Functional genetic variants of CTNNBI1 predict platinum treatment response of
Chinese epithelial ovarian cancer patients

Haoran Li1,2†, Lihua Chen1,2†, Xiaoxia Tong1,2, Hongji Dai3,4, Tingyan Shi5, Xi Cheng2,6,
Menghong Sun7, Kexin Chen3,4, Mengyun Wang1,2*, Qingyi Wei1,8,9*

1Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
3Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and
Therapy, Tianjin, China
4Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National
Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and
Hospital, Tianjin, China
5Ovarian Cancer Program, Division of Gynecologic Oncology, Department of Gynecology
and Obstetrics, Fudan University Zhongshan Hospital, Shanghai, China
6Department of Gynecological Oncology, Fudan University Shanghai Cancer Center,
Shanghai, China

*Corresponding author.
7Department of Pathology, Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, China

8Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA

9Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA

†contribute equally to this work

*Corresponding authors: Mengyun Wang, Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Tel: 86-21-64175590; E-mail: wangmengyun@fudan.edu.cn; and Qingyi Wei, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Tel: 86-21-64175590 E-mail address: weiqingyi@fudan.edu.cn; or Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, 27710, USA. Tel: 919-660-0562; E-mail address: qingyi.wei@duke.edu. Qingyi Wei is a visiting professor at Fudan University.
Abstract

Chemotherapy resistance remains a blockade for successful treatment and longer overall survival of patients with epithelial ovarian cancer (EOC). *CTNNBIP1* is an inhibitor of β-catenin that is a chemotherapeutic target for EOC treatment. In the present study, we investigated associations between single nucleotide polymorphisms (SNPs) of *CTNNBIP1* and platinum treatment response of Han Chinese EOC patients and subsequently performed functional prediction and validation of the resultant SNPs. We found that *CTNNBIP1* rs935072 AT/TT variant genotypes were associated with platinum treatment response in the multivariate logistic regression analysis of EOC patients. Specifically, the *CTNNBIP1* rs935072 AT/TT genotypes were associated with a decreased risk of developing chemoresistance ([adjusted odds ratio (OR)] = 0.89, 95% confidence interval (CI) = 0.82-0.97 and *P*=0.010), compared with the AA genotype. Further experiments showed that the underlying mechanism for the *CTNNBIP1* rs935072 A>T change in chemotherapy treatment response resulted from a lower binding affinity of miR-27a-3p, thereby leading to up-regulation of the *CTNNBIP1* expression. We further found that overexpression of *CTNNBIP1* sensitized ovarian cancer cells to platinum treatment. Thus, the present study
provides evidence that functional variants of *CTNNBIP1* may regulate the expression of

CTNNBIP1, a possible mechanism affecting platinum treatment response of EOC patients.

Keywords: genetic variants, single nucleotide polymorphisms; ovarian cancer; *CTNNBIP1*; platinum treatment response.
Introduction

Chemotherapeutic drug resistance in tumor cells is presented as a major cause of significant mortality in human malignancies [1, 2], especially in ovarian cancer [3]. Currently, the first-line chemotherapy treatment for ovarian cancer is the paclitaxel-platinum combination, which is given every three weeks for six or eight cycles. The platinum-based regimen yields objective response rates of more than 80% (in which 40–60% had a complete response rate) in the advanced ovarian cancer, but approximately 80% of patients with an advanced stage had a progression within three years [4] with a median progression-free survival is only 18 months, which is mainly attributed to the development of chemoresistance-related recurrence [3]. Furthermore, most women diagnosed with epithelial ovarian cancer (EOC) develop an acquired chemoresistance in spite of an initial response to the treatment. Therefore, chemotherapy resistance remains a blockade for successful treatment and a longer overall survival in EOC patients [5]. Therefore, to have a better management of EOC, it is essential to elucidate the mechanisms of chemoresistance and to identify potential biomarkers to predict chemotherapy response among EOC patients.
It is known that genetic variants are involved in tumor development and surviving from drug treatment [6], thereby are considered to participate in the resistance to the anti-cancer drugs [7, 8]. For example, genetic variations in biological signaling pathways, including drug uptake and efflux mechanisms, cell cycle, DNA damage repair, apoptosis and glucose metabolism pathways, has been shown to be involved in different treatment response to chemotherapy in several cancer types [9-11], including EOC [12, 13]. However, the underlying genetic mechanisms responsible for such chemotherapy resistance in EOC patients are still poorly understood.

