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Abstract 

Backgrounds: Colorectal cancer (CRC) is a highly malignant gastrointestinal malignancy with a poor 
prognosis, which imposes a significant burden on patients and healthcare providers globally. Previous 
studies have established that genes related to glutamine metabolism play a crucial role in the development 
of CRC. However, no studies have yet explored the prognostic significance of these genes in CRC. 
Methods: CRC patient data were downloaded from The Cancer Genome Atlas (TCGA), while 
glutamine metabolism-related genes were obtained from the Molecular Signatures Database (MSigDB) 
database. Univariate COX regression analysis and LASSO Cox regression were utilized to identify 15 
glutamine metabolism-related genes associated with CRC prognosis. The risk scores were calculated and 
stratified into high-risk and low-risk groups based on the median risk score. The model's efficacy was 
assessed using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve analysis. 
Cox regression analysis was employed to determine the risk score as an independent prognostic factor 
for CRC. Differential immune cell infiltration between the high-risk and low-risk groups was assessed 
using the ssGSEA method. The clinical applicability of the model was validated by constructing 
nomograms based on age, gender, clinical staging, and risk scores. Immunohistochemistry (IHC) was used 
to detect the expression levels of core genes. 
Results: We identified 15 genes related to glutamine metabolism in CRC: NLGN1, RIMKLB, UCN, 
CALB1, SYT4, WNT3A, NRCAM, LRFN4, PHGDH, GRM1, CBLN1, NRG1, GLYATL1, CBLN2, and 
VWC2. Compared to the high-risk group, the low-risk group demonstrated longer overall survival (OS) 
for CRC. Clinical correlation analysis revealed a positive correlation between the risk score and the 
clinical stage and TNM stage of CRC. Immune correlation analysis indicated a predominance of Th2 cells 
in the low-risk group. The nomogram exhibited excellent discriminatory ability for OS in CRC. 
Immunohistochemistry revealed that the core gene CBLN1 was expressed at a lower level in CRC, while 
GLYATL1 was expressed at a higher level. 
Conclusions: In summary, we have successfully identified and comprehensively analyzed a gene 
signature associated with glutamine metabolism in CRC for the first time. This gene signature consistently 
and reliably predicts the prognosis of CRC patients, indicating its potential as a metabolic target for 
individuals with CRC. 
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Introduction 
Colorectal cancer (CRC) is not only the fourth 

most common cancer globally, but also the third 
deadliest, as reported in the latest data in 2020[1]. The 

incidence and prevalence of CRC have shown a 
gradual and incremental trend globally from 1999 to 
2019, imposing a significant economic burden on 
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global healthcare [2, 3]. Geographically, the incidence 
of colorectal cancer varies, with significantly higher 
cases observed in economically developed countries 
like Europe and North America compared to less 
economically developed countries [4]. In China, the 
overall incidence of CRC has also increased 
significantly in recent years due to improvements in 
living standards and changes in dietary patterns [1, 5]. 
Therefore, in light of the high malignancy and poor 
prognosis associated with CRC, early identification of 
high-risk factors and the establishment of a prognostic 
model for CRC can not only help reduce its morbidity 
and mortality rates, but also guide clinical treatment 
more effectively.  

Glutamine is one of the most abundant amino 
acids in human plasma and plays various roles, 
including the regulation of energy metabolism, 
maintenance of pH homeostasis, and cellular integrity 
[6-8]. Glutamine can be hydrolyzed into glutamate 
and ammonium ions (NH4+) by glutaminase, while 
glutamate and ammonia (NH3) can be synthesized 
into glutamine through the catalysis of glutamine 
synthetase [8]. Several studies have reported 
significantly lower serum glutamine concentrations in 
CRC patients compared to the healthy population, 
possibly due to the increased uptake and utilization of 
nutrients by cancer cells for proliferation [9-12]. 
Clinical studies have also demonstrated that serum 
glutamine levels can serve as a prognostic marker in 
CRC, as glutamine deficiency promotes recurrence 
and metastasis [13, 14]. A meta-analysis finds 
glutamine significantly improves indicators of 
humoral and T-cell immune function in patients after 
radical surgery for colorectal cancer [15]. 
Additionally, glutamine is essential for the treatment 
of CRC patients, as it can reduce complications and 
improve treatment outcomes [16]. Many genes are 
closely associated with glutamine metabolism, with 
glutaminase 1 (GLS1) being an important gene that is 
up-regulated in CRC patients. Knockdown of the 
GLS1 gene has been shown to inhibit the proliferation 
and migration of CRC cells [17]. Yu et al. found that 
mutations in the oncogene Pik3CA lead to glutamine 
dependence in CRC, suggesting that targeting 
glutamine metabolism may be an effective treatment 
for patients with Pik3CA-mutated CRC [18]. Qi et al. 
found that HSF1 stimulated acetyltransferase 
P300-mediated hyper-enhanced activity, promoted 
LCC00857 expression, and enhanced SLC1A5- 
mediated glutamine transport [19]. In summary, 
glutamine metabolism and related genes play a 
significant role in the development of CRC.  

