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Abstract 

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is a common gynecologic 
tumor and patients with advanced and recurrent disease usually have a poor clinical outcome. 
Angiogenesis is involved in the biological processes of tumors and can promote tumor growth and 
invasion. In this paper, we created a signature for predicting prognosis based on angiogenesis-related 
lncRNAs (ARLs). This provides a prospective direction for enhancing the efficacy of immunotherapy in 
CESC patients. We screened seven OS-related ARLs by univariate and multivariate regression analyses 
and Lasso analysis and developed a prognostic signature at the same time. Then, we performed an internal 
validation in the TCGA-CESC cohort to increase the precision of the study. In addition, we performed a 
series of analyses based on ARLs, including immune cell infiltration, immune function, immune checkpoint, 
tumor mutation load, and drug sensitivity analysis. Our created signature based on ARLs can effectively 
predict the prognosis of CESC patients. To strengthen the prediction accuracy of the signature, we built 
a nomogram by combining signature and clinical features. 
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Introduction 
Cervical cancer is a common gynecologic 

malignancy that has a significant impact on women's 
health and is a major contributor to cancer-related 
mortality in women. It is estimated that 
approximately 500,000 new cases of cervical cancer 
are diagnosed annually, with more than 300,000 
women succumbing to the disease [1]. The main 
treatments currently used for cervical cancer include 
radiation and chemotherapy, but not everyone who 
receives these therapies has significant outcomes, and 
sometimes even serious adverse effects [2]. The key 

factors affecting the prognosis of patients with 
cervical cancer are whether the tumor has 
metastasized and whether the patient receives 
effective adjuvant therapy [3]. The early stage of 
cervical cancer is usually asymptomatic or 
non-specific, resulting in many patients not being 
diagnosed at an early stage [4]. Patients diagnosed at 
the early stages of the disease can have a good 
prognosis by undergoing radical surgery and 
adjuvant therapy, but patients with advanced tumors, 
metastases, or recurrence often have a poor prognosis 
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[5], and patients with advanced cervical cancer 
urgently need therapies to improve survival. Recent 
advances in immunotherapy have been explored as a 
potential treatment for cervical cancer, yet have not 
been able to improve the prognosis of patients [1]. 
Molecular biomarker discovery can help to predict 
treatment outcomes and survival while differentiating 
between high- and low-risk patients [1]. The 
discovery of new diagnostic biomarkers can facilitate 
the development of precision medicine and is also 
very beneficial for improving treatment and 
developing new immune-targeted therapies. 
Consequently, there is an urgent requirement to find 
more sensitive biomarkers for early diagnosis, 
treatment, and prognosis of cervical cancer. 

Angiogenesis is a highly coordinated process by 
which existing blood vessels generate new blood 
vessels [6]. Tumor angiogenesis provides oxygen and 
nutrients to the tumor and can provide access to 
tumor metastasis [7]. Abnormal regulation of 
angiogenesis is a fundamental process in cancer 
invasion and metastasis and is an important factor in 
controlling cancer progression [8]. Anti-angiogenic 
and pro-angiogenic factors are closely related to 
angiogenic homeostasis. When both are in 
equilibrium, endothelial cells are nonproliferative and 
do not lead to angiogenesis. When pro-angiogenic 
factors are dominant, they lead to angiogenesis, a 
process defined as an "angiogenic switch" in tumors 
[9]. Judah Folkman believes that tumor development 
requires the initiation of angiogenesis [10], based on 
the fact that extensive vascularization is observed in 
rapidly growing tumors, but not in dormant tumors. 
Many anti-angiogenic drugs have been approved for 
use in cancer treatment. However, the diversity of 
compensatory mechanisms for vascular remodeling 
has led to a decrease in the anti-angiogenic activity of 
anti-angiogenic drugs based on a single mechanism 
[11]. For patients with recurrent and advanced 
cervical cancer, the use of antiangiogenic drugs did 
not significantly improve patient prognosis and did 
not achieve satisfactory clinical outcomes [12]. 

Long non-coding RNAs (lncRNAs) are specified 
as RNA transcripts that are over 200 nucleotides in 
length and do not code for proteins, and are 
implicated in a range of major biological functions 
and pathological processes, including proliferation, 
apoptosis, metastasis and migration [13-15]. 
According to studies, aberrant expression of lncRNAs 
interacting with epigenetic modifiers can disrupt 
epigenetics leading to cellular dysregulation, 
malignant transformation and altered gene function 
[16, 17]. It has been suggested that IncRNAs may be 
involved in the development and progression of 
tumors, such as accelerating tumor growth, 

metastasis, immune escape, regulating energy 
metabolism and promoting angiogenesis. Aberrant 
expression of lncRNAs has been detected in various 
cancers, and lncRNAs can function as tumor 
suppressors or influence the expression of associated 
genes [18-20]. Several studies have shown aberrant 
lncRNA expression in cervical cancer [2]. CCHE1, a 
lncRNA positioned in the intergenic region of 
chromosome 10, is able to bind to mRNA to 
upregulate the expression of nuclear antigen in 
proliferating cells, thus promoting the proliferation of 
cervical cancer cells [21]. LINC01305 has increased 
expression in cervical cancer cells, resulting in 
reduced patient survival. This lncRNA has been 
demonstrated to facilitate the progression of cervical 
cancer through KHSRP and can release exosomes to 
participate in the stemness of cancerous tissues [22]. It 
has been suggested that many IncRNAs may serve as 
potential biomarkers and therapeutic targets for 
cancer diagnosis and treatment [23]. It has been 
demonstrated that numerous IncRNAs are closely 
related to the progression of cervical cancer, but ARLs 
have been less studied in cervical cancer. Therefore, 
exploring the role of angiogenesis-related lncRNAs as 
tumor biomarkers in the treatment and prognosis of 
cervical cancer is very promising and can facilitate the 
development of precision medicine in targeted 
immunotherapy of tumors. 

Consequently, we explored the potential role of 
ARLs on the survival of CESC patients. In our 
research, we screened seven reliable ARLs based on 
CESC samples from TCGA database for constructing 
risk prognosis Signature and forming risk score. 
Subsequently, we further investigated the correlation 
between ARLs and immune infiltration, immuno-
therapy, tumor mutational load and targeted drug 
sensitivity. We hope that our study will uncover 
molecular biomarkers associated with the prognosis 
of cervical cancer patients and develop novel 
techniques to improve treatment strategies to enhance 
patient prognosis. 

Methods 
Patient Data Sources 

We collected clinical and transcriptomic 
information from 307 patients with CESC from the 
TCGA database (https://portal.gdc.cancer.gov/) 
(downloaded on October 3, 2022). The Strawberry 
Perl software was utilized to differentiate mRNA 
from lncRNA from transcriptomic data. Follow-up 
studies were conducted mainly based on lncRNA. 
Clinical information included patient's age, gender, 
grade, TMN stage, and overall survival. we randomly 
divided the CESC patients into training and test 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3097 

groups at the ratio of 8:2. We obtained 36 
Angiogenesis-related genes (ARGs), and the 
information of these genes is shown in Table S1. 

Construction and Validation of the Prognostic 
Model 

We first used the R package "limma" to obtain 
differentially expressed genes, and then we screened 
and obtained ARLs by investigating the relationship 
between ARGs and lncRNAs expression (screening 
criteria: correlation coefficient > 0.4, p-value < 0.001), 
in which ARLs satisfying |log2 fold change| > 2 and 
a false discovery rate (FDR) < 0.05 were considered as 
differentially expressed ARLs. We then performed 
univariate regression analysis and Lasso regression 
analysis using the R package "glmnet" to identify 
prognosis-related ARLs, and multivariate regression 
analysis to identify modeled genes and their 
coefficients. The risk score for each patient was 
calculated as follows: Risk Score = CoeflncRNA1 × 
ExpressionlncRNA1 + CoeflncRNA2 × 
ExpressionlncRNA2 + CoeflncRNAn × 
ExpressionlncRNAn. We used time-dependent ROC 
curves to validate the established model. To make the 
validation results more reliable, we also show the 
time-dependent ROC curves for the training and test 
groups for internal validation. We divided CESC 
patients into two groups according to riskscore, low 
risk and high risk, and subsequently performed 
Kaplan-Meier analysis on these two groups and 
compared their overall survival. 