Susceptibility alleles from genome-wide association studies (GWASs) is easy to omit the truly biologically significant gene sites because of the strict p-value standard, so the candidate gene association studies were used as a supplementary method to find some missed sites. Recently, the Wnt/β-catenin pathway was reported to be involved in the chemoresistance of EOC patients, which may be a potential target for chemosensitization [14]. Catenin beta interacting protein 1 (CTNNBIP1), also known as ICAT or an inhibitor of β-catenin, prevents β-catenin from forming a complex with the T-cell factor/lymphoid enhancer factor (TCF/LEF) and thus inactivates the transcription of Wnt target genes, thereby negatively regulating the
Wnt/β-catenin pathway [15]. Furthermore, several studies have suggested *CTNNBIP1* as a tumor suppressor in cancers of the colorectum [16], breasts [17], cervixes [18] and stomach [19]. These findings also provide clues that *CTNNBIP1* may be a chemotherapeutic target in these cancers.

However, few studies explored the role of *CTNNBIP1* in EOC, and, in particular, single nucleotide polymorphisms (SNPs) of *CTNNBIP1* have rarely been investigated for their roles in the response to platinum treatment of EOC patients. Therefore, we hypothesize that functional genetic variants in *CTNNBIP1* are associated with the response to platinum treatment of EOC patients. In the present study, we first used available genotyping data of *CTNNBIP1* SNPs for association analysis and then performed validation of the significant SNPs identified in the multivariate logistic regression analysis, followed by functional analysis of these SNPs.

Materials and Methods

Study populations
All the patients included in this analysis were unrelated ethnic Han Chinese diagnosed with histologically confirmed EOC, and their DNA samples were obtained from the tissue bank of Fudan University Shanghai Cancer Center (FUSCC). In the present study, a total of 495 EOC patients with complete DNA samples were consecutively enrolled for Shanghai Ovarian Cancer Study (SOCS) at FUSCC between March 2009 and August 2012. Because the present study mainly focused on associations between SNPs and the response to platinum treatment of EOC patients, we excluded those patients who had not undergone any platinum-based chemotherapies. Therefore, 427 patients were left in the final datasets. The inclusion of study participants was approved by the Ethics Committee at FUSCC with a written-informed consent obtained from all recruited individuals. This clinical investigation was conducted according to the principles in the Declaration of Helsinki consent.

Data collection

Clinical characteristics, including age at diagnosis, the International Federation of Gynecology and Obstetrics (FIGO) stage, histology, grade, residue (optimal debulking <1 cm), ascites and platinum treatment response, were collected. Primary patients with an early stage (FIGO stage I and II) received a complete staging surgery, while patients with a late
stage (FIGO stage III and IV) underwent a cytoreductive surgery. After primary surgery, all
the patients received platinum-based chemotherapy. Those patients who received
chemotherapy were divided into a chemosensitive group (relapsed > 6 months after
chemotherapy) and a chemoresistant group (relapsed ≤6 months after chemotherapy). All the
patients were followed up every three months for the first two years, every 6 months for the
next three years, and annually for the following years thereafter.

Genotyping data and quality control

The genotyped data were obtained from a previous GWAS study that used the Illumina
HumanOmni Zhonghua-8 BeadChip for genotyping as described previously [20], and we
only selected CTNNB1 as the candidate gene for the analysis. Systematic quality control
(QC) was performed and the exclusion criterion were as follows: 1) with a call rate less than
95%; 2) with mapping to X or Y chromosomes; 3) with an MAF<0.05; and 4) with
Hardy-Weinberg equilibrium $P < 1 \times 10^{-5}$. In addition, we analyzed the principle component
(PCA) and found no significant principle component to be related with the response to
platinum treatment of EOC patients.

Imputation
Additional SNPs of *CTNNBI1* in the signaling pathway were imputed using IMPUTE 2.0 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html). The reference data used for imputation was from the 1000 Genomes Project (phase 3). The imputed genotypes were qualified by excluding SNPs with the following criteria: a posterior probability < 0.9, an MAF (Minor Allele Frequency) < 5%, missing genotypes > 10% or significant deviations from Hardy-Weinberg equilibrium.

False-positive report probability and Bayesian false-discovery probability

False Discovery rate (FDR), false-positive report probability (FPRP) and Bayesian false-discovery probability (BFDP) were used to assess the noteworthiness of an observed association between genetic variants and platinum response. The detailed calculation method of FDR[21], BFDP [22] and FPRP[23] were described previously. The stringent FDR method was not optimal for the SNPs under investigation in the present study, because they are in high linkage disequilibrium (LD) as a result of imputation, a threshold of FPRP value less than 0.2 and BFDP value less than 0.8 were considered statistically noteworthy.