However, previous research has primarily 
focused on the diagnostic value of glutamine in CRC, 
with limited studies exploring its prognostic value. 

Hence, this study aims to develop a predictive model 
for glutamine and glutamate metabolism-related 
genes to assess the prognosis of CRC. Such a model 
will provide valuable insights into identifying 
potential therapeutic targets for CRC. 

Materials and Methods 
Data Collection and Preprocessing 

We obtained the gene expression matrices of the 
CRC samples from The Cancer Genome Atlas (TCGA) 
data portal (https://portal.gdc.cancer.gov) as the 
training set. We used the GSE17536 and GSE103479 
datasets as external validation sets. The inclusion 
criteria for this study were as follows: (1) CRC patient 
samples with both mRNA sequencing data and 
survival status; (2) samples with complete clinical 
information. The TCGA database provided overall 
survival status for 433 CRC patients, and we also 
downloaded their clinical information, including 
survival time, survival status, age, gender, tumor 
TNM stage, and clinical classification. For further 
analysis, we selected 433 CRC patients who had 
complete clinical information. The GSE17536 and 
GSE103479 datasets contained 177 and 155 CRC 
patients, respectively, and were normalized using the 
R package "limma". We obtained genes related to 
glutamine metabolism from the MsigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb). 

Construction and validation of prognostic 
signatures of genes related to glutamine 
metabolism 

We used the "edgeR" package in R software to 
screen for differentially expressed genes between 
colorectal cancer and normal tissues. Significance was 
determined by an adjusted p-value < 0.05 and 
|log2(FC)| value > 1. We then intersected the 
downloaded glutamine metabolism-related genes 
with the differential genes to identify those involved 
in colorectal cancer development. To identify 
survival-associated glutamine metabolism genes in 
colorectal cancer patients, we performed univariate 
Cox proportional hazard regression analyses to 
explore the relationship between overall survival (OS) 
and glutamine metabolism-related genes. Genes with 
a p-value < 0.05 were considered to be associated with 
survival in colorectal cancer patients. We employed 
Least Absolute Shrinkage and Selection Operator 
(LASSO) regression analysis to minimize overfitting 
and identify survival-related genes of glutamine 
metabolism, using TCGA expression profiles. The R 
package "glmnet" was used to find the best gene 
models and calculate individualized risk scores using 
the coefficients. The risk score was calculated using 
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the formula: risk score = gene 1 expression * 
coefficient + gene 2 expression * coefficient + ... + gene 
n expression * coefficient [20]. Based on the median 
threshold of the risk score, patients were divided into 
high-risk and low-risk groups. The R packages 
"survival" and "survminer" were used to determine 
the optimal cut-off values of risk scores and plot 
Kaplan-Meier survival curves. These curves 
illustrated the difference in OS between the high-risk 
and low-risk groups, and the area under the curve 
(AUC) was calculated using the R package 
"survivalROC" [21] to assess the time-dependent 
prognostic value of the model [22]. Furthermore, we 
validated the risk signature in the GSE17536 and 
GSE103479 datasets separately. Clinical characteristics 
of colorectal cancer patients, such as gender, age, 
clinical stage, histological grade, and tumor lymph 
node metastasis (TNM) status, were obtained from the 
TCGA database. We conducted univariate and 
multivariate Cox regression analyses to determine 
whether the model risk scores independently 
predicted prognoses, considering these clinical 
characteristics. A p-value < 0.05 was considered 
statistically significant.  

Nomogram model construction 
The construction of a nomogram involved the 

use of the "rms" and "hmisc" R packages [23]. To 
assess the clinical usefulness of the predictive 
nomogram, a decision curve analysis was conducted 
to quantify the net benefits across different threshold 
probabilities. Additionally, calibration curves were 
generated to evaluate the agreement level between the 
nomogram and the ideal observations. ROC curve of 
the clinical prognostic nomogram for predicting 1-, 2-, 
and 3-year survival in CRC patients was analyzed by 
MedCalc 20.0 statistic software. 

Estimation of tumor-infiltrating immune cells 
between high- and low-risk groups 

The ssGSEA algorithm is based on 29 immune 
genomes, which include genes associated with 
various immune cell types, functions, pathways, and 
checkpoints. We utilized the ssGSEA algorithm 
through the R package, namely GSVA, GSEABase, 
GSVA, ggpubr, reshape2, and limma, to thoroughly 
evaluate the immunological profile of each sample in 
the study [24]. 

