle carrier model it-
self may not be the predominant mechanism for tissue 
secreted miRNAs. Some researchers surprisingly 
found that the majority of circulating miRNAs are 
co-fractionated with protein complexes rather than 
with microvesicles in both cultured cells and human 
plasma [33, 36]. They observed that most of the 
miRNAs completely passed through the 0.22μm filter 
but remained in the supernatant after ultracentrifu-
gation at 110,000g, indicating most of the circulating 
miRNAs are independent of exosomes or microvesi-
cles. Furthermore, Western blotting analysis revealed 
that the circulating miRNAs are 
co-immunoprecipitated with anti-Ago2 antibody in a 
detergent free environment [72]. This study showed 

that extracellular miRNAs are predominantly associ-
ated with the Ago2 protein (~96kDa). 

Stability of the circulating miRNAs 

Circulating miRNAs can be readily detected in 
serum [73], plasma or whole blood [29]. Using Solexa 
sequencing technology, Chen et al. detected a great 
amount of small RNAs, 21-23nt length in both serum 
and whole blood samples from normal individuals, as 
well as patients with colorectal, non-small cell lung 
cancer and diabetes [31]. Another study confirmed the 
presence of small RNAs (18-24 nt) in plasma from the 
total RNA extracted from human plasma using radi-
oactive labeling method [44]. Followed by cloning and 
sequencing of those small RNAs, over 93% of the se-
quences matched known miRNAs, and thus further 
confirmed that the majority of small RNAs isolated 
from plasma were indeed miRNAs. In addition, some 
randomly selected miRNAs were found to be ex-
pressed consistently in both serum and plasma sam-
ples from humans, as well as in other species, such as 
rats, mice, claves, bovine fetuses and horses [31].  

MiRNAs are also notably stable in serum and 
plasma samples [29-31, 44, 73]. Chen et al. found that 
isolated serum miRNAs can survive the treatment of 
RNase A, compared to other endogenous RNAs such 
as 18s rRNA, 28s rRNA, GAPDH, β-actin and U6 [31]. 
Most serum miRNAs maintain considerable expres-
sion levels after 3 hours or overnight RNase A treat-
ment; however large RNAs were degraded following 
3 hours of RNase A treatment. Furthermore, repeat 
freeze-thawing cycles [31, 73] and low/ high pH so-
lution [31] treatments did not affect serum miRNAs. 
Similarly, plasma miRNAs could remain stable in 
room temperature for 24 hours and eight freeze-thaw 
cycles; however, synthetic miRNAs were rapidly de-
graded in plasma [44]. This indicates that the endog-
enous plasma miRNAs in RNase-enriched circulating 
system exist in a form that is resistant to plasma 
RNase activity. 

Circulating miRNAs as cancer biomarkers 

Cancer biomarkers are used for early detection, 
prognosis [29, 74] and therapeutic guidance [29, 31, 
74]. An ideal biomarker should be highly specific and 
sensitive with a high predictive value, which can be 
detected in a rapid and simple, yet accurate and in-
expensive fashion [28, 73]. Here we summarize the 
use of individual miRNAs as blood-based biomarkers 
and their potential biological functions in circulation.  

miR-1. miR-1 in serum was found differentially 
expressed in cancers, up-regulated in gastric cancer 
patients [75] and down-regulated in non–small-cell 
lung cancer (NSCLC) [76], as well as in primary hu-
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man lung tumor tissues and cell lines [77]. Ectopic 
expression of miR-1 decreased migration and inva-
sion of the A549 lung cell line and restrained cell pro-
liferation, clonogenic survival, and anchor-
age-independent growth in the H1229 lung cell line. 
MET (hepatocyte growth factor receptor), a recep-
tor-type tyrosine kinase, and Pim-1, a Ser/Thr kinase 
inducing tumorigenesis by promoting cell cycle pro-
gression and inhibiting apoptosis, are direct targets of 
miR-1 in lung cells[77]. Additionally, in hepatocellu-
lar carcinoma[78], rhabdomyosarcoma [79], head and 
neck squamous cell carcinoma (HNSCC) [80] and 
bladder cancer [81], a relatively low miR-1 expression 
level was observed, consistent with the effect of ec-
topically expressed miR-1 on tumor cell growth. Sev-
eral target genes of miR-1, including MET [78], FOXP1 
[78], c-Met [79] and transgelin 2 (TAGLN2) [80, 81], 
were validated in these cancers. 

miR-10b. Compared to healthy subjects, whole 
blood miR-10b was down-regulated in colon and re-
nal cancers as well as melanoma, but not in breast and 
prostate cancers [82]. However, Heneghan et al. re-
vealed that circulating miR-10b was higher in ER (es-
trogen receptor)-negative patients than in ER-positive 
ones, but it cannot discriminate breast cancer from 
healthy controls [29]. Serum miR-10b was signifi-
cantly up-regulated in metastatic (Stage M1) breast 
cancer compared to normal controls [74]. miR-10b 
expression was relatively higher in micrometastatic 
breast cancer cell lines BC-M1 and BC-S1 than in 
breast cancer cell lines MDA-MB-231 and GI-101 [74]. 
The regulation of mir-10b on tumor metastasis was 
observed in vitro and in vivo. Moriarty et al. discov-
ered that exogenously expressed miR-10b in breast 
cancer cell lines, SUM159PT and SUM149PT, could 
repress cell migration and invasion. While 
down-regulated miR-10b in T47D and MDA-MB-435 
cells could induce cell migration and invasion [83]. 
miR-10b directly targets Tiam1 to decrease the Rac 
activation, which influences cell metastasis. In another 
study, Ma and colleagues found that miR-10b had 
higher expression in metastatic breast cancer cell lines 
than non-metastatic or normal epithelial cells [84]. 
Knockdown of miR-10b in metastatic breast cancer 
cells inhibits invasion and migration, but not cell via-
bility, or vice versa. Over-expression of miR-10b in 
non-metastatic cell lines induces invasion and migra-
tion. Invasion and distant metastasis in breast cancer 
occurred in mice when implanted with miR-10b 
over-expressing cells, but not in control mice. miR-10b 
directly targets and suppresses the expression and 
translation of HOXD10, which functions in the inhibi-
tion of metastasis-leading gene RHOC[85]. 