Association analysis
To screen of relevant SNPs associated with platinum response, we used Package GenABEL [24] in R language to perform logistic regression analyses, with correction for co-variables including age, stage, histology, grade, residue, ascites and neoadjuvant chemotherapy. The LD analysis among the obtained SNPs were performed by using Haploview [25]. Receiver operating characteristic (ROC) curve was used to estimate the predictive value of genetic variants in combination with clinical variables in additive models. To illustrate the fitness of the model, an area under the curve (AUC) of ROC curves was also calculated.

Functional annotation of selected SNPs

The online tools RegulomeDB (http://www.regulomedb.org/), SNPInfo (https://snpinfo.niehs.nih.gov/) and ensemble (http://www.ensembl.org/) were applied to predict putative function of the identified SNPs. Furthermore, the corresponding mRNA expression levels of the identified loci was assessed by using the online tool GTEx database (http://www.gtexportal.org/home/) [26] as well as data from the 1000 Genomes Project and from the Hapmap3 (phase III, release I) Project. We also used other online tools including MirSNP (http://bioinfo.bjmu.edu.cn/mirsnp/search/), TargetScan
(http://www.targetscan.org/vert_71/) and SNPInfo (https://snpinfo.niehs.nih.gov/) to predict potential miRNA binding with the 3’UTR region of the identified loci. The online tools GEPIA (http://gepia.cancer-pku.cn) and Oncomine Database (https://www.oncomine.org/) were also used to explore gene expression levels in different tissues.

Cell lines and culture

Two established human ovarian cancer cell lines (i.e., IGROV1 and OVCAR-8) were obtained from the Cell Bank of the Eastern China in December 2016. The identities of cell lines were confirmed by DNA profiling (short tandem repeat, STR). All cell lines were used within 6 months after receipt or resuscitation. All cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, HyClone, Thermo Scientific, USA) supplemented with 10% fetal bovine serum (Gibco, Life technologies, USA), 100 U/ml penicillin (Biowest, Nuaillé, France), and 100 U/ml streptoc-mycin (Biowest, Nuaillé, France), and were incubated at 37°C in a humidified atmosphere with 7% CO₂.

Cell transfection
To selectively overexpress CTNNB1P1, the recombinant plasmid pENTER-CTNNB1P1 containing human full cDNA sequence of CTNNB1P1 was purchased from Vigene Biosciences (Jinan, China). Both Ovarian cancer cell line IGROV1 and OVCAR-8 were infected with the recombinant plasmids. Control cell lines were generated by infection with plasmids containing the empty vector with the same experimental protocol. To generate miR-27a-3p overexpressing cells, miR-27a-3p mimic or their negative control (Biotend, Shanghai, China) was transfected into cells using Lipofectamine 3000 (Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions.

Luciferase reporter assay

The Psi-CHECK2 vector carrying the 3’UTR of CTNNB1P1 with either rs935072 A or rs935072 T was constructed. IGROV1 and OVCA-8 cells were transfected with an appropriate dose of constructed test plasmids and renilla luciferase control plasmid in 96-well plates. Forty-eight hours later, luciferase activities were measured by using the Dual Luciferase Assay Kit (Promega, Madison, WI, USA), and renilla luciferase activities were used to normalize the reporter luciferase activities, which were then rescaled to vector control signals equal to unit 1.
Cell viability assay

To evaluate cell survival fraction under different cisplatin concentrations, we plated 8x10^3 cells per well in 96-well plates with 100-µl maintenance medium. On the next day, the cells were treated with various concentrations of cisplatin. Cell Counting Kit-8 (CCK-8) (Dojindo Laboratories, Kumamoto, Japan) was used to monitor cell viability 48 hours later, and the number of viable cells was assessed by measurement of absorbance at 450 nm by a Microplate Reader (BioTek Instruments, Winooski, VT, USA).

Colony formation assay

Colony formation Assay was performed as previously described [27].

Cell apoptosis analysis

Cell apoptosis analysis was performed as previously described [27].

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR)

Total RNAs were isolated from both IGROV1 and OVCAR-8 cells by using the Trizol reagent (Invitrogen, Life technologies, USA) and reversely transcribed into cDNA using the PrimeScript TM RT reagent Kit (Takara Biotechnology, Shiga, Japan). The primer pairs of
GAPDH were 5′-GGCCTC CAAGGAGTAAGACC-3′ (forward primer) and 5′-CAAGGGGTCTACATGGCAAC-3′ (reverse primer). The primer pairs of **CTNNBIP1** were 5′- GGGCAGCACCTTCCT -3′ (forward primer) and 5′- CTCTGGGGACTCCTGCTTCT -3′ (reverse primer). Three independent experiments were performed for final analyses by using the 2-ΔΔCT relative quantification method.