Construction of Nomogram 
In order to verify whether the risk score can be 

used as an independent prognostic factor, we 
performed univariate Cox and multivariate Cox 
analyses, and drew forest plots based on the results. 
We then used the R package "rms" to construct a 
nomogram containing risk scores and other 
clinicopathological characteristics to predict the 
prognosis of survival at 1, 3, and 5 years for the CESC 
samples in the TCGA database. 

Functional Enrichment Analysis 
We performed Gene Ontology (GO) enrichment 

analyses of the differentially expressed genes 
associated with the seven ARLs using the R package 
"ClusterProfifiler" and visualized the results with the 
R package "circlize " to visualize the results. We used 
the R package "GSVA" and "c2.cp.kegg.v7.4. 
symbols.gmt" from MSigDB for GSVA enrichment 
analysis, and the R package "heatmap" for heat map. 
heatmap" to draw heat maps. 

Immunological Analysis 
We used seven algorithms, XCELL, TIMER, 

QUANTISEQ, MCPCOUNT, EPIC, CIBERSORT, and 
CIBERSORT-ABS, to score immune infiltration. We 
then performed Spearman correlation analysis to 
explore the immune cell infiltration and risk scores, 
and showed the immune cell infiltration between high 
and low risk groups with violin plots. We identified 
20 immune checkpoint-associated genes for analysis 
by Auslander's study [24] to compare differences in 
immune checkpoint expression between high- and 
low-risk groups. We used ssGSEA analysis to 
examine the differences in immune function between 
the high- and low-risk groups. 

Tumor Mutation Load Analysis 
We obtained the tumor mutation load (TMB) of 

CESC patients from the TCGA database 
(https://portal.gdc.cancer.gov/) (downloaded on 
October 3, 2022). We used Strawberry Perl to analyze 
the TMB and used the R package "maftool" in R 
software to analyze the 15 genes with the highest 
mutation frequency in the CESC samples. Then, we 
divided the patients into two groups by TMB values: 
high TMB and low TMB. We also combined risk score 
and TMB to classify patients into four groups: 
H-TMB+high risk, H-TMB+low risk, L-TMB+high 
risk, and L-TMB+low risk. We completed the survival 
analysis of these four groups by log-rank test. 

Drug Sensitivity Analysis 
We assessed the drug sensitivity of patients in 

the high and low risk groups based on the 
half-maximal inhibitory concentration (IC50) of the 
Genomics of Drug Sensitivity to Cancer (GDSC) 
(https://www.cancerrxgene.org/) for each CESC 
patient. We used the R package "pRRophetic" in this 
process. 

Statistical Analysis 
We used R software (version 4.2.1) and 

Strawberry Perl (version 5.30.0) to perform the 
bioinformatics analysis for this study. In general, we 
considered P<0.05 to be statistically significant and 
FDR < 0.05 is statistically significant. The data are 
presented as means ± standard deviation (SD) from 
three independent experiments and analyzed by 
analysis of variance (ANOVA). Statistical significance 
was set at P < 0.05. "*" Means P < 0.05, "**"Means P 
<0.01, "***" Means P < 0.001.  

Results 
Acquisition of Candidate ARLs in CESC 

The flowchart illustrates the main idea and 
content of this study (Figure 1). We obtained 202 
ARLs by Pearson correlation analysis with screening 
conditions of correlation coefficients >0.4 and p < 
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0.001 (Table S3). And the co-expression relationship 
between ARGs and ARLs was demonstrated by 
plotting the sankey diagram (Figure 2A). 

Construction of Prognostic Signature of ARLs 
In order to enhance patient prognosis and 

further the development of precision medicine, we 
created a prognostic model relying on ARLs in 
CESCC patients. Initially, we integrated the 
expression of ARLs with the clinical survival data 
from the TCGA-CESC cohort. We obtained 11 
OS-related ARLs by univariate regression analysis (P 
< 0.05) (Figure 2B) and lasso regression analysis, and 
analyzed their regression coefficients and cross- 
validation trends, the number of LncRNAs engaged in 
model construction was determined by taking the 
lowest point of the cross-validation plot of eleven 
(Figure 2C,D). Finally, we identified 7 candidate 

ARLs by multifactorial regression analysis, namely 
MIR210HG, AP001528.1, AC119427.1, AC124045.1, 
PTPRD-AS1, LINC00683 and KIAA0087. A prognostic 
prediction model was developed based on these 7 
ARLs and this formula was obtained by weighting the 
regression coefficients on the identified ARLs: Risk 
Score=(0.3546×ExpressionMIR210HG)+(0.7189×Expre
ssionAP001528.1)+(0.3485×ExpressionAC119427.1)+(-
0.5958×ExpressionAC124045.1)+(0.6929×ExpressionP
TPRD-AS1)+(-1.7296×ExpressionLINC00683)+(2.2408
×ExpressionKIAA0087). In addition, in order to 
understand the correlation between the obtained 
LncRNAs and ARGs, we also conducted 
co-expression analysis of ARGs and ARLs (Figure 2E), 
based on the results we can see VEGFA, NRP1 and 
APP have more correlation with OS-related ARLs 
compared to other genes. 

 
 

 
Figure 1. A flowchart outlining the study's primary ideas. 
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Figure 2. Screening of candidate ARLs. (A) Sankey diagram showing the co-expression relationship between ARLs and ARGs. (B) Prognosis of ARLs evaluated using univariate 
Cox regression analysis. (C) Adjusted parameter selection in Lasso analysis by tenfold cross-validation. (D) Lasso coefficient graph. (E) Heat map presenting the correlation of 
candidate ARLs and ARGs. 

 
 

Validation of the Prognostic Value and 
Signature Independence of the Model 

To verify whether the Signature constructed by 7 
OS-related ARLs has good prognostic value for CESC 
patients, we analyzed and evaluated the model. We 
divided CESC patients into high-risk and low-risk 
groups according to their risk scores for subsequent 
validation of the model. First, we ranked the CESC 
patients by risk score in the All, Train, and Test 
groups and plotted the patients' survival status as 
scatter plots, and the same trend of increasing 
mortality with increasing risk score was observed in 
all three groups (Figure 3A-F). Also, we used 
Kaplan-Meier analysis. and in the All group it could 
be seen that the prognosis and clinical outcome of 
patients in the high-risk group were much worse than 

those in the low-risk group (p < 0.001) (Figure 3G). In 
the time-dependent ROC curves, the AUCs at 1,3 and 
5 years were 0.792, 0.735 and 0.742, respectively 
(Figure 3J). survival curves in the Train group also 
showed significantly better clinical outcomes for 
patients in the low-risk group than in the high-risk 
group (P < 0.001) (Figure 3H). In the time-dependent 
ROC curves, the AUCs at 1,3 and 5 years were 0.781, 
0.724 and 0.745, respectively (Figure 3k). The 
Kaplan-Meier analysis for the Test group led to the 
same conclusion as the previous two groups (p=0.004) 
(Figure 3I). The ROC curves for the Test group 
showed AUCs of 0.936, 0.762 and 0.830 (Figure 3L). 
The ROC curves for all three groups showed high 
specificity and accuracy of this model. We also 
performed a Multi-index ROC analysis, and from the 
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results it is clear that risk scores have an advantage 
over traditional clinicopathological characteristics in 
predicting the prognosis of CESC patients (Risk, 
AUC=0.705). 