miR-17-92 Cluster (miR-17-3p, 17-5p, miR-18, 

miR-19a, miR-19b, miR-20a, and miR-92a). In plasma, 
elevated miR-17-3p and miR-17-5p levels were found 
in colorectal cancer (CRC) [86] and gastric cancer (GC) 
[42] respectively, but serum miR-17-5p was reduced 
in non-small cell lung cancer [87]. Increased expres-
sion of miR-20a was found in the plasma of chronic 
lymphocytic leukemia (CLL) patients [88] and in the 
serum of individuals with gastric cancer [89]. 

miR-21. Differential expression of miR-21 was 
reported not only in many solid tumors, but also in 
hematological cancers. Over-expressed miR-21 re-
flects tumor malignancy and the ability of invasion 
and metastasis in cells by negatively regulating sev-
eral known tumor suppressor genes. Validated target 
genes of miR-21 includes MARCKS [90], ANP32A 
[91], SMARCA4 [91], BMPR 2 [92], PTEN [93], 
ANKRD46 [94], PDCD4 [95, 96], TPM1 [97], MSH2 
[98], TIMP3 [99], RASA1, TGFB1 and RASGRP1[100]. 
miR-21 is associated with tumor prognosis, as well as 
resistance to chemotherapy. In circulation, augmented 
expression of plasma miR-21 in ESCC was associated 
with vascular invasion and recurrence [39]. miR-21 
was highly expressed in the serum of patients with 
human primary HCC [101] as well as tissue biopsy 
samples and cell lines compared to normal controls 
[93] [102]. Inhibition of miR-21 prohibited cell prolif-
eration, invasion and metastasis in HCC cell lines [93]. 

Lawrie et al. demonstrated that miR-21 was ele-
vated in de novo diffuse large B-cell lymphoma 
(DLBCL) samples and cell lines compared to normal B 
cells [103]. Serum miR-21 was expressed higher in 
DLBCL than in healthy subjects [104]. Interestingly, 
DLBCL patients with high levels of serum miR-21 
demonstrated prolonged relapse-free survival time 
[104]. This is consistent with the observation that high 
miR-21 in cells is associated with better prognostic 
outcome in DLBCL patients [103]. In addition, miR-21 
is overexpressed in the cerebrospinal fluid (CSF) of pa-
tients with primary diffuse large B-cell lymphomas 
(primary central nervous system lymphoma, PCNSL) 
[105]. 

Serum miR-21 was expressed significantly high-
er in patients with hormone-refractory prostate cancer 
(HRPC) than in those with localized prostate cancer, 
androgen-dependent prostate cancer (ADPC) and 
BPH [106]. Furthermore, serum miR-21 was elevated 
in HRPC patients with chemo-resistance. The high 
serum miR-21 levels found in ADPC and HRPC, but 
not in localized prostate cancer patients, was associ-
ated with high serum prostate-specific antigen (PSA) 
levels. The level of PSA is closely related to cancer 
development and treatment response. Hence, miR-21 
was believed to serve as biomarker in prostate cancer 
to monitor cancer progression and treatment re-
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sponses. Correspondingly, miR-21 was significantly 
higher in patients with prostate cancer than normal 
controls and was up-regulated in cases of metasta-
sized prostate cancer as compared to those with lo-
calized / local advanced diseases [107]. The prostate 
cancer cell lines, DU-145 and PC-3, which are less 
androgen-dependent, malignant, and metastatic cells, 
showed elevated miR-21 expression level [90]. 
Knockdown of miR-21 sensitized DU-145 and PC-3 
cells to apoptosis induced by staurosporine (STS), as 
well as inhibited cell invasion.  

Increased serum miR-21 could distinguish pa-
tients with pancreatic ductal adenocarcinoma (PDAC) 
from those with chronic pancreatitis (CP) and healthy 
subjects [108]. In pancreatic MIA PaCa-2 cell lines, 
miR-21 directly targets Bcl-2 gene and up-regulates 
the expression of Bcl-2 [109]. Transfection with miR-21 
mimic significantly restrained caspase-3 activity and 
apoptosis thus enhanced cell proliferation in MIA 
PaCa-2 cells. Additionally, elevated miR-21 expres-
sion accelerated the rate of cell growth under the 
treatment of gemcitabine, which suggests that high 
level of miR-21 diminished the chemo-sensitivity of 
MIA PaCa-2 cells. Moreover, miR-21 could distin-
guish non-invasive precursor of PDAC, intraductal 
papillary mucinous neoplasms IPMNs, [110] and the 

stage Ⅲ lesions of pancreatic intraepithelial neoplasia 
(PanIN) [111] from other early stage neoplasia or 
normal ductal epithelium. 

Plasma miR-21 was elevated in patients with 
NSCLC, particularly in stage T3-4 , as compared to 
normal controls, and could be used to distinguish 
between tumors in stage T3-4 and in stage T1-2, but 
not with lymph node metastasis and distant metasta-
sis [112]. Similarly, the level of miR-21 was signifi-
cantly higher in NSCLC tissues than in adjacent nor-
mal tissues. Also, miR-21 was lower in SCLC than in 
NSCLC cell lines [113]. Knockdown of miR-21 im-
peded the growth of NSCLC A549 and H1703 cell 
lines as well as the invasion potential of 801D cells.  

miR-21 was found to be increased not only in 
gastric cancer tissues and cell lines [114], but also in 
plasma samples of gastric cancer as compared to 
normal controls [42]. In gastric AGS cell line, forced 
expression of miR-21 promotes cell proliferation, in-
vasion and migration, but hinders apoptosis. In addi-
tion, there is an inverse correlation between RECK 
and miR-21 expression in both gastric cancer tissues 
and cell lines. Matrix metalloproteases (MMPs), in-
cluding MMP9, MMP2, and MMP14 regulated by 
RECK, are closely related to tumor metastasis [114]. 