Western blotting assay

Antibodies against **CTNNBIP1** were purchased from proteintech (Wuhan, Hubei). All the primary antibodies were used at 1:1000 dilutions and secondary antibodies at 1:5000 dilutions. The assay was performed three times as previously described [27].

Statistical analysis

Genotyping data were extracted by PLink (version 1.09) (http://pngu.mgh.harvard.edu/purcell/plink/) [28]. Other statistical analyses were achieved by R language (version 3.2.4). χ^2 test and logistic regression models were used to estimate the main effects of the SNPs on platinum treatment response. The heterogeneity between two groups was assessed by the Cochran's Q-test. The figures were made using Graph Pad Prism and phototshop.
expressed as mean and standard deviation (SD). Statistical analysis was conducted by Student’s t-test. All the reported P values were two-sided, and $P<0.05$ was considered statistically significant.

Results

Logistic regression analysis of associations between SNPs and platinum treatment response

The study flowchart is shown in Figure 1. The *CTNNBIP1* genotyping data (nine SNPs) of 427 patients who underwent platinum-based treatment were available for subsequent analysis. After QC and imputation, 93 SNPs in *CTNNBIP1* were included for further analysis, of which nine SNPs were genotyped and 84 were imputed. As a result, we found that 49 SNPs in *CTNNBIP1* were individually and significantly associated with the response to platinum treatment of EOC patients (adjusted $P<0.05$). To control for the probability of false positive associations with platinum treatment response of EOC patients, both FPRP and BFDP were performed and 11 SNPs passed the corrections (Table S1), although false discovery rate (FDR) was not applied because of the high LD among the SNPs. The next LD analysis revealed that these 11 SNPs were in LD ($r^2>0.8$), one of which, *CTNNBIP1*
rs935072A>T, is located at the 3’- UTR of the gene and was selected for further genetic modeling and functional validation. *CTNNBIP1* rs935072A>T was found to be associated with platinum treatment response ([adjusted odds ratio (OR)] =0.62, 95% confidence interval (CI) = 0.44-0.88, *P*=0.009 and FPRP=0.164, BFDP=0.535). Furthermore, we performed the stepwise multivariate logistic regression analysis to select the optimal predictors of platinum treatment response in EOC patients, with adjustment for other clinical variables including age, FIGO stage, histology, grade, residue (optimal debulking <1 cm), ascites and neoadjuvant chemotherapy. The above-mentioned rs935072 SNP still remained noteworthy (*Table S2*). In addition to age (OR=1.08, 95%CI=0.99-1.18, *P*=0.057), FIGO stage (OR=1.15, 95%CI=1.03-1.29, *P*=0.015), residue (OR=1.31, 95%CI=1.15-1.49, *P*<0.001), the *CTNNBIP1* rs935072A>T remained an independent predictive factor (OR=0.92, 95%CI=0.87-0.98, *P*=0.014) of platinum treatment response in EOC patients.

Genetic Association with platinum treatment response of EOC patients

The genotype (A/A, A/T, and T/T) frequencies of the *CTNNBIP1* rs935072 polymorphism were 50.6%, 39.6%, 9.8%. The allele A and T frequencies were 70.4% and 29.6%, respectively. In the multivariate analysis with adjustment for age, FIGO stage,
histology, grade, residue (optimal debulking <1 cm), ascites and neoadjuvant chemotherapy, the CTNNBIP1 rs935072 AT/TT genotypes (adjusted OR=0.89, 95% CI=0.82-0.97 and P=0.010) were associated with a decreased risk of developing chemoresistance, compared with the AA genotype (Table 1). Then, diagnostic ROC curve was used to assess discriminative accuracy of the identified SNP CTNNBIP1 rs935072A>T. First, we constructed one logistic regression model with the above-mentioned clinical variables. Then, we added rs935072 to the model in an additive genetic model. Although the ROC prediction model incorporating CTNNBIP1 rs935072 was borderline significantly different from that incorporating only clinical factors, the AUC was increased (all patients: AUC 0.671 vs. 0.692, 95% CI=0.615–0.726 vs. 0.638–0.747, P=0.057, Figure S2).