Principal Components Analysis 
By performing principal components analysis 

(PCA) analysis on all genes, all ARGs, all ARLs and 
the candidate lncRNAs (Figure 4A-D), we could 
observe whether they could clearly distinguish the 
patients in the low-risk and high-risk groups. The 
results of Figure 4D's study demonstrate that the 
model we developed is remarkably predictive 
because the lncRNAs used to build the model are able 
to discriminate patients in the low-risk group from 

those in the high-risk group more effectively than the 
other three.  

Association between Clinicopathological 
Features and Risk Scores 

Figure 5A shows the rickscore, age, gender, 
grade, T stage, M stage and N stage of the CESC 
sample in the TCGA database. Figure 5B-F details the 
proportion of patients with different clinicopatho-
logical characteristics in the high and low risk groups. 
By analyzing the correlation between risk scores and 
clinicopathologic features, we can conclude that the 
frequencies of the four clinicopathologic features, 
grade, T stage, M stage and N stage, differed more 
significantly between the high and low risk groups. 

 
 

 
Figure 3. Verification of the accuracy of the ARLs signature in predicting prognosis. Distribution of risk scores between high and low risk groups in (A) TCGA all, (B) TCGA 
train, (C) TCGA test cohorts. Survival status between low and high risk groups in the (D) TCGA all, (E) TCGA train, (F) TCGA test cohorts. Survival Curve between low and 
high risk groups in the (G) TCGA all, (H)TCGA train, (I) TCGA test cohorts. Time-dependent ROC curves are demonstrated in (J) for all patient groups and (K) for the training 
group (L) for the test group. (M) Multi-index ROC analysis. 
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Figure 4. Candidate ARLs can better differentiate between high-risk and low-risk cohorts. PCA plots of the all genes (A), ARGs (B), ARLs (C), and candidate ARLs (D). 

 

Survival Analysis of Groups with Different 
Clinicopathological Characteristics 

We used the R package "survival" and 
"survminer" to analyze the survival of subgroups with 
different clinicopathological characteristics in order to 
further understand whether the prognosis of patients 
in the high and low risk groups differed among the 
subgroups. The samples were separated into various 
subgroups according to age (65 years old, >65 years 
old), grade (G1-2, G3-4), T stage (T1-2, T3-4), N stage 
(N1, N2), and gender (only female). Subsequently, we 
assessed survival in subgroups and plotted the 
corresponding Kaplan-Meier curves (Figure 6). 
Overall survival was substantially worse in the 
high-risk group than in the low-risk group in all 
remaining clinical categories, with the exception of 
age = 65 and N0 stage. These findings suggest that a 
risk-prognosis model based on seven ARLs associated 
with prognosis can predict the prognosis of different 
clinical subgroups of CESC patients more accurately. 

Development of Nomogram Based on 
Clinicopathological Features 

To clarify whether the risk-prognosis model and 
different clinicopathological characteristics could be 
used as independent prognostic indicators for 
patients with CESC, we performed univariate and 
multifactorial Cox regression analyses of the 
TCGA-CESC cohort. In terms of the results of the 
univariate Cox regression analysis, the risk score was 
a significant prognostic predictor (P=0.007, HR=1.098, 
95CI=1.026-1.175) (Figure 7A). Follow-up multifac-
torial Cox regression analysis further validated that 
the risk score had superior independent predictive 
power of prognosis (P=0.003, HR=1.109, 
95CI=1.035-1.188) (Figure 7B). We used the patient's 
age, T stage, M stage, N stage, grade, and riskscore to 
construct the nomogram (Figure 7C), which can be 
used to predict the survival of CESC patients at 1, 3, 
and 5 years, and to quantify the patient's OS using the 
nomogram. The nomogram combines the prognostic 
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model developed by the 7 ARLs with other 
clinicopathological features, which helps to improve 
the model's deficiencies and thus improves the 
prognostic accuracy. The 1,3 and 5-year calibration 
curves of the column line graph likewise illustrate 
good agreement between predicted and observed 
outcomes, demonstrating its powerful ability to 
predict prognosis (Figure 7D). 

Functional Enrichment Analysis 
Prior to the functional enrichment analysis, we 

obtained 334 differentially expressed ANGs, and 
details of these genes are visible in Table S4. To 
clarify the relationship between risk scores and certain 
biological functions and signaling pathways, we 
performed GO functional analysis on differentially 
expressed genes. We used FDR < 0.05 and p < 0.05 
conditions to screen for significantly enriched items. 
According to the results of GO functional analysis 
(Figure 8A), Biological Processes mainly included 
cilium organization, cilium assembly, epidermis 

development, skin development, Cellular Component 
mainly includes motile cilium, apical part of cell, 
apical plasma membrane, Cellular Component mainly 
includes motile cilium, apical part of cell, apical 
plasma membrane, cytoplasmic region, plasma 
membrane bounded cell projection cytoplasm, and 
immunoglobulin complex. However, unfortunately, 
no significantly enriched items related to Molecular 
Function were screened accordingly. After GSVA 
analysis, we found 45 significantly enriched pathways 
(Figure 8B, Table S5). From GSEA analysis, we 
obtained pathways active in both high risk and low 
risk groups (Figure 8C, D, Table S6). Finally, we were 
surprised by the results of these analyses and found 
that the results of partial functional enrichment 
analysis were closely linked to cellular immune 
responses. To elucidate in detail the immune 
landscape in the high and low risk groups in CESC 
patients, we performed a systematic immune 
correlation analysis of the TCGA-CESC. 

 
 

 
Figure 5. Association between risk scores and clinicopathological characteristics. (A) Heat map illustrating the proportion of risk scores and clinicopathological features in the 
TCGE-CESC cohort. Differences in the number of patients with different clinical characteristics in the high- and low-risk groups. These clinical characteristics include (B) age, (C) 
grade, (D) T stage, (E) M stage, and (F) N stage. 
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Figure 6. Prognostic efficacy of the ARL risk model for overall survival of different subtypes in the TCGA-PAAD cohort, (A) age≤65, (B) age＞65, (C) grades I–II, (D) grades III–
IV, (E) T1-T2, (F) T3-T4, (G) N0, (H) N1 and (I) female, respectively. 

 

Risk Score Predicts TME and Immune Cell 
Infifiltration 

The tumor is infiltrated by multiple immune 
cells, and these immune infiltrating cells have both 
tumor-promoting and anti-tumor effects [25]. 
Immunotherapy, a novel and promising therapeutic 
strategy, is also frequently used in the treatment of 
cervical cancer, and its therapeutic efficacy is closely 
related to the immunogenicity of TME. On the basis of 
this, we conducted a systematic study of immune 
infiltration and immunological function. We used 
seven different algorithms, XCELL, TIMER, 
QUANTISEO, MCPCOUNTER, EPIC, CIBERSORT- 
ABS, and CIBERSORT, to analyze the correlation 
between different risk scores and the number of 
immune infiltrating cells (Figure 9A). Then, in order 
to compare the immunological infiltration in the 