Serum miR-21 is significantly increased in breast 
cancer [115], especially in stage IV cancer [116]. The 
level of miR-21 in matching tissue and serum was 

much greater in grade III breast cancer than in benign 
tumor or ER-/PR- breast cancer [115]. In addition, 
miR-21 expression was higher in breast cancer tissues 
than in normal controls, especially in patients with 
lymph node metastasis [99]. Inhibition of miR-21 re-
sulted in restrained cell growth in ER+ MCF-7 cells 
[94, 95] and hindered invasion and metastasis, but not 
in ER- MDA-MB-231 cells [94, 117]. In mouse models, 
lung metastasis was reduced when injected with the 
miR-21 inhibitor-transfected MDA-MB-231 cells [117], 
while tumor size in xenograft mice was decreased 
when injected with miR-21 inhibitor-transfected 
MCF7 cells [94]. 

Hormone-dependent breast cancers could be 
treated by blocking the interaction between hormones 
and receptors on cancer cells. The resistance of 
trastuzumab, an anti-Her2 monoclonal antibody, in 
Her2+ breast cancer was strongly correlated with 
PTEN reduction. Gong and colleagues demonstrated 
that highly expressed miR-21 in trastuzumab-resistant 
Her2+ breast cancer cell lines BT474, SKBR3 and 
MDA-MB-453 resulted in decreased PTEN protein 
level [118]. However, the inhibition of miR-21 induced 
Her2+ breast cancer cells to become sensitive to 
trastuzumab via elevated expression of PTEN. In a 
similar vein, miR-21 was up-regulated and PTEN 
protein levels were relatively low in patients who 
were resistant to trastuzumab as compared to those 
sensitive to trastuzumab. Estradiol (E2) treated ER+ 
breast cancer MCF-7 cells significantly reduced the 
expression of endogenous miR-21 [100]. On the other 
hand, the all-trans-retinoic acid (ATRA) treatment, an 
anti-proliferative agent, provoked the expression of 
miR-21 in MCF-7 cells [119]. MCF-7 cells sensitized to 
ATRA by knockdown of miR-21 displayed significant 
cell growth inhibition. Another ER+ cell line, T47D, 
was also sensitive to ATRA and displayed reduced 
cell growth after ATRA treatment along with elevated 
miR-21 levels. The inhibition of motility in MCF-7 and 
T47D cells by ATRA could be lessened by ectopic 
down-regulation of miR-21. 

miR-24. miR-24 is highly expressed in oral 
squamous cell carcinoma (OSCC) tissues, plasma and 
cell lines (OC3, OECM-1 and SAS) [120], particularly, 
in tongue squamous cell carcinoma (TSCC), the most 
common type of OSCC [121]. DND1, which regulates 
CDKN1B and subsequently controls the cell cycle, 
was verified as a target gene of miR-24 in TSCC by 
reporter gene assays [121]. 

miR-92a. In serum samples, the level of miR-92a 
was increased in epithelial ovarian cancer [122]. 
Noteworthy were the three cases with normal 
pre-operative CA-125 (< 35 U/ml) showing highly 
expressed miR-92a [122], which implied that serum 
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miRNAs could be used as biomarkers for early detec-
tion of ovarian cancer patients with normal CA-125. 

Plasma miR-92a were up-regulated in patients in 
colorectal cancer (CRC) [41, 86] as well as advanced 
adenomas [41] as compared to controls. Advanced 
adenomas is a benign lesion with a high risk of de-
veloping into malignant CRC [123]. The early screen-
ing for advanced adenomas and precancerous lesions 
could diminish the occurrence of CRC [41, 124, 125]. 
Therefore, circulating miR-92a could serve as a bi-
omarker on early detection of the benign lesion, ad-
vanced adenomas, before neoplastic formation of 
CRC. 

Using miRNA microarray technology, Tanaka et 
al. identified 148 miRNAs in normal plasma samples, 
with miR-638 being the most constantly expressed 
miRNA [126]. They discovered that in acute myeloid 
leukemia (AML) plasma samples, the signal intensity 
of miR-92a was significantly low. The ratio of miR-92a 
to miR-638 in plasma was reduced in leukemia pa-
tients as compared to normal controls. The same 
strategy was used to examine plasma samples of pa-
tients with HCC, which also revealed a decreased 
miR-92a to miR-638 ratio, and increased after surgery 
[43]. However, the expression of circulating and tissue 
miR-92a was discordant in both AML/ALL and HCC. 
In AML and ALL leukemic cells, miR-92a was highly 
expressed. miR-92a was higher in AML and ALL cell 
lines than in both CD34+ cells and peripheral blood 
mononuclear cell (PBMNC) controls from healthy 
volunteers [127]. Cell to plasma ratio of miR-92a ex-
pression was significantly higher in fresh ALL and 
AML cells than in PBMNC cells. miR-92a showed 
significantly different expression patterns in ALL. 
Fresh ALL cells expressed greater miR-92a levels than 
both AML and PBMNC. Furthermore, ALL patients 
with three-fold or higher of miR-92a expression than 
normal PBMNC cells had decreased survival rates. 
Additionally, in both HCC section samples and cell 
lines, Shigoka et al. found that miR-92a expression 
was increased. Over-expressed miR-92a promoted cell 
proliferation in HCC cell lines.  

miR-122. Serum miR-122 were significantly in-
creased in HCC as compared to normal controls, but 
not as high as in hepatitis B [101]. Xu and colleagues 
claimed that miR-122 might be related to liver dam-
age, and not necessarily specific to tumor develop-
ment. mir-122 is known as a liver-specific miRNA and 
rich in adult liver [128]. In fact, many studies showed 
that the level of miR-122 was low in HCC cell lines 
and tissue samples. The anti-tumorigenic characteris-
tics and decreased expression of miR-122 in HCC are 
closely associated with tumor cell growth, invasion 
and metastasis both in vivo and in vitro. 