Drug sensitivity prediction analysis of 
glutamine metabolism-related genes in CRC 

We obtained drug sensitivity data from the 
CellMiner database (https://discover.nci.nih.gov/ 
cellminer). Subsequently, scatter plots were utilized to 
display the correlations between the expression of 
genes associated with glutamine metabolism and the 

various drug sensitivity scores. These scatter plots 
were generated using the R/Bioconductor software 
package, including ggplot2, impute, limma, and 
ggpubr. The correlations were assessed using Pearson 
correlation analysis. 

Immunohistochemistry 
Tissue slides from 10 colorectal cancer (CRC) 

patients were obtained from the Department of 
Pathology, The First Affiliated Hospital of Nanchang 
University. Immunohistochemical (IHC) staining was 
performed according to standard laboratory protocols 
as previously described [25]. The GLYATL1 antibody 
was purchased from Abmart (PHB9276, Shanghai) at 
a dilution of 1:100, while the CBLN1 antibody was 
purchased from Abmart (PK30087, Shanghai) at a 
dilution of 1:100. The GLYATL1 and CBLN1 IHC 
scores were determined based on the intensity and 
percentage of staining in tumor cells. Staining 
intensity was classified as 0 (negative), 1 (weak), 2 
(moderate), or 3 (strong), and the percentages were 
assigned as follows: 1 (0-25%), 2 (26-50%), 3 (51-75%), 
or 4 (>75%). The total IHC staining scores were 
calculated as the product of the intensity and 
percentage. IHC scores less than 6 were defined as the 
low expression group, while scores greater than 6 
were defined as the high expression group. 
Immunohistochemical staining was independently 
assessed and examined by two observers (Qing Tao 
and Yong hui Wu). 

Statistical Analysis 
Statistical analyses were conducted to assess the 

variables in the study. Continuous variables were 
expressed as mean ± SE, while categorical variables 
were expressed as frequency (n) and proportion (%). 
Differences between variables were analyzed using 
t-tests, non-parametric tests, and chi-square tests. 
Univariate and multivariate Cox regression analyses 
were performed to estimate the predictive power of 
immune-related risk characteristics and clinical 
characteristics. Kaplan-Meier analyses were used to 
estimate the overall survival rates of different groups, 
and log-rank tests were employed to assess the 
significance of differences between the groups. 
Statistical analyses were conducted using GraphPad 
Prism 8.0 and R software version 4.3.1[26].  

Results  
Identification of prognostic genes associated 
with glutamine metabolism in CRC 

The overall workflow of this study is depicted in 
Fig. 1. Firstly, a total of 573 genes related to glutamine 
metabolism were obtained from the MSigDB 
database. Secondly, 10,384 differentially expressed 
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genes in CRC were retrieved from the TCGA 
database. Lastly, an intersection between glutamine 
metabolism-related genes and CRC differentially 
expressed genes was performed, resulting in a matrix 
of 198 genes associated with glutamine metabolism, 
as illustrated in Fig. 2A. 

Construction of a prognostic model associated 
with glutamine metabolism genes in CRC 

After further screening the data of 480 CRC 
patients downloaded from the TCGA database, we 
found that 433 CRC patients had complete clinical 
information, including the survival data required for 
our study (Table 1). The patient demographics and 
baseline characteristics are presented in Table 2. To 
investigate the prognostic value of 198 glutamine 
metabolism-related genes in CRC, we initially 
conducted univariate Cox regression analyses. This 
analysis identified 42 genes that were significantly 
associated with the overall survival of CRC patients (p 
< 0.05). Further, we performed LASSO-multivariable 
Cox analysis on these 42 genes and determined that 15 
glutamine metabolism-related genes were 
significantly associated with CRC prognosis (Table 2). 

The regression coefficients in the LASSO 
regression model are displayed in Fig. 2B, while the 
optimal lambda values are shown in Fig. 2C. 
Additionally, we conducted multivariate COX 
regression analyses for the 15-glutamine metabolism- 
related genes, and identified GLYATL1 and CBLN1 as 
statistically significant (P < 0.05) (Fig. 2D). Among 
them, 11 genes (NLGN1, RIMKLB, UCN, CALB1, 
SYT4, WNT3A, NRCAM, LRFN4, PHGDH, GRM1, 
and CBLN1) were classified as high-risk genes 
(HR>1), and 4 genes (NRG1, GLYATL1, CBLN2, and 
VWC2) were classified as low-risk genes (HR<1). 
Lastly, we developed a risk assessment model for 
CRC based on these 15-glutamine metabolism-related 
genes and their corresponding coefficients obtained 
from multivariate Cox regression (Table 1). The 
formula for calculating the risk score is as follows: 
Risk score = (0.16316 * NLGN1) + (0.03212 * RIMKLB) 
+ (0.16431 * UCN) + (0.03671 * CALB1) + (0.07064 * 
SYT4) + (0.06297 * WNT3A) + (0.13404 * NRCAM) + 
(0.10988 * LRFN4) + (-0.13748 * NRG1) + (0.11606 * 
PHGDH) + (-0.15622 * GLYATL1) + (0.04881 * GRM1) 
+ (0.12913 * CBLN1) + (-0.13064 * CBLN2) + (-0.04510 * 
VWC2). 