high-risk and low-risk groups, we applied the 
CIBERSORT algorithm. We observed significant 
distinctions in the expression of B cells naive, Plasma 
cells, T cells CD8, Tregs, Macrophages M0, 
Macrophages M2, and Mast cells activated between 
high and low risk groups (Figure 9B). Based on this, 
we speculate that the expression and immune activity 
of these cells may be affected by ARLs, but the 
shortcoming is that many experimental studies are 
still required to verify this speculation. Immuno-
therapy is seen as a promising therapeutic strategy for 
tumors, and immune checkpoint inhibitors can be 
used as immunotherapy by reducing the immune 
escape of tumor cells [26]. Immune checkpoints are 
important for immunotherapy; therefore, we 
performed an analysis of immune checkpoints 
between high and low risk groups (Figure 9C). It is 
notable that only two genes, CD44 and TNFSF9, were 
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notably downregulated in the low-risk group 
compared to the high-risk group, while CD40LG, 
CD27, BTLA, CD200, CD28, PDCD1, HHLA2, IDO2, 
VTCN1, TNFRSF14, CD160, IDO2, LAG3, LAGLS9, 
CD48, and TIGIT16 genes were significantly 
upregulated. The expression product of CD44, a 
non-kinase transmembrane glycoprotein, is a cancer 
stem cell marker that binds to ligands and induces cell 
proliferation, increases cell survival and increases cell 
viability, thereby mediating tumor progression and 
metastasis [27, 28, 29]. It has been shown that TNFSF9 
can promote metastasis of pancreatic cancer through 
Wnt/Snail signaling and macrophage M2 polarization 
[30]. It has also been shown that by targeting TNFSF9 
can inhibit the growth and metastasis of prostate cells 
[31]. However, unfortunately, there are no relevant 
experiments in cervical cancer that can draw similar 
conclusions as the previous ones. However, based on 
this we can make a wild guess that low expression of 
CD44 and TNFSF9 in the low-risk group makes their 
prognosis better than that of the high-risk group. The 
risk score combined with patient-specific immune 

checkpoint gene expression can be used clinically to 
determine and adjust relevant treatment regimens, 
thus allowing patients to better benefit from clinical 
treatment. The above-mentioned studies on immune 
cell infiltration and immune checkpoints have yielded 
promising results, but our immune-related studies 
did not stop there. Since changes in immune cell 
infiltration usually lead to changes in immune 
function, we further studied the immune function of 
CESC patients by ssGSEA analysis. Cytolytic activity, 
HLA, and inflammation promoting were much lower 
in the high-risk group compared to the low-risk group 
(Figure 9D). Finally, we also performed tumor 
immunosuppression and rejection (TIDE) analysis on 
the risk model. The implementation of immune 
checkpoint inhibitor therapy was less successful for 
patients in the high-risk group due to the TIDE scores 
in the high-risk group being significantly higher than 
those in the low-risk group (P＜0.05), which indicated 
a higher chance of immune escape in the high-risk 
group (Figure 9E). 

 

 
Figure 7. A nomogram constructed by combining risk scores and clinical characteristics. (A) Univariate and (B) Multivariate analysis of risk scores and multiple clinical 
characteristics. (C) Nomogram predicting overall survival of CESC patients at 1,3 and 5 years. (D) The calibration curve of the created nomogram. 
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Figure 8. Functional enrichment analysis of ARLs in the TCGA-CESC cohort. (A) GO enrichment analysis. (B) GSVA analysis between the high-risk and low-risk group with 
Kyoto Encyclopedia of Genes and Genomes (KEGG). GSVA analysis between the (C) low-risk and (D) high-risk group. 
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Figure 9. Risk model for ARLs predicts TME and immune cell infiltration. (A) Immune cell bubble map. (B) Discrepancies in immune cell infiltration between high- and low-risk 
cohorts. (C) Differences in immune checkpoints between high and low risk groups. (D) Immune function ssGSEA scores in the high and low-risk cohorts. (E) Variations in TIDE 
scores in high and low risk cohorts. 

 

Analysis of Tumor Mutation Burden 
TMB represents the number of cancer mutations, 

with more mutations in cancer cells producing more 
neoantigens and thus increasing the chance of T cell 
recognition. Immune checkpoint inhibitor therapy 
seems to have superior clinical results in patients who 
have high TMB [32]. In the CESC sample, we 
examined tumor mutations in the high- and low-risk 
categories. Mutations occurred in 81.5% of the 

samples in the low-risk group, with TTN (29%), 
PIK3CA (27%), KMT2C (18%), and MUC16 (16%) 
being the top four genes with high mutation 
frequency (Figure 10A). In the high-risk group, 
82.61% of the samples were mutated, and the top four 
genes with high mutation frequency were still TTN 
(30%), PIK3CA (30%), KMT2C (19%), and MUC16 
(17%) (Figure 10B). PIK3CA mutations induce the 
β-catenin/SIRT3 signaling pathway thereby 
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promoting glycolysis and proliferation of cervical 
cancer cells, thereby accelerating cancer progression 
[33]. Further research has revealed that patients with 
positive PIK3CA mutations have lower overall 
survival when treated with cisplatin. Hence, this 
population of patients may benefit from PIK3CA 
inhibitor therapy in conjunction with cisplatin [34]. 
TMB between the low-risk and high-risk groups was 
compared, and it was discovered that there was no 
discernible difference between the two groups 
(P=0.28) (Figure 10C). We also performed an in-depth 
analysis regarding TMB, dividing CESC patients into 
low and high mutation groups and performing 
Kaplan-Meier analysis, and discovered that the high 
mutation group's survival rate outperformed the low 
mutation group by a wide margin(p=0.04) (Figure 
10D). Finally, we combined the two characteristics of 
TMB and risk score and divided the sample into four 
groups, H-TMB+high risk, H-TMB+low risk, 
L-TMB+high risk, and L-TMB+low risk, and then 
conducted Kaplan-Meier analysis and found that the 
survival rate of the H-TMB+low risk group was 

significantly higher than the other three groups, while 
the prognosis of L-TMB+high risk group was the 
worst (Figure 10E). When we use the built model with 
TMB to forecast a patient's prognosis, we may get a 
more comprehensive and accurate prediction result. 

Drug Sensitivity Analysis 
Figure 11 shows the 12 popular 

immunotherapeutic drugs with notable variations in 
chemosensitivity across individuals at high- and 
low-risk. We discovered that Afatinib (P=1.9e-05), 
Erlotinib (P=0.00063), Gefitinib (P=0.00087), Ibrutinib 
(P=0.00041), Lapatinib (P=7.6e-05), Sapitinib (P=1.5e 
-05), Trametinib (P=0.00017), Ulixertinib (P=5.8e-05), 
and VSP34_8731 (P=0.00019) displayed better IC50s in 
the low-risk group compared to the high-risk group. 
However, three drugs, AZD4547, EPZ004777, and 
GNE-317, had high IC50 in the high-risk group. Based 
on the risk score, we can study the response of CESC 
patients during immunotherapy in more depth and 
thus make the drug treatment more precise. 

 

 
Figure 10. The waterfall plot shows the top 15 genes in the (A) high and (B) low risk groups in terms of mutation frequency. (C) TMB in high and low risk groups. (D) Survival 
curves of the high and low TMB groups. (E) Survival curves of the high-TMB+high-risk group, high-TMB+low-risk group, low TMB+high-risk group and low-TMB+low-risk group. 
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Figure 11. Drug sensitivity analysis in high and low-risk groups. (A) Afatinib, (B) AZD4547, (C) EPZ004777, (D) Erlotinib, (E) Gefitinib, (F) GNE-317, (G) Ibrutinib, (H) Lapatinib, 
(I) Sapitinib, (J) Trametinib, (K) Ulixertinib, and (L) VSP34_8731. 