In HCC cell lines, such as Hep3B, PLC/PRF/5, 
Huh7 and SNU449, there is little to none miR-122 ex-
pression. Ectopic expression of miR-122 could drasti-
cally restrain tumor cell growth by down-regulating 
the expression of CCNG1 [129] and Bcl-w [129, 130], 
with reduced cell viability and increased apoptosis by 
activating caspase-3 [128]. Also, it could increase 
G1-phase population and inhibit tumor cell invasion, 
and indirectly enhance transcriptional activity of p53 
[131] in HCC cells. Potentially, miR-122 could not 
only activate cell apoptosis via negatively regulating 
Bcl-w but also block cell cycle progression by 
down-regulating CCNG1 in HCC cells.  

Overexpression of miR-122 mediated cell mor-
phology changes and loss of actin [132], resulting in 
decreased cell proliferation, colony formation and 
migration [133] in various HCC cells, thus, sup-
pressed tumor growth and neoangiogenesis in mice 
models [132, 133]. Suppression of miR-122 in Huh7 
cells enhanced cell proliferation, replication potential, 
invasive ability and clonogenic survival. These effects 
were regulated by miR-122 target genes, such as the 
ADAM family genes [132, 133], which are involved in 
cell adhesion, invasion and metastasis. 

Tissues samples with low levels of miR-122 dis-
played a significant correlation between time to re-
currence [131] and intrahepatic metastasis in clinical 
diagnosis [132]. Relatively low levels of miR-122 in 
HCC tissue samples were associated with shorter 
overall survival time, larger tumor size and enhanced 
cell proliferation, as well as highly expressed c-Met 
and TGF-β genes [134]. This suggests that the sup-
pression of miR-122 in HCC tumors is strongly related 
to poor prognosis and aggressive tumor development. 

miR-141. Plasma miR-141 was expressed higher 

in colorectal cancer stage Ⅳ than in any other early 
stage cases and the normal, but was not significantly 
different between overall patients with CRC and 
normal controls [135]. It also showed that 
up-regulated plasma miR-141 was correlated to dis-
tant metastatic colon cancer and poor survival. The 
combination of miR-141 and CEA improved the abil-
ity to discriminate between CRC stages. However, 
Cheng et al. found that there is no significant differ-

ence between the level of miR-141 in stage Ⅳ tumor 
and in early stages as well as adjacent normal tissues. 
Conversely, a study discovered that miR-141 was ex-
pressed relatively lower in SW60 CRC cell line which 
was derived from a metastatic site different from 
other cell lines [136]. It is believed that miR-141 di-
rected cell migration and invasion by targeting the 
SIP1 gene. Smad interacting protein 1 (SIP1) is known 
to suppress the expression of E-cadherin and induce 
epithelial-tomesenchymal transition (EMT), which is 
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essential for metastasis [137, 138]. Overexpressed 
miR-141 in the SW60 cell line inhibited cell migration 
and invasion.  

miR-141 was also expressed higher in prostate 
tumor tissues than in normal tissues [139]. Serum 
miR-141 was found to be increased in prostate cancer 
and related to PSA level [44]. In patients diagnosed 
with metastatic prostate cancer, level of miR-141 was 
significantly higher than in patients with localized 
advanced disease [107]. Up-regulated miR-141 was 
associated with patients diagnosed with adverse risk 
factors (such as high Gleason score, lymph-node in-
volvement or distant metastasis) as miR-141 was ele-
vated in patients with high-risk tumors with a 
Gleason score ≥ 8. 

miR-155. miR-155 is known as a multifunctional 
microRNA which is involved in cancer development, 
inflammation, immune response and hematopoietic 
lineage differentiation [140]. In circulation, serum 
miR-155 is decreased in epithelial ovarian cancer [122] 
and NSCLC [87]. miR-155 had a relatively lower ex-
pression level in whole blood samples of prostate, 
colon, renal cancer and melanoma patients than in 
normal controls, except in breast cancer [82]. 

Plasma miR-155 increased in pancreatic ductal 
adenocarcinoma (PDAC)[141] , suggesting elevated 
serum miR-155 could discriminate PDAC from nor-
mal controls [108]. Likewise, miR-155 was elevated in 
PDAC tissue samples and targeted the 3’-UTR of 
TP53INP1 gene, which is associated with pancreatic 
tumor development [142]. In the non-invasive pre-
cursor of PDAC, pancreatic intraepithelial neoplasia 
(PanIN) [111] and intraductal papillary mucinous 
neoplasm (IPMN) [110] lesions, miR-155 was ex-
pressed higher and further differentiated the stage of 
PanIN-3 and PanIN-2 from PanIN-1 and normal duc-
tal epithelium. High levels of miR-155 in PADC pa-
tients were related to poor survival rates [143]. It 
seems that miR-155 is important in the progression of 
pancreatic adenocarcinoma and could be used in early 
neoplastic stage identification. 

Serum miR-155 was elevated in patients with 
DLBCL as compared to normal subjects [104]. The 
expression of miR-155 and miR-21 were higher in 
DLBCL samples than in normal peripheral blood B 
cells and also higher in activated B cell-like 
(ABC)-type cases compared to germinal center B 
cell-like (GCB)-type cases [144-146]. In DLBCL and 
Hodgkin lymphoma (HL), high levels of the 
non-coding BIC gene, which serves as a primary 
miRNA, are associated with an over-expression of 
miR-155 [147]. miR-155 was expressed higher in HL 
than in DCBCL cell lines [148]. 