 

 
Figure 1. Experimental flowchart of the whole study. 
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Figure 2. Development of the prognostic signature based on 15 glutamine metabolism related genes (GMRGs). (A) Intersection of DEGs with GMRGs. (B) The variation 
characteristics of the coefficient of variables; (C) The selection process of the optimum value of the parameter λ in the Lasso regression model by cross-validation method. (D) 
Assessment of GMRGs in predicting prognosis of CRC exhibited by forest plot. (E) ROC curve of the 15 GMRGs prognostic signature. (F) Overall survival (OS) of CRC patients 
in high- and low-risk groups. (G) Risk score distribution. (H) survival status in high- and low-risk groups. 
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Table 1. Patient demographics and baseline characteristics 

Characteristic Risk level p-value2 
High, N = 2161 Low, N = 2171 

Age   0.586 
Mean ± SD 66 ± 13 67 ± 12  
Gender   0.812 
MALE 115 (53%) 118 (54%)  
FEMALE 101 (47%) 99 (46%)  
Stage   0.005 
Stage I 27 (13%) 46 (21%)  
Stage II 75 (35%) 90 (41%)  
Stage III 76 (35%) 47 (22%)  
Stage IV 34 (16%) 27 (12%)  
unknow 4 (2%) 7 (3%)  
T   0.002 
Tis 0 (0%) 1 (0%)  
T1 3 (1%) 8 (4%)  
T2 29 (13%) 46 (21%)  
T3 149 (69%) 147 (68%)  
T4 35 (16%) 15 (7%)  
M   0.405 
M0 155 (72%) 165 (76%)  
M1 34 (16%) 27 (12%)  
MX 25 (12%) 20 (9%)  
unknown 2 (1%) 5 (2%)  
N   <0.001 
N0 108 (50%) 146 (67%)  
N1 52 (24%) 50 (23%)  
N2 56 (26%) 21 (10%)  
State of survival   <0.001 
Alive 154 (71%) 192 (88%)  
Death 62 (29%) 25 (12%)  
1n (%); 2Welch Two Sample t-test; Pearson's Chi-squared test; Fisher's exact test 

 

Table 2. Coefficients and lasso-multivariable Cox model results 
of 15 glutamine metabolism-related genes in the prognostic model 
of CRC. 

  coef  exp(coef) se(coef) z Pr(>|z|)  
NLGN1 0.16316 1.17723 0.09429 1.730 0.0836 
RIMKLB 0.03212 1.03265 0.10602 0.303 0.7619 
UCN 0.16431 1.17858 0.10880 1.510 0.1310 
CALB1 0.03671 1.03739 0.03599 1.020 0.3077 
SYT4 0.07064 1.07320 0.07732 0.914 0.3609 
WNT3A 0.06297 1.06499 0.10051 0.626 0.5310 
NRCAM 0.13404 1.14343 0.07355 1.822 0.0684 
LRFN4 0.10988 1.11615 0.14315 0.768 0.4427 
NRG1 -0.13748 0.87155 0.07515 -1.829 0.0673 
PHGDH 0.11606 1.12307 0.07012 1.655 0.0979 
GLYATL1 -0.15622 0.85537 0.06102 -2.560 0.0105* 
GRM1 0.04881 1.05002 0.08026 0.608 0.5431 
CBLN1 0.12913 1.13784 0.05466 2.363 0.0182* 
CBLN2 -0.13064 0.87753 0.10100 -1.293 0.1958 
VWC2 -0.04510 0.95591 0.09734 -0.463 0.6432 

 

Internal and external validation of prognostic 
model efficacy based on 15 glutamine 
metabolism-related genes 

To assess the predictive ability of 15 genes 
related to glutamine metabolism for CRC, we 
conducted internal and external validation. In the 
internal validation, risk scores were calculated for 433 
patients based on the risk coefficients. Subsequently, 
high-risk and low-risk groups were identified using 
the median risk scores. The two groups were then 
compared using time-dependent ROC curve and KM 

curve analyses. The area under the ROC curve (AUC) 
for risk score prediction was 0.774 (Fig. 2E), indicating 
that our prediction model, based on the 15 glutamine 
metabolism genes, has excellent predictive ability for 
CRC. KM curve analysis (Fig. 2F) demonstrated that 
overall survival (OS) was worse in the high-risk group 
compared to the low-risk group (p < 0.0001). 
Additionally, the distribution of risk scores and 
survival time in the two groups showed that patients 
in the low-risk group had longer survival compared 
to those in the high-risk group (Fig. 2G-H). 