Stratified analysis between unfavorable genotypes and platinum treatment response

Then, we performed stratified analysis to select the subgroup of patients who could benefit more from the identified SNP in the combination with other predictors (Table 2), including age, tumor grade, histology, FIGO stage, residue, ascites as well as neoadjuvant chemotherapy. We found that CTNNBIP1 rs935072A>T was more effective to predict the platinum response in subgroups of patients who were older than 54 (adjusted OR=0.83, 95%
CI=0.73-0.95, \(P=0.006 \)), with a high grade (adjusted OR=0.90, 95% CI=0.83-0.99, \(P=0.022 \))
or serous tumors (adjusted OR=0.83, 95% CI=0.72-0.97, \(P=0.020 \)), with an advanced tumor
stage (adjusted OR=0.88, 95% CI=0.80-0.98, \(P=0.017 \)), and without neoadjuvant
chemotherapy (adjusted OR=0.87, 95% CI=0.80-0.96, \(P=0.005 \)). No interactive effects
between covariates and platinum treatment response-associated genotypes were identified,
except for an interaction between \textit{CTNNBIP1} rs935072 and tumor grade (\(P=0.037 \)).

Functional prediction of genetic variants \textit{CTNNBIP1} rs935072A>T

To investigate the role of \textit{CTNNBIP1} rs935072A>T SNP in regulating its gene
expression, we searched the GTEx database where both mRNA expression and genotype data
were available. The mRNA expression levels were up-regulated by the \textit{CTNNBIP1} rs935072
A>T change in whole blood cells (\(P=0.023 \), **Figure 2A**). Despite no statistical change in
ovary tissues, patients (n=38) with the AT genotype showed an increased \textit{CTNNBIP1} mRNA
expression level compared with those (n=75) having the AA genotype (\(P=0.570 \), **Figure 2B**).

We also performed the eQTL analysis for the correlation between SNP and mRNA
expression by using data for Chinese subjects included in the 1000 Genomes Project (n=373
and \(P=0.937 \), **Figure S3A**) and the Hapmap3 project (n=79 and \(P=0.671 \), **Figure S3B**).
Unfortunately, no significant difference in the expression levels was observed by the A>T change due to the relative small number of patients.

We further searched in the TCGA database for the mRNA expression levels of *CTNNB1P1* in both EOC and normal ovarian tissues, but there was no difference in *CTNNB1P1* mRNA expression levels between EOC and normal ovarian tissues. However, we found that *CTNNB1P1* mRNA expression was down-regulated as the stage increased (Figure 2C), indicating its role in tumor progression. In addition, because ovarian serous carcinoma is the most sensitive type to common platinum-based chemotherapy than other types such as mucinous [29] or clear cell carcinoma [30], we then searched the Oncomine database to analyze mRNA expression levels of *CTNNB1P1* by different histology subtypes of ovarian cancer. Strikingly, the mRNA expression levels of *CTNNB1P1* was much higher (*P*=0.009) in serous tumor type (*n*=30) than in other types (*n*=8) (Figure 2D). Taken together, the underlying protective mechanism of the rs935072 A>T may be attributed to the up-regulation of mRNA expression levels of *CTNNB1P1*.

The effect of *CTNNB1P1* rs935072 A>T on the binding ability of miR-27a-3p and 3’- UTR of *CTNNB1P1*
Then, we explored putative function of *CTNNBIP1* rs935072 located at the 3’UTR, which is a critical binding site of microRNA. We hypothesized that the rs935072 A>T change might reduce the binding capacity of miRNA, thereby affecting the expression of *CTNNBIP1* and platinum treatment response of EOC patients. Therefore, we used the online tools of MirSNP (http://bioinfo.bjmu.edu.cn/mirsnp/search/), TargetScan (http://www.targetscan.org/vert_71/) and SNPInfo (https://snpinfo.niehs.nih.gov/) to predict the specific microRNA binding with the *CTNNBIP1* 3’UTR. The results showed that miR-27a-3p was a potential microRNA that could bind to the 3’UTR of *CTNNBIP1* (Figure 3A). Specifically, the *CTNNBIP1* rs935072 A>T change may affect the binding of *CTNNBIP1* 3’UTR with miR-27a-3p. To test this hypothesis experimentally, we constructed a Psi-CHECK2 vector carrying the 3’UTR of *CTNNBIP1* with rs935072 A or T allele (Figure 3B). The sequencing results of the Psi-CHECK2 vector containing either rs935072 A or T allele are shown in Figure 3C. In both IGROV1 and OVCAR-8 cell lines, when overexpressing miR-27a-3p, we observed a down-regulated luciferase activity associated with the rs935072 A allele in the luciferase reporter assay, and this effect was abrogated when the rs935072 A allele changed into the T allele (Figure 3D and 3E). In addition, we found that the
miR-27a-3p mimic could significantly reduce both mRNA and protein expression levels of CTNNBIP1 (Figure 3F-3G). Together with the results that rs935072 A>T change affected the efficiency of microRNA-27a-3p binding, we hypothesized that a weak binding affinity of miR-27a-3p to the 3’UTR region may result in the up-regulation of the CTNNBIP1 effectively.