The level of serum miR-155 was differentially 

elevated in patients with post-operatively primary 
(M0) and metastasis (M1) as compared to healthy 
subjects [74]. The breast cancer cell lines 
MDA-MB-231, GI-101 and the micrometastatic breast 
cancer cell lines BC-M1 and BC-S1 served as refer-
ences to confirm the expression of chosen miRNAs in 
serum. miR-155 level was higher in BC-M1 and BC-S1 
cells as compared to MDA-MB-231 and GI-101 cells. 
Wang and colleagues showed that miR-155 expres-
sion was higher in breast cancer tissues and matching 
serums than in normal samples [115]. miR-155 in both 

tissue and serum were much greater in grade Ⅲ than 
in benign breast cancers. Furthermore, over-expressed 
miR-155 promoted proliferation of breast cancer cell 
lines and tumor growth in xenograft models [149]. 

Studies revealed that miR-155 was related to 
chemo-sensitivity of breast cancer [150]. In BT-474 
cells that expresses low levels of miR-155, ectopically 
expressed miR-155 made cells become resistant to 
chemotherapeutic agents such as doxorubicin, VP16, 
and paclitaxel. Similarly, the suppression of miR-155 
in highly endogenous miR-155 expressing HS578T 
cells promoted the apoptosis ability of chemothera-
peutic agents. FOXO3a was a direct target of miR-155 
in breast cancer cell lines and the inverse correlation 
between FOXO3a protein and miR-155 were demon-
strated in both breast tumor tissues and cell lines 
[150]. Due to the downstream regulation of 
pro-apoptotic and growth inhibiting genes by 
FOXO3a, increased miR-155 induced cell survival and 
diminished miR-155 stimulated apoptosis. 

miR-195. The level of whole blood miRNA-195 
was greatly elevated in patients diagnosed with breast 
cancer from stage I to IV, than in age-matched dis-
ease-free individuals [29]. It is suggested that circu-
lating miRNAs could be detected during early stages 
of breast cancer. In addition, the expression of 
miR-195 in age- and stage-matched tumor tissues 
were compared with whole blood samples [29]. In 
both tumor tissues and circulation, the levels of 
miR-195 were increased at progressive stages of breast 
cancer, which means that miRNA-195 was expressed 
higher in stage IV than in stage I or II. It reflected the 
similar trend of miR-195 expression in tissue and cir-
culation as well as the positive correlation between 
tissue and circulating miR-195. Later, Heneghan and 
colleagues proved that circulating miR-195 could be 
used as a breast cancer specific biomarker [82]. Com-
pared to the normal, significantly high level of 
miR-195 was observed only in preoperative whole 
blood samples of breast cancer, but not in other can-
cers, such as colon, prostate, renal and melanoma. 

However, Li et al. showed that miR-195 expres-
sion was decreased in breast cancer tissues and cell 
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lines, and they further validated that Raf-1 and 
CNND1 are direct target genes for miR-195 [151]. 
Another study also indicated that miR-195 was lower 
in ductal carcinoma in situ (DCIS) than in normal ep-
ithelium or reduction mammoplasty [152]. Moreover, 
lower expression levels of miR-195 implied the possi-
ble tumor suppressor characteristic of miR-195 in 
colorectal cancer [153] as well as in hepatocellular 
carcinoma [154]. Bcl2, which is known as an an-
ti-apoptotic gene, and CCND1, CDK6 and E2F3, cell 
cycle-related genes, were direct targets of miR-195 in 
colorectal cancer [153] and hepatocellular carcinoma 
[154] respectively. In functional analysis, transfection 
of miR-195 inhibited cell growth and invasive ability, 
by blocking the G1 cell cycle of tumor cells in breast 
cancer and hepatocellular carcinoma [154, 155], and 
inducing cell apoptosis in colorectal cancer [153]. 
These studies demonstrated the role of miR-195 in cell 
cycle regulation and tumor development.  

miR-221. Plasma miR-221 was higher in CRC 
patients than in normal controls and the greater ex-
pression of miR-221 was associated with a shorter 
overall survival rate [156]. Other studies that explored 
miR-221 in the plasma of prostate cancer cases found 
increased levels compared to controls [107, 157]. The 
level of miR-221 was higher in patients with metasta-
sized prostate cancer than in those with local ad-
vanced disease and healthy controls [107].  

Similarly, miR-221 was more elevated in plasma 
of Androgen-dependent (ADPC) and Andro-
gen-independent (AIPC) prostate carcinoma than in 
normal cases [157]. The level of miR-221 was higher in 
plasma of ADPC than that of AIPC. miR-221 was ex-
pressed significantly higher in prostate cancer cell line 
PC3 than in normal human prostate epithelial cells 
RWPE-1. miR-221 down-regulated the ARHI gene by 
targeting the 3’-UTR region [158]. Likewise, miR-221 
was found at a comparatively higher expression level 
in the androgen-independent, strongly aggressive 
PC3 cell line than in the androgen-responsive 22Rv1 
cells as well as in the androgen dependent, slowly 
growing LNCaP cells [159]. The p27 gene, which pro-
hibits the G1/S cell-cycle transition, was validated as 
a direct target of miR-221 by reporter gene assay. Af-
ter transfection, forced miR-221 could diminish the 
expression of p27, therefore to promote cell prolifera-
tion, and to increase S phase population and the 
number of colonies in the LNCaP cells. Transfected 
anti-miR-221 in PC3 cells showed comparable effects 
on colony formation: a declined colony growing in 
soft agar. This indicates that miR-221 has the ability to 
make prostate cancer cells more aggressive, which 
could grow in an anchorage-independent way, and 
promote tumor cell growth by negatively regulating 

the p27 gene.  
A lower expression level of serum miR-221 was 

found in NSCLC than in healthy subjects, while 
miR-221 levels were higher in both NSCLC cell lines 
as well as tissue samples when compared with con-
trols [160]. Overexpression of miR-221 
down-regulated tumor suppressor genes PTEN and 
TIMP3, and enhanced cell migration and invasive 
ability in cell lines and stimulated the resistance of 
TRAIL-inducing apoptosis in NSCLC cells.  