 

Discussion 
Cervical cancer is the fourth most frequent 

cancer diagnosis and the fourth dominant cause of 
cancer-related mortality in women [35]. The general 
outlook for cervical cancer is unfavorable, with a 
five-year survival rate of only 67%, while the tumor is 
very prone to recurrence, with about half of patients 
(44%) having tumor recurrence [36]. Treatment of 
recurrent cervical cancer is extremely challenging, 
with patients having a five-year survival rate of less 
than 5% and an extremely poor prognosis [37]. 
Although cervical cancer diagnosis and therapy have 
made significant strides in recent years, there are still 
no viable cervical cancer treatments that have been 
scientifically confirmed to work. Moreover, the 
prognosis of patients is poor and survival rates have 
not improved significantly due to tumor recurrence, 
metastasis, and drug resistance [38]. Treatment 
outcomes and clinical outcomes for patients with 
advanced cervical cancer are often discouraging. The 
prognosis of patients is based on their age, tumor 
status, lymphatic spread, distant metastasis, and 
histological grading of the tumor, but it is not enough 
to accurately predict the prognosis based on these 

indicators [39, 40]. International Federation of Late 
Obstetricians and Gynaecologists (FIGO) staging is a 
recognized prognostic biomarker for cervical cancer 
used in clinical practice. It has been suggested that the 
prognostic validity of FIGO staging should be 
improved, as survival differences can be observed in 
patients at the same stage [41]. We therefore urgently 
need to develop more accurate models for risk 
stratification of patients to predict prognosis, as well 
as to explore promising prognostic markers. It is 
commonly acknowledged that angiogenesis signifi-
cantly contributes to the development and metastasis 
of tumors [42]. It has been shown that angiogenesis in 
tumors can suppress immune responses and that 
drugs targeting angiogenesis can stimulate immune 
responses in the tumor microenvironment thereby 
enhancing immunotherapy of tumors [43, 44]). ARGs 
have also received a lot of attention. Nevertheless, no 
research has been done to determine how well ARLs 
predict outcomes in cervical cancer. We analyzed 
lncRNA data from CESC samples in the TCGA 
database to mine prognosis-related lncRNAs and 
constructed a multi-biomarker prognostic model 
using ARGs.  



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3109 

In our study, to clarify the potential involvement 
of ARLs in cervical cancer, we analyzed the lncRNA 
expression of CESC patients in the TCGA database 
and employed Lasso and COX regression analysis to 
identify seven ARLs (MIR210HG, AP001528.1, 
AC119427.1, AC124045.1, PTPRD-AS1, LINC00683 
and KIAA0087) and developed a lncRNA prognostic 
signature. The analysis revealed that these ARLS are 
prognostic indicators for cervical cancer and enabled 
the classification of patients into two distinct 
subgroups of high and low risk based on risk scores. 
Further analyses were conducted, and the signatures 
constructed from these seven ARLs could be seen to 
have high accuracy for prognosis prediction based on 
the results of ROC curves and calibration curves. To 
enhance the accuracy of the model, we also 
constructed a column line plot by combining the 
clinical characteristic sexual parameters with the risk 
score. Finally, we also investigated the correlation 
between these 7 ARLs in the TCGA-CESC cohort and 
immune cell infiltration, immunotherapy, tumor 
mutation, and targeted drug sensitivity analysis. The 
model constructed based on these seven ARLs may 
provide new ideas for patient-specific immuno-
therapy in CESC and provide a theoretical basis for 
physicians to make clinical decisions that could 
significantly improve clinical outcomes when patients 
receive immunotherapy. 

LncRNAs have been shown to promote the 
development of many types of tumors as oncogenic 
RNAs [45]. MIR210HG is a lncRNA induced by 
hypoxia that promotes cervical cancer [46], gastric 
cancer [47], glioblastoma multiforme [48], and breast 
cancer [49] growth and migration, resulting in poor 
patient prognosis. It has been shown that MIR210HG 
promotes proliferation, migration, invasion, and 
epithelial-mesenchymal transition of cervical cancer 
cells by regulating the miR-503-5p/TRAF4 axis, 
resulting in tumor growth [46]. An additional 
investigation revealed that MIR210HG is abnormally 
elevated in cervical cancer and is closely associated 
with tumor progression, that HPV16 E6/E7 is able to 
regulate MIR210HG through the transcription factor 
HIF-1α, and that there is a positive feedback 
regulation between MIR210HG and HIF-1α. In 
cervical cancer, phosphoglycerate kinase 1 (PGK1) 
promotes tumor growth, and MIR210HG may 
promote PGK1 expression [50]. For cervical cancer, 
the novel prognostic biomarker MIR210HG has 
unquestionably emerged as a potential therapeutic 
target and diagnostic biomarker. In one study, 
prostate cancer tissues showed a substantial down 
regulation of LINC00683. Survival of patients was 
closely connected to this lncRNA, with higher levels 
of its expression associated with better patient 

prognosis [51]. It has been documented that 
LINC00683 expression is relatively low in recurrent 
cervical cancer compared to non-recurrent cervical 
cancer [52]. LINC00683 is another intriguing 
therapeutic target for CESC patients. Based on the 
available literature we found that AP001528.1, 
AC119427.1, AC124045.1, PTPRD-AS1, and KIAA0087 
could be promising biomarkers for a variety of 
cancers [53, 54, 55, 56]. 

The environment in which cancers develop is 
known as TME. TME is a complex ecosystem of 
immune cells, fibroblasts, extracellular matrix, and 
endothelial cells [57]. The growth, proliferation, 
progression, and distant metastasis of cancer are all 
significantly regulated by TME [58]. The processes of 
angiogenesis promoting cancer growth, invasion, and 
metastasis are regulated by pro/anti-angiogenic 
factors secreted by endothelial cells or other cells in 
TME [59]. Studying the function of angiogenesis- 
related lncRNAs in TME in cervical cancer is essential. 
TME is highly dynamic and specific, interacting with 
tumor cells. The composition of TME is one of the 
important determinants of cancer prognosis and also 
influences the response of cancer to targeted 
immunotherapy [60]. The immune components are 
able to suppress immune function and play a crucial 
role in tumor immune escape [61]. Therefore, taking 
TME into account is one of the elements of a "sound" 
preclinical prognostic model. To identify probable 
molecular mechanisms underlying the immune 
infiltration in TME and to identify novel 
immunotherapeutic targets to enhance patient 
prognosis, in-depth research is needed. As a result, 
we studied samples from high and low-risk groups 
for immune cell infiltration and immunological 
function. In anticancer immunotherapy, the use of T 
cells as the primary immune cells against cancer 
predominates, however, there is growing evidence 
that the immunotherapeutic response is strongly 
affected by B cell-mediated antitumor immunity [62]. 
There is experimental evidence that activated naive B 
cells can inhibit tumor growth by promoting Th1 
polarization [63]. In prostate cancer, naive B cells can 
prevent further development of tumor cells and 
contribute to a good prognosis for patients [64]. 
Plasma cells, the final functional state of the B cell 
lineage, are long-lived, non-proliferating, antibody- 
secreting cells [65]. Studies demonstrated a high 
correlation between immune-infiltrating plasma cells 
and favorable clinical outcomes and prognosis for 
patients with a variety of tumor forms [66-68]. Our 
study also corroborates the conclusion that the more 
significant infiltration of naive B cells and plasma cells 
in the low-risk group may be associated with a good 
prognosis of cervical cancer patients. Also, our 
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findings demonstrated that the low-risk group had 
more activated mast cells expressed than the high-risk 
group did. Mast cells are derived from CD34+ 
myeloid precursor cells. Mast cells are a crucial part of 
the TME in solid tumors and have the ability to either 
promote or inhibit tumor growth. Whether mast cells 
inhibit tumor development depends on the nature of 
the mast cell subpopulation in the TME and the effect 
of various stimulatory factors on it [69, 70]. We also 
discovered that the major factor connecting mast cells 
to cancer is their capacity to produce and release 
strong angiogenic chemicals [71]. Nevertheless, the 
effect of mast cells on cervical cancer has not yet been 
experimentally validated and the exact mechanism of 
action still requires extensive studies to elucidate. 
CD8+ T cells are more infiltrated in the low-risk 
group, allowing for a better patient prognosis. In 
cervical cancer, CD8+ T cells—the primary antitumor 
effector cells—can cause tumor cell death [72, 73]. 
Tregs are widely considered to be a tumor 
immunosuppressive cell that has a significant impact 
on the immunological escape process and can make 
immunotherapy much less effective. In cervical cancer 
tumor models, it has been discovered that Treg 
depletion increases the anticancer effectiveness of 
anti-PD-L1 treatment [74, 75]. From the results of our 
analysis, the low-risk group had better treg 
infiltration than the high-risk group. This suggests 
that the administration of anti-PD-L1 therapy to 
patients in the high-risk group may yield more 
promising therapeutic results, but this is only 
speculation based on theory, and it will take a lot of 
trials to confirm the conclusions. 