CTNNBIP1 sensitizes ovarian cancer cells to cisplatin

To further explore the effect of CTNNBIP1 on chemotherapy sensitivity of ovarian cancer, we treated IGROV1 and OVCAR-8 cell lines selectively overexpressing CTNNBIP1 and their corresponding control cells with different concentrations of cisplatin for 48 h. The CCK-8 assays (Figure 4A-4B) revealed that the overexpression of CTNNBIP1 increased the sensitivity to cisplatin. Colony formation assay results clearly showed that the overexpression of CTNNBIP1 reduced the number and size of the colonies after treatment with cisplatin (Figure 4C-4D). Then, we performed flow cytometry analysis to measure apoptotic cells 48 hours after treatment with cisplatin. Compared with control cells, the overexpression of CTNNBIP1 induced more cell death (Figure 4E) in all cell lines tested. Taken together, our experimental data suggested that CTNNBIP1-overexpressing cells had a higher rate of
apoptosis than control cells in response to cisplatin treatment and that CTNNBIP1 over-expression synergized with cisplatin to inhibit cell proliferation.

Discussion

In the present study, we found that 11 out of 93 *CTNNBIP1* SNPs in the single-locus analysis were associated with chemotherapy response. In the LD analysis, the *CTNNBIP1* rs935072 SNP captured other 11 SNPs in a high LD block. Further stepwise multivariate logistic regression analysis showed that the *CTNNBIP1* rs935072 A>T SNP was an independent predictor for treatment response of EOC patients. Results of the genotype-phenotype correlation analysis further demonstrated that the rs935072 T allele was associated with increased mRNA expression levels of *CTNNBIP1*, a potential molecular marker for EOC patients to overcome chemoresistance.

The Wnt/β-catenin signaling is an evolutionarily conserved and versatile pathway that is associated with many cellular process and a wide variety of human diseases, especially for cancer [31]. β-Catenin serves as a core component in the Wnt/β-catenin signaling. The stabilization of β-catenin is critical in cancer stem cell (CSC) survival [32] and chemoresistance [33]. The β-catenin tends to accumulate in the cytoplasm and then is
translocated into the nucleus, when aberrant WNT activation and mutations of the WNT gene or destruction of the complex components occurred [34]. Consequently, β-catenin binds to TCF/LEF and some other co-regulators to promote the transcription of target genes such as c-Myc [35] and cyclin D1 [36], most of which initiate tumorigenesis. There are many negative regulation mechanisms of β-catenin. CTNNBIP1 is one of the molecules that inhibit β-catenin from forming a complex with TCF/LEF and then inactivates the transcription of Wnt target genes, thereby negatively regulating the Wnt/β-catenin pathway [15]. Here, we reported a novel regulatory mechanism of CTNNBIP1 activation, thereby uncovering a potential chemotherapeutic target for ovarian cancer treatment.

To date, few studies have reported the role of genetic variants in CTNNBIP1, although rare somatic mutations in CTNNBIP1 were observed in some malignant melanomas [37, 38]. For example, in breast cancer, overall alterations (52–55%) with frequent methylation (44–45%) and deletion (20–32%) were observed in CTNNBIP1 [39]. However, no studies explored the role of CTNNBIP1 SNPs in ovarian cancer. To the best of our knowledge, the present study is the first that has investigated associations between SNPs of CTNNBIP1 and the response to platinum treatment of Chinese EOC patients with functional validation, which
provides an additional evidence to support the role of CTNNBIP1 rs935072 in predicting platinum-treatment response of Chinese EOC patients.

SNPs located at the 3’UTR of genes possibly affect cancer development and progression via regulating the efficiency of miRNA binding to the specific sites [40, 41]. Previous studies demonstrated that miR-214 [42] and miR-603 [43] negatively regulated the expression level of CTNNBIP1. In the present study, by using in silico tools, we identified miR-27a-3p as a new potential regulator of CTNNBIP1. Since CTNNBIP1 rs935072 appears to be at miR-27a-3p binding site, we observed a down-regulated luciferase activity for the rs935072 A allele, compared with that for the T allele in both IGROV1 and OVCAR-8 cell lines. The observed decrease in luciferase activities meant an increased binding capacity of miR-27a-3p, thereby affecting the expression of CTNNBIP1. Furthermore, from TCGA and Oncomine databases, we found that CTNNBIP1 might act as an chemosensitivity-related gene due to its relatively higher expression levels in chemosensitive ovarian cancer serious histology, compared with other types of histology. Further functional experiments confirmed that the overexpression of CTNNBIP1 sensitized ovarian cancer cell to cisplatin. These results
showed that *CTNNBIP1* rs935072 T allele may account for a good platinum response of EOC patients by modulating its mRNA expression.