miR-375. The expression of serum miR-375 was 
greater in prostate cancer than in normal controls, and 
greater in metastasized cancer than in primary pros-
tate cancer [139]. Serum miR-375 increased in cases 
with lymph-node positive prostate cancer and pre-
sented a close relationship between greater levels of 
serum miR-375 and patients diagnosed with adverse 
risk factors (high Gleason score, lymph-node in-
volvement or distant metastasis). A microarray plat-
form and validation by qRT-PCR revealed that 
miR-375 was up-regulated in prostate tumor tissues 
[161]. 

Method challenges in cell-free circulating 
miRNA study 

Serum specimens contain high volumes of pro-
tein, and therefore extraction requires a modified 
protocol that adds more denaturing solution such as 
Qiazol or Trizol [162]. Additionally, considering the 
small amount of RNAs from serum or plasma sam-
ples, a routine spike-in synthetic non-human C.elegan 
miRNA (e.g. Cel-miR-39) was used after the initial 
serum denaturation step to serve as the internal qual-
ity control [163]. Another technical challenge is that 
the quality metrics derived from traditional spectro-
photometry might be uninformative and inaccurate 
due to the low concentration of RNA from serum or 
plasma. The spike-in synthetic miRNAs are therefore 
important for adjusting the differences and filtering 
the outliers in the samples.  

Considering that profiling of circulating miR-
NAs are frequently confounded by cellular miRNAs, 
we believe that cell-free circulating miRNAs from 
exosomes will be a better starting material for profil-
ing studies. Unfortunately, cross-contamination be-
tween cells and exosomes seem to be unavoidable. 
The alternative might be to enrich exosome fractions 
and eliminate cell fractions. In order to enhance the 
specificity of potential circulating miRNAs, we rec-
ommend the blood plasma and serum preparation 
protocol modified by Duttagupat et al.[164]. For better 
targeting the tumor-derived exosomes, tu-
mor-antibody coupled magnetic beads could be used 
to enrich the tumor relevant miRNAs [165]. Once po-
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tential exosomal miRNA biomarkers are identified, 
they could be validated by using whole blood or un-
fractioned serum or plasma.  

Moreover, in the assessment of whether RNA 
isolation is cell-free, three main parameters should be 
investigated by qPCR: i). The existence of high and 
constantly expressed serum/plasma miRNAs, such as 
miR-16, miR-223 or let-7a [166]. These miRNAs have 
been reported to keep consistent expression levels 
among plasma / serum and are correlated with the 
number of blood cells. Great variance of their expres-
sion levels might indicate possible contamination 
from blood cellular miRNAs. ii). The absence of typi-
cal blood cellular miRNAs, including miR-20a, 
miR-106a, miR-185 and miR-144 [167]. Expression of 
these miRNAs seems to be exclusive in white and red 
blood cells. Positive signals for these miRNAs might 
indicate that cells have lysed during the procedure. 
iii). The absence of qPCR enzymatic reaction inhibitor. 
Protein-rich plasma / serum could have some qPCR 
inhibitors, which will distort the results and further 
skew the metrics to establish a predictor system. The 
presence of inhibitors means the raw Ct value will not 
increase alongside an increasing RNA input. To rule 
out the possibility, a standard curve of the consist-
ently expressed miRNAs, such as spike-in miRNAs, 
on a serial dilution of samples may be used. 

There is no consensus right now in using en-
dogenous reference miRNAs to normalize miRNA 
qPCR results. miRNA expression levels can vary sig-
nificantly depending on the tissue types, for instance, 
reference miRNAs might be consistently expressed in 
breast cells but aberrantly expressed in prostate cells. 
Other alternative methods, including small RNAs 
(most commonly used 5S, U6), total RNA, or 18S 
rRNA, may not be applicable in plasma or serum 
miRNA analysis. For example, 5S and U6 are not 
present in plasma and serum.  

Conclusions 

The emergence of miRNAs as the mediator of 
gene expression in carcinogenesis renders themselves 
as promising potential diagnostic markers for malig-
nancy. They are also found to be surprisingly stable in 
RNase-rich serum and plasma environment, which 
strengthens its feasibility as a routine clinical screen-
ing method. A number of recent studies documented 
altered miRNA expression in circulation by compar-
ing tumor patients with healthy individuals, indicat-
ing their putative role as cancer biomarkers. Also, 
new models have been proposed that suggest circu-
lating miRNAs might be released from the tumor 
tissue to adjacent or distant cells in an autocrine or 
paracrine manner, and this paradigm was strength-

ened by the detection of tumor driven miRNAs in 
circulating small vesicles, including exosomes and 
HDL, etc. However, several issues must be addressed 
before they can be validated as biomarkers for cancer.  

It is challenging to avoid the interference of 
blood cell miRNAs in serum/plasma miRNA profil-
ing. Our focus is to distinguish the tumor-derived 
miRNAs from those of the blood cells. Tu-
mor-associated antigen presenting exosomes might 
provide an alternative way to address this paradox. 
However, limited research has been done to distin-
guish the efficiency of the antibody between tu-
mor-derived exosomes and other tissue derived exo-
somes. In addition, other miRNA-carrying microvesi-
cles, such as HDL, or even RNA-binding proteins like 
Ago 2, broadened our knowledge of circulating 
miRNAs and their transportation and delivery. More 
complex questions arise, such as whether specific 
miRNAs select certain carriers, or vice versa. Further 
elucidation of this mechanism might allow us to tailor 
particular starting materials depending on diseases.  