For external validation, two datasets from the 
GEO database (GSE17536, GSE103479) were used as a 
test set to validate the prognostic value of glutamine 
metabolism-associated genetic risk profiles in CRC. 
Similarly, CRC patients in these datasets were divided 
into high-risk and low-risk groups for Kaplan-Meier 
analysis and ROC analysis. Kaplan-Meier analysis 
indicated that CRC patients in the high-risk group 
had a worse overall prognosis than those in the 
low-risk group (Fig. 3A, 3C). ROC analysis results 
showed that the AUCs for 1, 2, and 3 years were 0.682, 
0.578, and 0.650 in the GSE17536 dataset (Fig. 3B), and 
0.654, 0.638, and 0.602 in the GSE103479 dataset, 
respectively (Fig. 3D). The above results indicate that 
the prediction model we constructed has good 
predictive ability for the survival of CRC patients.  

Correlation of glutamine metabolism-related 
prediction models with overall survival in CRC 
patients 

To validate the correlation between the 
prognostic model and overall survival in patients, a 
univariate COX regression analysis was performed. 
The analysis demonstrated that clinical stage (P < 
0.001), TNM stage (P < 0.001), and risk score (P < 
0.001) were significantly correlated with overall 
survival (Fig. 4A). Multifactorial COX analysis 
revealed that clinical stage (P < 0.05) and risk score (P 
< 0.001) remained as independent prognostic factors 
associated with overall survival in CRC patients (Fig. 
4B). In summary, our prognostic model for glutamine 
metabolism is an independent and reliable factor for 
assessing CRC prognosis. 

Association between glutamine 
metabolism-related prediction models and 
clinical features 

To investigate the relationship between risk 
scores and clinical signatures, we analyzed the 
prognostic model for correlation with patient clinical 
parameters in 433 patients of CRC. The results 
showed that risk scores were higher in patients with 
more advanced clinical staging and T, N, and M 
staging than in patients with earlier staging (Fig. 
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5C-F), which demonstrated that the prognostic model 
was reliable. Regrettably, there was no statistically 
significant difference in risk scores between age and 
gender as shown in Fig. 5A-B (p > 0.05).  

Glutamine metabolism-related prediction 
models with immune correlation analysis 

The results indicated that the high-risk group 
exhibited significantly higher levels of Macrophages 
and plasmacytoid dendritic cells (pDCs) compared to 
the low-risk group. Conversely, the high-risk group 
demonstrated lower levels of Th2 cells compared to 
the low-risk group (Fig. 6A). Regarding immune cell 
function, the high-risk group was primarily 
associated with T-cell co-stimulation, whereas the 
low-risk group was predominantly associated with 
type I interferon (INF) responses (Fig. 6B). In terms of 
immune subtypes, the risk score for C2 was found to 
be higher than that of C1 (P < 0.05). However, no 
significant difference was observed between C3 and 
C4 (Fig. 6C). Additionally, we further analyzed the 
correlation between the immunity score and the 
stromal score with the risk score. As depicted in Fig. 
6D-E, the stromal score exhibited a significant positive 

correlation with the risk score (P < 0.0001). However, 
no significant correlation was observed between the 
immune score and the risk score (P = 0.94). 

Correlation analysis of genes related to 
glutamine metabolism with drug sensitivity  

Drug sensitivity analyses revealed that both 
CBLN2 and GCYATL1 expression were positively 
correlated with aloin sensitivity (Fig. 7A-B) (p < 
0.001), while GCYATL1 was negatively correlated 
with Vinorelbine sensitivity (Fig. 7F) (p < 0.001). 
Additionally, the drug sensitivity of LOXO-101 (Fig. 
7C) and NMS-E628 (Fig. 7M) was enhanced with 
elevated expression levels of CABL1 (p < 0.001). 
Similarly, the drug sensitivity of Dabrafenib (Fig. 7D), 
Vemurafenib (Fig. 7E), and Encorafenib (Fig. 7H) 
showed a strong positive correlation with NLGN1 
expression (p < 0.001). As depicted in Fig. 7G and Fig. 
7J, higher expression levels of SYT4 and VWC2 were 
associated with stronger drug sensitivity to norvir (p 
< 0.001). An intriguing observation was that NRG1 
expression demonstrated a significant positive 
correlation (p < 0.001) with the sensitivity of drugs 
such as Dasatinib (Fig. 7K), BLU-667 (Fig.7L), and 

 

 
Figure 3. Validation of glutamine metabolism-related genes associated with overall survival in colorectal cancer in GSE17536 and GSE103479 datasets. Kaplan-Meier analyses 
suggest that CRC patients with high-risk scores have a worse overall prognosis (A, and C). ROC analyses of risk scores assessed sensitivity and specificity (B, and D). 
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Ibrutinib (Fig.7O), while exhibiting a highly 
significant negative correlation (p < 0.001) with the 
sensitivity of Selumetinib (Fig. 7I) and ARRY-162 (Fig. 
7P). Finally, Fig. 7N indicates that higher expression 
of UCN was associated with greater drug sensitivity 
to Nelarabine (p < 0.001).  