Our findings may help identify subgroups of patients at a higher risk of developing chemoresistance and those patients who are more likely to benefit from individualized treatment strategies. However, the present study had several limitations. First of all, the inherent limitation was the retrospective design of the study, which may result in selection bias. Secondly, the sample sizes of datasets were relatively small, which could reduce the statistical power to detect the true weak effect of SNPs on chemotherapeutic response in the analysis. Moreover, patients enrolled in the present study were from single cancer center and thus could not represent the general EOC patient populations in China. Future multi-center validation is needed to substantiate our findings. Finally, additional *in vivo* studies are required to confirm our observed mechanism of *CTNNBIP1* in platinum treatment response of ovarian cancer.

In conclusion, in the present study, we identified *CTNNBIP1* rs935072 to be a potential biomarker for predicting platinum chemotherapeutic response for EOC patients. The underlying mechanism for the effect of the *CTNNBIP1* rs935072 A>T change on
chemotherapy treatment response resulted from a lower binding affinity of miR-27a-3p, thereby leading to the up-regulation of the \textit{CTNNBIP1} expression. Furthermore, \textit{in vitro} experiments demonstrated that overexpression of \textit{CTNNBIP1} sensitized ovarian cancer cells to platinum treatment. Once further validated by other investigators, these findings would provide novel clues for individualized therapy for EOC patients in the future.

\textbf{Abbreviations:} EOC, epithelial ovarian cancer; SNPs, single nucleotide polymorphisms; OR, adjusted odds ratio; CI, confidence interval; GWASs, genome-wide association studies; \textit{CTNNBIP1}, Catenin beta interacting protein 1; TCF/LEF, T-cell factor/lymphoid enhancer factor; FUSCC, Fudan University Shanghai Cancer Center; SOCS, Shanghai Ovarian Cancer Study; FIGO, International Federation of Gynecology and Obstetrics; QC, quality control; PCA, principle component; MAF, Minor Allele Frequency; FDR, False Discovery rate; FPRP, false-positive report probability; BFDP, Bayesian false-discovery probability; LD, linkage disequilibrium; ROC, Receiver operating characteristic; AUC, area under the curve; DMEM, Dulbecco’s modified Eagle’s medium; RT-qPCR, Reverse transcription quantitative real-time polymerase chain reaction; SD, standard deviation; CSC, cancer stem cell.
Acknowledgments: This study was supported by National Natural Science Foundation of China for Kexin Chen (Grant/Award Number: 81320108022), program for Changjiang Scholars and Innovative Research Team in University in China for Kexin Chen (Grant/Award Number: IRT_14R40) and Tianjin Science and Technology Committee Foundation for Kexin Chen (GrantNumber: 18YFZCSY00520).

Competing interests: Authors declare no conflicts of interest for this article.

References:

Figure legends

Figure 1. The study analysis flowchart.

Figure 2. Functional prediction of genetic variants of CTNNBIP1.

A, The impact of CTNNBIP1 rs935072 SNP on the mRNA expression of CTNNBIP1 in whole blood tissues from the GTEx database. B, The impact of CTNNBIP1 rs935072 SNP on the mRNA expression of CTNNBIP1 in ovary tissues from the GTEx database. C, CTNNBIP1 expression in different stage of ovarian cancer tissues from TCGA database. TPM, Transcripts Per Kilobase of an exon model per Million mapped reads. D, CTNNBIP1 expression in different histology of ovarian cancer tissues from Oncomine database.

Figure 3. The CTNNBIP1 rs935072 A>T contributes to the decreased binding affinity of miR-27a-3p to the CTNNBIP1 3’UTR and increased expression of CTNNBIP1.

A, Graphic representation of the detailed location of rs935072 in the 3’UTR of CTNNBIP1, which is also at the miRNA-binding site with the A allele. B, Schematic drawing of the luciferase reporter system. C, Sequencing results of the Psi-CHECK2 vector containing rs935072 A or T allele. Abbreviation: Mut, Mutagenesis. D-E, Luciferase activity in the
presence of the miR-27a-3p transfected into IGROV1 and OVACR-8 cell lines. F, The expression of CTNNBIP1 was detected by the qRT-PCR assay in IGROV1 and OVACR-8 cells overexpressing miR-27a-3p and control cells. G, The expression of CTNNBIP1 was detected by western blot assay in IGROV1 and OVACR-8 cells overexpressing miR-27a-3p and control cells. * $P < 0.05$. ** $P < 0.01$.