Researchers might also argue whether or not 
circulating miRNA profiling can reflect the carcino-
genesis process. In other words, are the altered 
miRNAs identified in circulation truly correlated to 
focal tumor progression with real biological function? 
Systematic validation on cells lines, human biopsy 
specimens and Formalin-Fixed, Paraffin-Embedded 
(FFPE) tissue might address these questions. Howev-
er, if the aforementioned selective miRNA-carrier 
model exists, solely whole blood or whole se-
rum/plasma miRNA profiling studies might not be 
appropriate. Nevertheless, the methodology of pro-
filing circulating miRNAs is still challenging. For 
example, the lack of a reliable endogenous miRNA 
control for normalization makes it hard to evaluate 
the level of miRNAs in circulation between studies 
[168]. Since gene expression is known to vary within a 
population, in order to obtain miRNA signatures re-
lated to diseases, it is important to determine the 
range of normal variability across demographic pop-
ulations [164]. 

It is known that the signatures of serum/plasma 
miRNAs may reflect correlations to physiological or 
disease conditions. Further research on how cells se-
crete miRNAs to extracellular environment is crucial 
for targeting proper objects, which truly reflect cancer 
cell carcinogenesis. It is also essential to explore direct 
or indirect biological functions that circulating miR-
NAs may have on distant cells [61]. We expect that 
study of cell-free circulating miRNAs would result in 
novel molecular biomarkers for early cancer diagnosis 
and management.  
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Table 1. Expression of miRNAs in circulation of various cancers, along with their target genes and pathways involved. 

Types of Cancer Altered miRNAs and Regulation 
in Circulation 

Verified Target Genes in 
Cells and/or Tissues 

Program Predicted Pathway* p value 

Acute Leukemia 
(AML & ALL) 

↓miR-92a (plasma) [126]  Molecular Mechanisms of Cancer 
Integrin Signaling 
RAR activation 

1.77E-22 
9.78E-11 
9.54E-09 

Brest Cancer ↓let-7c (plasma) [28]  Molecular Mechanisms of Cancer 
Wnt/β-catenin Signaling 

1E-35 
8.55E-18 ↓let-7d (plasma) [28]  

↑miR-589(plasma) [28]  Molecular Mechanisms of Cancer 
NF-kB Signaling 

1.07E-04 
2.62E-04 

↑miR-425 (plasma) [28]    

↑miR-21 (serum) [115, 116] PTEN [118],PDCD4 [100, 117, 
169-171], RTN4, NCAPG, 
DERL1, PLOD3, BASP1 [171], 
Maspin [117], RASA1, 
TGFB1,RASGRP1 [100], 
ANKRD46 [94], MSH2 [98], 
ICAM-1,PLAT,IL1B[119], 
TIMP3 [99], TPM1[97] 

Molecular Mechanisms of Cancer 
TGF-β Signaling 
Wnt/β-catenin Signaling 
PTEN Signaling 
 

1.11E-19 
6.68E-09 
8.35E-07 
9.96E-07 
 

↑miR-34a (serum) [74] Axl [172] Molecular Mechanism of Cancer 
ERK/MARK Signaling 
Wnt/β-catenin Signaling 
PI3k/AKT Signaling 

1.13E-41 
1.38E-35 
1.04E-20 
6.42E-20 

↑miR-106a (serum) [115]  ERK/MARK Signaling 
PTEN Signaling 

2.26E-19 
2.44E-18 

↓miR-126 (serum) [115] IRS-1 [173] PDGF signaling 6.67E-05 

↑miR-155 (serum) [74, 115] SOCS1 [149], FOXO3a [150]   

↓miR-199a (serum) [115]    

↓miR-335 (serum) [115]  Molecular Mechanisms of Cancer 
Role of BRCA1in DNA Damage Re-
sponse 

4.71E-04 
1.7E-03 

↑miR-195 (whole blood)[29, 82] CCND1 [27] Molecular Mechanisms of Cancer 
PTEN Signaling 
PI3K/AKT Signaling 
Wnt/β-catenin Signaling 

6.15E-33 
2.87E-23 
1.52E-19 
3.07E-19 

↑let-7a (whole blood)[29, 82]    

Chronic Lympho-
cytic Leukemia 
(CLL) 

↑miR-195 (plasma) [88]    

Colorectal Cancer 
(CRC) 

↑miR-17-3p (plasma) [174]    

↑miR-29a (plasma) [41]  Molecular Mechanisms of Cancer 
IL-8 Signaling 
VEGF Signaling  

1.8E-21 
2.84E-14 
4.64E-12 

↑miR-92a (plasma) [174] [41]  Integrin Signaling 
RAR Activation 

9.78E-11 
9.54E-09 

↑miR-141 (plasma) [135] SIP1 [136] GNRH Signaling 
Wnt/β-catenin Signaling 

1.29E-15 
1.87E-12 
 

↑miR-221 (plasma) [156]  ERK/MAPK Signaling 
p53 Signaling 
PTEN Signaling 

9.49E-10 
4.04E-8 
1.07E-7 

↑let-7a (whole blood) [82]    

↓miR-10b (whole blood) [82]  G1/S checkpoint regulation 
Integrin Signaling 

8.75E-07 
6.05E-06 

↓miR-155 (whole blood) [82]    

Diffuse Large B-Cell 
Lymphoma 

↑miR-21 (serum) [104]    

↑miR-155 (serum) [104] SMAD5 [175], SHIP1[146], 
AGTR1,FGF7,ZNF537,ZIC3 
AND IKBKE [176] 
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↑miR-210 (serum) [104]    