Immune-targeted therapy for cervical cancer is a 
promising novel treatment strategy, and the use of 
immune checkpoint inhibitors (ICIs) in particular has 
led to improved patient prognosis [76]. However, the 
efficacy of treatment with ICIs in CESC patients is 
limited, with response rates to ICIs ranging from 10% 
to 25% [77]. Also, the efficacy of this treatment 
strategy varies from person to person with significant 
individual differences [78]. We should examine how 
immune checkpoint genes are expressed in our 
samples and possibly screen for biomarkers that can 
be used to predict treatment efficacy in order to 
determine which patients would better benefit from 
ICIs. This would not only improve the efficiency of 
treatment but also be enough to reduce the waste of 
healthcare resources. We discovered that most 
immune checkpoint gene expression was higher in the 
low-risk group, indicating that the low-risk group 
may have better results from ICI treatment. However, 
this is only a prediction of treatment outcome based 
on the CESC sample in the TCGA database, and this 
study used a small sample of data. So to substantiate 

the findings, many randomized prospective trials are 
required. If it can successfully identify CESC patients 
who are well-responding to therapy with ICIs, it will 
have guiding implications for clinicians' immuno-
therapy strategies. Immune cells and immunological 
checkpoints are known to affect immune function, 
thus we conducted a differential study of immune 
function. HLA-class I class antigens play a crucial part 
in neoantigen presentation and cytolytic T cell 
responses. In contrast, downregulation of the HLA 
gene decreases antigen presentation and thus contri-
butes to immune escape [79]. HLA downregulation 
has been seen in many cancer types, and it is closely 
linked to a negative prognosis for the patient [80]. 
HLA expression was shown to be higher in the 
low-risk group, which similarly suggests that 
downregulation of the HLA gene is indeed associated 
with poor clinical outcomes. 

Despite the fact that our study had favorable 
effects on how CESC patients' prognoses are 
evaluated and guiding clinicians in treatment 
strategies, there are inevitably certain restrictions. 
Firstly, further prospective studies are required to 
verify our model as our work is a retrospective study 
of data from a public database. Second, the efficacy of 
our model may be impacted by individual variances 
in CESC patients. Although we used the TCGA 
database for internal validation, we weren't able to get 
accurate lncRNA information due to bias and other 
limits in the microarray data, which prevented us 
from using samples from other databases for external 
validation. Lastly, more in vivo and in vitro studies 
are required to investigate the relationship between 
the seven ARLs involved in the modeling and patient 
prognosis. 

Conclusions 
The signature and nomogram constructed in our 

study displayed accuracy in predicting patient 
prognosis. This also offers new ideas to mine potential 
biomarkers for CESC patients. This will not only 
provide new ideas to explore potential biomarkers for 
CESC patients but also bring hope to better the 
patient's prognosis. 

Abbreviations 
ARLs: angiogenesis-related lncRNAs 
CESC: Cervical squamous cell carcinoma and 

endocervical adenocarcinoma 
lncRNAs: Long non-coding RNAs  
ARGs: Angiogenesis-related genes  
FDR: false discovery rate  
GO: Gene Ontology  
TMB: tumor mutation load  
IC50: half-maximal inhibitory concentration  



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3111 

GDSC: Genomics of Drug Sensitivity to Cancer  
PCA: principal components analysis  
BP: Biological Processes  
KEGG: Kyoto Encyclopedia of Genes and 

Genomes 
TIDE: tumor immunosuppression and rejection  
FIGO: Federation of Late Obstetricians and 

Gynaecologists  
PGK1: phosphoglycerate kinase 1  
ICIs: immune checkpoint inhibitors  

Supplementary Material 
Supplementary tables.  
https://www.jcancer.org/v15p3095s1.zip 

Acknowledgments 
We thank Southwest Medical University for its 

support of the Student Innovation and Entrepreneur-
ship Program. 

Funding 
This study was supported by grants from the 

Luzhou Science and Technology Department Applied 
Basic Research Program (No: 2022-WYC-196), and the 
Sichuan Province Science and Technology Depart-
ment of Foreign (border) high-end talent introduction 
project (No: 2023ZHYZ0009). 

Data Availability Statement 
The datasets analyzed in the current study are 

available in the TCGA repository (http:// 
cancergenome.nih.gov/) (accessed on 2 August 2022). 
The datasets used and/or analyzed during the current 
study are available from the corresponding author 
upon reasonable request. All raw data are available at 
https://www.jianguoyun.com/p/DR7csgcQiYvBCxi
GvP8EIAA. 

Author Contributions 
HC, XH, GY and QW conceived the study. SG, 

GMY, XH, JX, HQC, XC, LX and AT drafted the 
manuscript. SG, GY, LX, JX and HC performed the 
literature search and collected the data. SG, XH, and 
HC analyzed and visualized the data. GY, HC, and 
QW helped with the final revision of this manuscript. 
All authors reviewed and approved the final 
manuscript. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Fleischmann M, Chatzikonstantinou G, Fokas E, Wichmann J, 

Christiansen H, Strebhardt K, et al. Molecular Markers to Predict 

Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers. 
2021; 13: 5748. 

2. Cáceres-Durán M, Ribeiro-Dos-Santos Â, Vidal AF. Roles and 
Mechanisms of the Long Noncoding RNAs in Cervical Cancer. 
International journal of molecular sciences. 2020; 21: 9742. 

3. Wang L, Zhao Y, Wang Y, Wu X. The Role of Galectins in Cervical 
Cancer Biology and Progression. BioMed research international. 2018; 
2018: 2175927. 

4. Tekalign T, Teshome M. Prevalence and determinants of late-stage 
presentation among cervical cancer patients, a systematic review and 
meta-analysis. PloS one. 2022; 17: e0267571. 

5. Monk BJ, Enomoto T, Kast WM, McCormack M, Tan DSP, Wu X, et al. 
Integration of immunotherapy into treatment of cervical cancer: Recent 
data and ongoing trials. Cancer treatment reviews. 2022; 106: 102385. 

6. Boopathy GTK, Hong W. Role of Hippo Pathway-YAP/TAZ Signaling 
in Angiogenesis. Frontiers in cell and developmental biology. 2019; 7: 49. 

7. He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, et al. Ovarian cancer 
cell-secreted exosomal miR-205 promotes metastasis by inducing 
angiogenesis. Theranostics. 2019; 9: 8206-20. 

8. Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving 
Beyond Vascular Endothelial Growth Factor. The oncologist. 2015; 20: 
660-73. 

9. Hanahan D, Folkman J. Patterns and emerging mechanisms of the 
angiogenic switch during tumorigenesis. Cell. 1996; 86: 353-64. 

10. Folkman J. Tumor angiogenesis: therapeutic implications. The New 
England journal of medicine. 1971; 285: 1182-6. 

11. Trainor PJ, DeFilippis AP, Rai SN. Evaluation of Classifier Performance 
for Multiclass Phenotype Discrimination in Untargeted Metabolomics. 
Metabolites. 2017; 7: 30. 