Construction of the Nomogram Model 
To better assess the probabilities of 1-, 2-, and 

3-year survival in CRC patients, we developed a 
nomogram model. This model integrates the scores of 
clinical features such as age, gender, clinical stage, 
and glutamine metabolism-related gene features (Fig. 
8A). The nomogram model allows us to observe that 
the survival probability of CRC patients in the 
low-risk group is higher than that of those in the 
high-risk group. Additionally, the calibration curves 
demonstrate that the nomogram effectively predicts 
1-, 2- and 3-year overall survival (OS) in line with the 
actual OS (Fig. 8B-D). As shown in Fig. 8E-G, the 
nomogram AUC values for 1-, 2-, and 3-year OS were 
0.876, 0.838, and 0.838, respectively. This further 
suggests that the glutamine metabolism-related gene 
profile exhibits excellent predictive ability for CRC 
patients. 

Verification of the expression levels of 
glutamine metabolism-related core genes in 
CRC samples 

In the previous analysis, as shown in Fig. 2D, we 
found that among the 15-glutamine 
metabolism-related genes, CBLN1 and GLYATL1 
were independent factors for CRC prognosis 
according to multifactorial COX regression (P < 0.05). 
To further assess the expression levels of the genes 
CBLN1 and GLYATL1, which are important for the 
construction of CRC prognostic features, we first 
predicted their expression by downloading from the 
TGGA database and GEO database (Fig. 9A-C). We 
observed that CBLN1 was expressed at a low level in 
normal tissues compared to CRC tissues, while 
GLYATL1 was highly expressed. Additionally, we 
performed immunohistochemical (IHC) experiments 
to assess the expression levels of CBLN1 and 
GLYATL1 in 10 collected CRC tissues and adjacent 
normal tissues. As shown in Fig. 9D, CBLN1 was 
expressed at a low level in CRC tissues compared to 
normal tissues, whereas GLYATL1 was highly 
expressed in CRC tissues, consistent with the results 
from the database.  

 

 
Figure 4. Association of glutamine metabolism-related characteristics and clinical factors with overall survival in the TCGA dataset. Univariate Cox regression analyses (A) and 
multivariate Cox regression analyses (B) of glutamine metabolism-related characteristics and clinical factors with overall survival. 
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Figure 5. Correlation analysis of glutamine metabolism-related characteristics with clinical variables. Association of risk scores with age (A), gender (B), stage (C), T classification 
(D), and N classification (E) and M classification (F). 

 

Discussion  
CRC is one of the most common malignant 

tumors. It has been reported that there were over 1.9 
million new cases of CRC and approximately 940,000 
deaths among CRC patients worldwide in 2020, with 
an estimated increase to 3.2 million new cases by 2040 
[27]. Despite improvements in the overall survival 
rate of CRC patients over the past 30 years [28], the 

5-year survival rate for CRC remains unsatisfactory, 
particularly for patients with late-stage CRC and 
distant metastases [29-31]. Therefore, it is crucial to 
develop a new prognostic model for assessing the 
prognosis of CRC patients, which would guide 
clinicians in early intervention for those at high risk. 
Several previous studies have highlighted the close 
relationship between glutamine metabolism and the 
development of CRC [32-34]. For instance, PIK3CA 
mutations have been found to increase glutamine 
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dependence in CRC cells, suggesting that inhibiting 
glutamine metabolism could be a potential 
therapeutic approach for CRC [18]. However, only a 
limited number of genes related to glutamine 
metabolism have been extensively studied in CRC. 

This study is the first to investigate the prognostic 
value of glutamine metabolism-related genes in CRC, 
offering new insights into the diagnosis, treatment, 
and prevention of CRC. 

 
 

 
Figure 6. Association of glutamine metabolism-related characteristics with immune cells in the TCGA dataset. (A) Differential fractions of immune cells in low- and high-risk 
groups. (B) Different immune cell functions in low- and high-risk groups. (C) Relationship between immune subtype and risk score. (D) Correlation analysis between immune 
score and risk score. (E) Correlation analysis between stromal score and risk score. 
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Figure 7. Correlation analysis of glutamine metabolism-related characteristics with drug sensitivity. (A) CBLN2 was positively correlated with aloin sensitivity. (B) GLYATL1 was 
positively correlated with aloin sensitivity. (C) CALB1 was positively correlated with LOXO-101 sensitivity. (D) NLGN1 was positively correlated with dabrafenib sensitivity. (E) 
NLGN1 was positively correlated with vemurafenib sensitivity. (F) GLYATL1 was negatively correlated with vinorelbine sensitivity. (G) SYT4 was positively correlated with 
norvir sensitivity. (H) NLGN1 was positively correlated with encorafenib sensitivity. (I) NRG1 was negatively correlated with selumetinib sensitivity. (J) VWC2 was positively 
correlated with norvir sensitivity. (K) NRG1 was positively correlated with dasatinib sensitivity. (L) NRG1 was positively correlated with BLU-667 sensitivity. (M) CALB1 was 
positively correlated with NMS-E628 sensitivity. (N) UCN was positively correlated with Nelarabine sensitivity. (O) NRG1 was positively correlated with Ibrutinib sensitivity. (P) 
NRG1was negatively correlated with ARRY-162 sensitivity. 