Epithelial Ovarian 
Cancer 

↑miR-21 (serum) [122]    

↑miR-29a (serum) [122]    

↑miR-92a (serum) [122]    

↑miR-93 (serum) [122]    

↑miR-99b (serum) [122]  PTEN Signaling 1.95E-05 

↑miR-126 (serum) [122]    

↓miR-127 (serum) [122]    

↓miR-155 (serum )[122]     

Esophageal Squa-
mous Cell Carcino-
ma (ESCC) 

↑miR-21 (plasma) [39]    

↓miR-375 (plasma) [39]   Growth Hormone Signaling 
Prolactin Signaling 
VDR/RXR Activation 

1.15E-06 
1.53E-06 
2E-06 

↑miR-10a (serum) [177]    

↑miR-22 (serum) [177]  p53 Signaling 3.59E-12 

↑miR-100 (serum) [177]    

↑miR-127-3p (serum) [177]    

↑miR-133a (serum) [177]  Wnt/β-catenin signaling 
ERK/MAPK Signaling 
PTEN Signaling 

2.81E-13 
2.29E-11 
2.64E-09 

↑miR-148a (serum) [177]  ERK/MAPK Signaling 4.11E-15 

↑miR-223 (serum) [177]  IGF-1 Signaling 
PTEN Signaling 

2.53E-13 
1.82E-09 

Gastric Cancer (GC) ↑miR-17-5p (plasma) [42]    

↑miR-21 (plasma) [42] RECK [114]   

↑miR-106a (plasma) [42]    

↑miR-106b (plasma) [42]  

↓let-7a (plasma) [42] RAB40C[178]   

↑miR-1 (serum) [179]  ERK/MAPK Signaling 
PTEN Signaling 

2.64E-17 
1.54E-16 

↑miR-34a (serum) [179]    

↑miR-20 (serum) [179]     

↑miR-27a (serum) [179] Prohibitin [180] PTEN Signaling 
PPARα/RXRα activation 
PAK Signaling 

4.26E-20 
1.09E-19 
2.9E-15 

Hepatocellular Car-
cinoma (HCC) 

↓miR-92a (plasma) [43]     

↑miR-21 (serum) [101] PTEN [93], RHOB [102]   

↑miR-122 (serum) [101] Bcl-w [128] PTEN Signaling 3.19E-04 

↑miR-223 (serum) [101] STMN1 [181], SLC7A1, AKT3, 
ADAM17 [132], CUTL1 
[182],CCNG1[130], 
ADAM10,SRF,IGF1R[133] 
 

  

↑miR-500 (serum) [183]     

↑miR-885-5p (serum) [184]  Protein Kinase A signaling 
Thrombin Signaling 
Phospholipase C Signaling 

1.04E-05 
1.05E-04 
1.84E-04 

Melanoma ↓miR-10b (whole blood) [82]     

↓miR-155 (whole blood) [82] 

Non-small Cell 
Lung Cancer 
(NSCLC) 

↓miR-20b (plasma) [185]    

↑miR-21 (plasma) [112] PTEN [186]   

↓miR-30e-3p (plasma) [185]    

↓let-7f (plasma) [185]    

↓miR-1 (serum) [187] MET, Pim-1[77]   

↓miR-17-5p (serum) [87]    
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↑miR-25 (serum) [31]    

↓miR-27a (serum) [87]    

↑miR-29c (serum) [87]    

↑miR-30d (serum) [87]  Wnt/β-catenin Signaling 
PTEN Signaling 
Integrin Signaling 
PI3K/AKT Signaling 

9.15E-20 
6.19E-18 
3.98E-17 
5.55E-16 

↓miR-106a (serum) [87]    

↓miR-146 (serum) [87]  PPAR Signaling 
RAR Activation 

7.15E-06 
7.98E-05 

↓miR-155 (serum) [87]    

↓miR-221 (serum) [87] PTEN, TIMP3 [160]   

↑miR-223 (serum) [31]    

↑miR-486 (serum) [187]  IGF-1 Signaling 
PI3k/AKT Signaling 

1.12E-05 
2.2E-05 

↓miR-499 (serum) [187]  Wnt/β-catenin Signaling 1.65E-15 

↓let-7a (serum, whole blood) [87] 
[188] 

NIRF [189]   

Oral Squamous Cell 
Carcinoma (OSCC) 

↑miR-24 (plasma) [120] DND1 [120] PTEN Signaling 9E-14 

↑miR-31 (plasma) [40] FIH [99] Thrombin Signaling 
ERK/MAPK Signaling 

3.36E-09 
7.9E-08 

Pancreatic Cancer ↑miR-21 (plasma) [141] (serum) 
[108] 

Bcl-2 [109]   

↑miR-155 (plasma)[141] TP53INP1 [142]   

↑miR-196a (plasma) (serum)[141]   G1/S checkpoint regulation 5.69E-07 

↑miR-210 (plasma) [190] EFNA3 [143]   

↑miR-155 (serum) [141]    

↑miR-200a (serum) [191]    

↑miR-200b (serum) [191]  ERK/MAPK Signaling 
Wnt/β-catenin Signaling 
PI3K/AKT Signaling 

1.38E-35 
1.04E-20 
6.42E-20 

Prostate Cancer ↑miR-21 (plasma) [107] ANP32A, SMARCA4[91] 
BMPR2[92], MARCKS[90]  

  

↑miR-141 (plasma) [107] (serum) 
[192] [44] 

  

↑miR-221 (plasma) [107] [157] p27kip1 [159], ARHI [158]  

↑miR-375 (serum) [192] Sec23A [193]  

↑let-7a (whole blood) [82]   

↓miR-155 (whole blood) [82]   

Rhabdomyosarcoma 
(RMS) 

↑miR-206 [194]     

Tongue Squamous 
Cell Carcinoma 
(TSCC) 

↑miR-184 [195]    
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