Figure S1. LD plot of 11 CTNNBIP1 SNPs.

Figure S2. ROC analysis of CTNNBIP1 rs935072 in EOC patients.

Figure S3. Expression of CTNNBIP1 in different ovarian cancer database.

A, The relationship between CTNNBIP1 rs935072 A>T polymorphism and the mRNA expression of CTNNBIP1 in 1,000 Genomes Project. B, The CTNNBIP1 rs935072 A>T polymorphism influence the mRNA expression of CTNNBIP1 from Hapmap3 project. CHB, Han Chinese in Beijing.
Table 1. Association of CTNNBIP1 rs935072 with platinum treatment response of EOC patients.

<table>
<thead>
<tr>
<th>Genetic variant</th>
<th>Genotype</th>
<th>Number/ Event</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR (95%CI)</td>
<td>P</td>
</tr>
<tr>
<td>CTNNBIP1</td>
<td>AA</td>
<td>216/80</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>rs935072 A>T</td>
<td>AT</td>
<td>169/45</td>
<td>0.90 (0.82-0.99)</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>42/9</td>
<td>0.86 (0.73-0.99)</td>
<td>0.046</td>
</tr>
<tr>
<td>Dominant model</td>
<td>AA / AT +TT</td>
<td>211/54</td>
<td>0.89 (0.82-0.97)</td>
<td>0.011</td>
</tr>
<tr>
<td>Recessive model</td>
<td>AA+AT / TT</td>
<td>385/125</td>
<td>0.90 (0.77-1.04)</td>
<td>0.144</td>
</tr>
<tr>
<td>Additive model</td>
<td>AA / AT / TT</td>
<td>385/125</td>
<td>0.92 (0.86-0.98)</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Abbreviations: EOC, epithelial ovarian carcinoma; OR, odds ratio; CI, confidence interval;

P, the multivariate logistic regression analyses were adjusted for age, tumor grade, histological types, FIGO stage, residue, ascites and neoadjuvant chemotherapy;
The results were in **bold**, if *P*<0.05.
Table 2. Stratification analysis for associations between CTNNBIP1 rs935072 A>T and platinum treatment response of the EOC patients

Select variables	CTNNBIP1 rs935072	Platinum treatment response			
	(Number/Event)				
	AA	AT & TT	OR (95% CI)	P*	P†
Age at diagnosis <54	116/34	112/27	0.94 (0.84-1.06)	0.326	
Age at diagnosis ≥54	100/46	99/27	0.83 (0.73-0.95)	**0.006**	
Grade					
Low	6/3	7/0	0.43 (0.22-0.84)	0.089	
High	209/77	204/54	0.90 (0.83-0.99)	**0.022**	
Histological types					
Serous	151/55	143/40	0.92 (0.83-1.02)	0.105	
Others†	65/25	68/14	0.83 (0.72-0.97)	**0.020**	
FIGO Stage					
I - II	39/7	35/5	0.93 (0.77-1.12)	0.435	
III - IV	170/71	158/47	0.88 (0.80-0.98)	**0.017**	
Residue disease ≤1cm	143/42	133/28	0.92 (0.83-1.02)	0.105	
Residue disease ≥1cm					
>1cm | 28/17 | 27/14 | 0.92 (0.83-1.02) | 0.105
Ascites | 0.451
| No | 33/9 | 26/2 | 0.85 (0.70-1.04) | 0.129
| Yes | 130/50 | 130/40 | 0.93 (0.83-1.04) | 0.202
Neoadjuvant | 0.291
| No | 175/67 | 177/43 | 0.87 (0.80-0.96) | **0.005**
| Yes | 41/13 | 34/11 | 0.99 (0.80-1.23) | 0.922

Abbreviations: EOC, epithelial ovarian carcinoma; OR, odds ratio; CI, confidence interval;

P* - P value of multivariate logistic regression analyses was adjusted for age, tumor grade, histological types, FIGO stage, residue, ascites and neoadjuvant chemotherapy;
P† - P value of Cochran’s Q test for heterogeneity between the two groups;
‡ - other histological types include mucinous, endometrioid, clear cell and others types of EOC;
The results were in **bold**, if P<0.05 (the stratified factor in each stratum excluded).