 
In this study, we identified a total of 198 genes 

related to glutamine metabolism in colorectal cancer 
(CRC) from the MSigDB and TCCA databases. 
Subsequently, the 198 genes underwent Univariate 
Cox regression and lasso-multivariate Cox regression 
analyses, leading us to select 15 genes associated with 
glutamine metabolism for the development of 
prognostic models for CRC. Out of these 15 genes, 11 
(NLGN1, RIMKLB, UCN, CALB1, SYT4, WNT3A, 
NRCAM, LRFN4, PHGDH, GRM1, and CBLN1) were 
identified as high-risk genes, while 4 genes (NRG1, 
GLYATL1, CBLN2, and VWC2) were classified as 
low-risk genes. 

The majority of these 15 key genes have been 
reported to be closely associated with the 
development and prognosis of CRC or other 
malignant tumors. Reportedly, NLGN1 facilitates 
CRC development by mediating the APC/β-catenin 
pathway [35]. Most of these 15 key genes have 
previously been implicated in the development and 
prognosis of CRC and other malignant tumors. For 
example, NLGN1 has been reported to facilitate CRC 

development by mediating the APC/β-catenin 
pathway [32]. Additionally, studies have shown that 
upregulation of NLGN1, RIMKLB, and CALB1 is 
associated with poor prognosis in CRC patients 
[36-38]. WNT signaling pathway is known to play a 
crucial role in the development of many cancers, and 
WNT3A, a classical WNT ligand, has been shown to 
activate the WNT/β-collagen pathway, thereby 
promoting CRC progression [39, 40]. NRCAM, a gene 
encoding a neuronal cell adhesion molecule, 
promotes CRC through the beta-catenin/LEF-1 
pathway [41]. It has also been demonstrated that 
NRCAM, LRFN4, and PHGDH are upregulated in 
CRC tissues compared to normal samples around the 
tumor and serve as predictors of poor clinical 
outcomes in advanced CRC patients [42-44]. Tumor 
genome sequencing data have indicated that GRM1 is 
one of the pivotal driving genes for CRC stage II 
progression [45]. NRG1 gene fusions have been 
identified as oncogenic drivers in various solid 
tumors, including CRC, gallbladder, pancreatic, and 
bladder cancers [46]. Low expression of GLYATL1 can 
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serve as a predictor of poor prognosis in patients with 
clear cell renal carcinoma and hepatocellular 
carcinoma [47, 48]. Moreover, overexpression of 
VWC2 has been shown to inhibit the proliferation of 
HCT-116 and HT29 cells [49]. Although the roles of 

genes such as UCN, SYT4, CBLN1, CBLN2, and 
GLYATL1 in CRC remain unclear, our findings 
suggest that they can still serve as potential 
biomarkers for CRC prognosis. 

 

 
Figure 8. The nomogram constructed to predict overall survival (OS) in the clinical setting presents good prediction ability. (A) A nomogram created by the combination of the 
risk score and TNM stage to predict the OS of CRC. (B–D) Calibration charts predicting 1-, 2- and 3-year survival in TCGA dataset. The horizontal axis and vertical axis represent 
the predicted survival probability and the actual survival probability. (E-G) ROC curve of the clinical prognostic nomogram for predicting 1-, 2-, and 3-year survival in CRC 
patients. 
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Figure 9. Expression analysis of CBLN1 and GLYATL1. (A) The expression of CBLN1 and GLYATL1 in the normal and tumor tissues based on the TCGA dataset. (B) Validation 
of the expression of GLYATL1 in tumor and normal tissues in GSE20916 dataset. (C) Validation of the expression of CBLN1 in tumor and normal tissues in GSE77953 dataset. 
(D) The immunohistochemical staining results showed significant differences of CBLN1 and GLYATL1 at the protein expression between normal and tumor tissues. 