12. Kagabu M, Nagasawa T, Sato C, Fukagawa Y, Kawamura H, Tomabechi 
H, et al. Immunotherapy for Uterine Cervical Cancer Using Checkpoint 
Inhibitors: Future Directions. International journal of molecular sciences. 
2020; 21: 2335. 

13. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA 
localization and function. The Journal of cell biology. 2021; 220(2): 
e202009045. 

14. Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, et al. Potential regulatory 
role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomedicine & 
pharmacotherapy = Biomedecine & pharmacotherapie. 2020; 121: 
109627. 

15. Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, et al. Cuprotosis 
Programmed-Cell-Death-Related lncRNA Signature Predicts Prognosis 
and Immune Landscape in PAAD Patients. Cells. 2022; 11:3436. 

16. Begolli R, Sideris N, Giakountis A. LncRNAs as Chromatin Regulators in 
Cancer: From Molecular Function to Clinical Potential. Cancers. 2019; 11: 
1524. 

17. Huang J, Liu M, Chen H, Zhang J, Xie X, Jiang L, et al. Elucidating the 
Influence of MPT-driven necrosis-linked LncRNAs on immunotherapy 
outcomes, sensitivity to chemotherapy, and mechanisms of cell death in 
clear cell renal carcinoma. Front Oncol. 2023; 13: 1276715. 

18. Lin YH. Crosstalk of lncRNA and Cellular Metabolism and Their 
Regulatory Mechanism in Cancer. International journal of molecular 
sciences. 2020; 21: 2947. 

19. Chen X, Song J, Wang X, Sun D, Liu Y, Jiang Y. LncRNA LINC00460: 
Function and mechanism in human cancer. Thoracic cancer. 2022; 13: 
3-14. 

20. Huang X, Chi H, Gou S, Guo X, Li L, Peng G, et al. An 
Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic 
Adenocarcinoma. Genes (Basel). 2023; 14: 124. 

21. Ghafouri-Fard S, Azimi T, Taheri M. Cervical carcinoma high expressed 
1 (CCHE1): An oncogenic lncRNA in diverse neoplasms. Biomedicine & 
pharmacotherapy = Biomedecine & pharmacotherapie. 2021; 142: 
112003. 

22. Huang X, Liu X, Du B, Liu X, Xue M, Yan Q, et al. LncRNA LINC01305 
promotes cervical cancer progression through KHSRP and 
exosome-mediated transfer. Aging. 2021; 13: 19230-42. 

23. Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the 
Pathogenesis of Cancers. Cells. 2019; 8: 1015. 

24. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. 
Robust prediction of response to immune checkpoint blockade therapy 
in metastatic melanoma. Nature medicine. 2018; 24: 1545-9. 

25. Huang X, Liu X, Du B, et al. LncRNA LINC01305 promotes cervical 
cancer progression through KHSRP and exosome-mediated 
transfer. Aging (Albany NY). 2021;13(15):19230-19242.  

26. Archilla-Ortega A, Domuro C, Martin-Liberal J, Muñoz P. Blockade of 
novel immune checkpoints and new therapeutic combinations to boost 
antitumor immunity. Journal of experimental & clinical cancer research : 
CR. 2022; 41: 62. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3112 

27. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in 
cancer progression: therapeutic implications. Journal of hematology & 
oncology. 2018; 11: 64. 

28. Zhang H, Brown RL, Wei Y, Zhao P, Liu S, Liu X, et al. CD44 splice 
isoform switching determines breast cancer stem cell state. Genes & 
development. 2019; 33: 166-79. 

29. Liu W, Ji Z, Wu B, Huang S, Chen Q, Chen X, et al. Siglec-15 promotes 
the migration of liver cancer cells by repressing lysosomal degradation 
of CD44. FEBS letters. 2021; 595: 2290-302. 

30. Wu J, Wang Y, Yang Y, Liu F, Chen J, Jiang Z, et al. TNFSF9 promotes 
metastasis of pancreatic cancer through Wnt/Snail signaling and M2 
polarization of macrophages. Aging. 2021; 13: 21571-86. 

31. Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu C, et al. A Novel 
L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of 
Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. International 
journal of molecular sciences. 2022; 23: 10916. 

32. Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The 
Challenges of Tumor Mutational Burden as an Immunotherapy 
Biomarker. Cancer cell. 2021; 39: 154-73. 

33. Jiang W, He T, Liu S, Zheng Y, Xiang L, Pei X, et al. The PIK3CA E542K 
and E545K mutations promote glycolysis and proliferation via induction 
of the β-catenin/SIRT3 signaling pathway in cervical cancer. Journal of 
hematology & oncology. 2018; 11: 139. 

34. Arjumand W, Merry CD, Wang C, Saba E, McIntyre JB, Fang S, et al. 
Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers 
cisplatin resistance and a migratory phenotype in cervical cancer cells. 
Oncotarget. 2016; 7: 82424-39. 

35. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global 
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA: a cancer journal for 
clinicians. 2018; 68: 394-424. 

36. Liu Y, Tian M, Zhao H, He Y, Li F, Li X, et al. IER5 as a promising 
predictive marker promotes irradiation-induced apoptosis in cervical 
cancer tissues from patients undergoing chemoradiotherapy. 
Oncotarget. 2017; 8: 36438-48. 

37. Chao X, Fan J, Song X, You Y, Wu H, Wu M, et al. Diagnostic Strategies 
for Recurrent Cervical Cancer: A Cohort Study. Frontiers in oncology. 
2020; 10: 591253. 

38. Yang K, Park W, Huh SJ, Bae DS, Kim BG, Lee JW. Clinical outcomes in 
patients treated with radiotherapy after surgery for cervical cancer. 
Radiation oncology journal. 2017; 35: 39-47. 

39. Badaracco G, Savarese A, Micheli A, Rizzo C, Paolini F, Carosi M, et al. 
Persistence of HPV after radio-chemotherapy in locally advanced 
cervical cancer. Oncology reports. 2010; 23: 1093-9. 

40. Ojamaa K, Innos K, Baburin A, Everaus H, Veerus P. Trends in cervical 
cancer incidence and survival in Estonia from 1995 to 2014. BMC cancer. 
2018; 18: 1075. 

41. Yang K, Park W, Huh SJ, Bae DS, Kim BG, Lee JW. Clinical outcomes in 
patients treated with radiotherapy after surgery for cervical 
cancer. Radiat Oncol J. 2017;35(1):39-47. 

42. Badaracco G, Savarese A, Micheli A, et al. Persistence of HPV after 
radio-chemotherapy in locally advanced cervical cancer. Oncol Rep. 
2010;23(4):1093-1099. 

43. Wang HT, Lee HI, Guo JH, Chen SH, Liao ZK, Huang KW, et al. 
Calreticulin promotes tumor lymphocyte infiltration and enhances the 
antitumor effects of immunotherapy by up-regulating the endothelial 
expression of adhesion molecules. International journal of cancer. 2012; 
130: 2892-902. 

44. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in 
cancers. Frontiers in oncology. 2013; 3: 211. 

45. Nohata N, Abba MC, Gutkind JS. Unraveling the oral cancer 
lncRNAome: Identification of novel lncRNAs associated with malignant 
progression and HPV infection. Oral oncology. 2016; 59: 58-66. 

46. Wang AH, Jin CH, Cui GY, Li HY, Wang Y, Yu JJ, et al. MIR210HG 
promotes cell proliferation and invasion by regulating 
miR-503-5p/TRAF4 axis in cervical cancer. Aging. 2020; 12: 3205-17. 

47. Li ZY, Xie Y, Deng M, Zhu L, Wu X, Li G, et al. c-Myc-activated intronic 
miR-210 and lncRNA MIR210HG synergistically promote the metastasis 
of gastric cancer. Cancer letters. 2022; 526: 322-34. 

48. Ho KH, Shih CM, Liu AJ, Chen KC. Hypoxia-inducible lncRNA 
MIR210HG interacting with OCT1 is involved in glioblastoma 
multiforme malignancy. Cancer science. 2022; 113: 540-52. 

49. Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu GY, et al. The long noncoding 
RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of 
miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. 
Aging. 2019; 11: 5646-65. 

50. Olem D, Earle M, Gómez W, Coffin L, Cotten P, Jain JP, et al. Finding 
Sunshine on a Cloudy Day: A Positive Affect Intervention for 

Co-Occurring Methamphetamine Use and HIV. Cognitive and 
behavioral practice. 2022; 29: 267-79. 

51. Liu Y, Yang B, Su Y, Xiang Q, Li Q. Downregulation of long noncoding 
RNA LINC00683 associated with unfavorable prognosis in prostate 
cancer based on TCGA. Journal of cellular biochemistry. 2019; 120: 
14165-74. 

52. Li M, Tian X, Guo H, Xu X, Liu Y, Hao X, et al. A novel 
lncRNA-mRNA-miRNA signature predicts recurrence and disease-free 
survival in cervical cancer. Brazilian journal of medical and biological 
research = Revista brasileira de pesquisas medicas e biologicas. 2021; 54: 
e11592. 

53. Wang H, Meng Q, Ma B. Characterization of the Prognostic m6A-Related 
lncRNA Signature in Gastric Cancer. Frontiers in oncology. 2021; 11: 
630260. 

54. Lang X, Huang C, Cui H. Prognosis Analysis and Validation of Fatty 
Acid Metabolism-Related lncRNAs and Tumor Immune 
Microenvironment in Cervical Cancer. Journal of immunology research. 
2022; 2022: 4954457. 

55. Zheng Z, Zhang Q, Wu W, Xue Y, Liu S, Chen Q, et al. Identification and 
Validation of a Ferroptosis-Related Long Non-coding RNA Signature for 
Predicting the Outcome of Lung Adenocarcinoma. Frontiers in genetics. 
2021; 12: 690509. 

56. Vallone C, Rigon G, Gulia C, Baffa A, Votino R, Morosetti G, et al. 
Non-Coding RNAs and Endometrial Cancer. Genes. 2018; 9: 187. 

57. Zheng J, Gao P. Toward Normalization of the Tumor Microenvironment 
for Cancer Therapy. Integrative cancer therapies. 2019; 18: 
1534735419862352. 

58. Ding SM, Lu JF, Edoo MIA, Zhou L, Xie HY, Zheng SS, et al. MRC-5 
Cancer-associated Fibroblasts Influence Production of Cancer Stem Cell 
Markers and Inflammation-associated Cell Surface Molecules, in Liver 
Cancer Cell Lines. International journal of medical sciences. 2019; 16: 
1157-70. 

59. Shaik S, Maegawa S, Haltom AR, Wang F, Xiao X, Dobson T, et al. REST 
promotes ETS1-dependent vascular growth in medulloblastoma. 
Molecular oncology. 2021; 15: 1486-506. 

60. Foray C, Barca C, Backhaus P, Schelhaas S, Winkeler A, Viel T, et al. 
Multimodal Molecular Imaging of the Tumour Microenvironment. 
Advances in experimental medicine and biology. 2020; 1225: 71-87. 

61. Sun W, Lv S, Li H, Cui W, Wang L. Enhancing the Anticancer Efficacy of 
Immunotherapy through Combination with Histone Modification 
Inhibitors. Genes. 2018; 9: 633. 

62. Mirlekar B, Wang Y, Li S, Zhou M, Entwistle S, De Buysscher T, et al. 
Balance between immunoregulatory B cells and plasma cells drives 
pancreatic tumor immunity. Cell reports Medicine. 2022; 3: 100744. 

63. Wu XZ, Shi XY, Zhai K, Yi FS, Wang Z, Wang W, et al. Activated naïve B 
cells promote development of malignant pleural effusion by differential 
regulation of T(H)1 and T(H)17 response. American journal of 
physiology Lung cellular and molecular physiology. 2018; 315: L443-l55. 

64. Shan L, Lu Y, Song Y, Zhu X, Xiang CC, Zuo ED, et al. Identification of 
Nine M6A-Related Long Noncoding RNAs as Prognostic Signatures 
Associated with Oxidative Stress in Oral Cancer Based on Data from The 
Cancer Genome Atlas. Oxidative medicine and cellular longevity. 2022; 
2022: 9529814. 

65. Fillatreau S. Natural regulatory plasma cells. Current opinion in 
immunology. 2018; 55: 62-6. 

66. Berntsson J, Nodin B, Eberhard J, Micke P, Jirström K. Prognostic impact 
of tumour-infiltrating B cells and plasma cells in colorectal cancer. 
International journal of cancer. 2016; 139: 1129-39. 

67. Fristedt R, Borg D, Hedner C, Berntsson J, Nodin B, Eberhard J, et al. 
Prognostic impact of tumour-associated B cells and plasma cells in 
oesophageal and gastric adenocarcinoma. Journal of gastrointestinal 
oncology. 2016; 7: 848-59. 

68. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, et 
al. Immunotype and immunohistologic characteristics of 
tumor-infiltrating immune cells are associated with clinical outcome in 
metastatic melanoma. Cancer research. 2012; 72: 1070-80. 

69. Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of 
solid tumors. Molecular immunology. 2015; 63: 113-24. 

70. Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer 
Immunotherapy. Cells. 2021; 10: 1270. 

71. Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. 
Biochimica et biophysica acta. 2012; 1822: 2-8. 

72. Alas Q, Lin CT. Immunotherapy with Subcutaneous Injection of 
Immunomodulatory Agent (OK-432) Elicits Durable Response in Locally 
Advanced or Relapsed Cervical Cancer. Gynecology and minimally 
invasive therapy. 2019; 8: 80-2. 

73. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8(+) 
T cell differentiation. Nature reviews Immunology. 2018; 18: 340-56. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3113 

74. Xu F, Zhang F, Wang Q, Xu Y, Xu S, Zhang C, et al. The augment of 
regulatory T cells undermines the efficacy of anti-PD-L1 treatment in 
cervical cancer. BMC immunology. 2021; 22: 60. 

75. Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: 
mechanisms and potential therapeutic targets. Journal of hematology & 
oncology. 2022; 15: 61. 

76. Menderes G, Black J, Schwab CL, Santin AD. Immunotherapy and 
targeted therapy for cervical cancer: an update. Expert review of 
anticancer therapy. 2016; 16: 83-98. 

77. Bosse T, Lax S, Abu-Rustum N, Matias-Guiu X. The Role of Predictive 
Biomarkers in Endocervical Adenocarcinoma: Recommendations From 
the International Society of Gynecological Pathologists. International 
journal of gynecological pathology : official journal of the International 
Society of Gynecological Pathologists. 2021; 40: S102-s10. 

78. Liu J, Li Z, Lu T, Pan J, Li L, Song Y, et al. Genomic landscape, immune 
characteristics and prognostic mutation signature of cervical cancer in 
China. BMC medical genomics. 2022; 15: 231. 

79. Gothié JD, Sébillot A, Luongo C, Legendre M, Nguyen Van C, Le Blay K, 
et al. Adult neural stem cell fate is determined by thyroid hormone 
activation of mitochondrial metabolism. Molecular metabolism. 2017; 6: 
1551-61. 

80. Campoli M, Ferrone S. HLA antigen changes in malignant cells: 
epigenetic mechanisms and biologic significance. Oncogene. 2008; 27: 
5869-85. 

 