 
To further validate the efficacy of the glutamine 

metabolism-related model, we conducted internal and 
external validation. A total of 433 CRC samples with 
complete clinical information were divided into 
high-risk and low-risk groups based on the median 
risk score. In the internal validation, the ROC analysis 
suggested that the model had an AUC of 0.74, 
indicating excellent sensitivity and specificity. 
Kaplan-Meier survival analyses revealed that the 
high-risk group of CRC patients had a significantly 
lower survival rate compared to the low-risk group of 
CRC patients. External validation of the model using 
the GSE17536 and GSE103479 datasets similarly 
confirmed that the overall survival of CRC patients in 
the low-risk group was higher than in the high-risk 
group. These results demonstrate the stability of using 
glutamine metabolism-related genes for assessing the 
prognosis of CRC patients. Univariate and 
multivariate COX regressions showed that the risk 
score was an independent factor in the prognosis of 

CRC, further confirming the reliability of this 
predictive model. In terms of clinical relevance, the 
risk score was significantly correlated with clinical 
stage and TNM stage, suggesting a potentially higher 
risk score in patients with advanced CRC. 

In recent years, there has been increasing 
evidence linking immune cell infiltration with the 
development and progression of CRC, suggesting it 
can serve as a prognostic marker [50, 51]. To 
comprehensively explore the correlation between risk 
scores and immune cell infiltration, we utilized the 
ssGSEA algorithm to compare the variability of 
immune cells in the high- and low-risk groups. Our 
findings revealed that the high-risk group had a 
predominant enrichment of macrophages and pDCs, 
while the low-risk group had a predominant 
enrichment of Th2 cells. It has been reported that high 
infiltration of macrophages exacerbates the 
progression of ulcerative colitis to colon cancer and is 
considered a poor prognostic marker [52, 53]. 
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Similarly, extensive infiltration of pDCs predicts a 
poor prognosis in breast and ovarian cancer [54, 55]. 
Conversely, increasing Th2 cell infiltration is 
considered a marker of good prognosis in CRC [56]. In 
our study, we observed a higher frequency of T-cell 
co-stimulation in the high-risk group. Enhanced T-cell 
co-stimulation is often observed to generate a stronger 
immune response against tumors, which may explain 
its increased occurrence in the high-risk group [57]. 
Interestingly, we found that type I interferon 
responses were more likely to occur in the low-risk 
group. This may be attributed to the fact that type I 
interferon responses enhance T-cell responses, 
leading to anti-tumor effects [58]. Moreover, we 
observed a positive correlation between the risk score 
and the stromal score, which is consistent with 
previous reports indicating that a low stromal score is 
protective against CRC [59]. Furthermore, our 
analysis suggests that glutamine metabolism-related 
genes are closely associated with immune cell 
infiltration, and the poor prognosis observed in 
high-risk CRC patients may be the result of a 
disturbed tumor immune microenvironment. To 
explore the correlation between glutamine 
metabolism-related genes and antitumor drug 
sensitivity, we utilized the CellMiner database. We 
found that most glutamine metabolism-related genes 
demonstrated a positive correlation with drug 
sensitivity. For instance, higher expression levels of 
CBLN2 and GCYATL1 were associated with 
increased sensitivity to aloin drugs. Aloin has been 
reported to inhibit the proliferation and induce 
apoptosis of CRC cells, making it a potential 
candidate for CRC treatment [60]. 

In our study, the training cohort and two 
validation cohorts (GSE17536, GSE103479) predicted 
1-year OS with AUC values of 0.733, 0.682, and 0.654, 
which were higher than those with other similar 
prognostic features (AUC=0.585) [61], suggesting that 
our developed prediction model performed better. As 
part of our study, we also developed a nomogram 
model that is based on age, gender, clinical stage, and 
risk score. The results of our study have confirmed 
that the nomogram exhibits good stability and 
reliability in predicting the 1-, 2-, and 3-year OS in 
CRC patients. We developed nomograms predicting 
1- and 3-year OS with AUC values of 0.876,0.838, 
which were higher than other similar prognostic 
features previously developed [62-64]. Additionally, 
we collected tissue specimens from CRC patients, as 
well as adjacent normal tissue specimens, from a total 
of 10 surgical patients. IHC was used to verify the 
expression levels of the two most significant genes, 
CBLN1 and GLYATL1, in a glutamine 
metabolism-related profile. Our findings indicate that 

CBLN1 expression was lower and GLYATL1 
expression was higher in CRC tissues compared to 
normal tissues, which is consistent with the 
predictions made in the TCCA and GEO databases. 
However, it should be noted that our study is 
retrospective in nature and is based on a database. In 
order to enhance the credibility of our findings, 
further multi-centric and prospective studies need to 
be conducted. Additionally, the mechanism of action 
of glutamine metabolism-related genes in CRC 
requires further validation through in vivo and in vitro 
studies. 

Conclusion 
In conclusion, we have successfully identified 

and comprehensively analyzed a gene signature 
related to glutamine metabolism. This signature has 
shown excellent reliability and stability in predicting 
the prognosis of CRC patients. The findings from this 
study systematically highlight the role of glutamine 
metabolism-related genes in CRC and provide new 
insights for the clinical diagnosis, treatment, and 
prevention of CRC. 
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