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Abstract 

Background: Despite significant advances in tumor immunotherapy, hepatocellular carcinoma (HCC) 
remains a malignancy with a challenging prognosis. The increasing research emphasizes the crucial role of 
ubiquitination in tumor immunotherapy. However, the establishment of prognostic signatures based on 
ubiquitination-related genes (UbRGs) and their role in immunotherapy are still lacking in HCC.  
Methods: We employed datasets from TCGA and GEO for transcriptome differential expression analysis and 
single-cell RNA sequencing analysis. Applying weighted gene co-expression network analysis, cox regression, 
lasso, selection and visualization of the most relevant features, and gradient boosting machine, we identified hub 
UbRGs as a gene signature to develop a prognostic model. We evaluated the predictive utility concerning 
clinical characteristics as well as its role in the immune landscape and immunotherapy potential. Additionally, 
western blotting, reverse transcription-quantitative PCR, and immunofluorescence were employed to detect 
the expression and sub-localization of hub genes.  
Results: Three hub UbRGs (BOP1, CDC20, and UBE2S) were identified as a gene signature. In particular, the 
high-risk group exhibited notable characteristics, including higher tumor mutation burden, enrichment in 
immune-related pathways, up-regulation immune checkpoint, and higher immunity scores. Treatment response 
to immunotherapy varied based on the expression of PD-1 and CTLA-4. Furthermore, single-cell data analysis 
revealed heterogeneous expression of hub UbRGs across different cell subtypes, while cytological experiments 
provided additional confirmation of the high expression of hub UbRGs in HCC.  
Conclusion: Our study provides valuable insights into the identification of novel ubiquitination-related 
biomarkers with potential applications for prognosis, immunotherapy prediction, and drug sensitivity in HCC. 

Keywords: hepatocellular carcinoma, ubiquitination, tumor immune microenvironment, immune checkpoints, risk model, drug 
sensitivity 

Introduction 
The liver is ranked as the sixth most common 

primary site for cancer and hepatocellular carcinoma 
(HCC) is the third leading cause of global 
cancer-related mortality [1]. Notably, the immune 
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system exerts significant influence over the 
progression of HCC. The immune microenvironment 
plays a critical role in the development and 
advancement, and distinct immune characteristics 
associated with its various etiologies have been 
identified in HCC [2, 3]. As the initial treatment, 
systemic therapies, typically sorafenib or lenvatinib, 
are administered to approximately 50% of HCC 
patients [4]. Inhibitors targeting immune checkpoints 
have revolutionized cancer treatment and gained 
significant attention [5, 6]. Vaccination, virotherapy, 
and other immune system-targeting approaches are 
also under development. Despite these remarkable 
breakthroughs, patients with HCC still face poor 
survival prospects and lack additional biomarkers to 
aid in therapeutic decision-making [7]. Therefore, it is 
essential to identify accurate diagnostic, therapeutic, 
and prognostic markers. 

Ubiquitination is a multistep process involving 
E1 enzyme activation, E2 conjugation, and E3 
ubiquitin ligation to the substrate protein. Depending 
on the type of polyubiquitin chain formed, 
ubiquitination can direct the substrate to multiprotein 
complexes or target it for degradation via 
proteasomes [8]. This process is dynamic and 
reversible relying on deubiquitinases to remove 
ubiquitin and stabilize substrate proteins [9]. In the 
context of cancer development, ubiquitination plays a 
pivotal role, such as angiogenesis, apoptosis, 
metastasis, and immunity through its diverse effects 
on transcription, post-translation modifications, and 
protein levels [8]. Pathological ubiquitination has 
been associated with promoting cancer development 
and evasion of the immune system [10]. Recent 
research has demonstrated that ubiquitination plays 
essential roles in pathways related to carcinoma, and 
the accumulation of ubiquitinated proteins may offer 
a novel approach for cancer treatment [11]. USP22 can 
regulate PD-L1 by deubiquitination and modulate the 
infiltration of T cells into malignancies [10]. To 
prevent immune escape, RNF125 enhances the 
ubiquitination and degradation of PD-L1 [12]. These 
findings suggest the importance of ubiquitination in 
tumor immunity. However, they do not elucidate the 
specific mechanisms by which it regulates immune 
cells and their microenvironment. Therefore, further 
studies are needed to explore the role of 
ubiquitination in regulating immune responses in 
HCC. 

In this study, we utilized the TCGA-LIHC, 
GSE76427, and GSE149614 datasets to identify hub 
genes of ubiquitination-related genes (UbRGs) by 
analyzing bulk and single-cell RNA sequencing data 
(scRNA-seq). Additionally, we validated an HCC 
diagnostic model. Furthermore, we investigated the 

interrelationship among gene expression, survival, 
tumor immune microenvironment (TME), mutation 
analyses, and hub gene expression. Hub genes were 
validated using western blot (WB), real time 
quantitative PCR (RT-qPCR), immunofluorescence 
(IF), and the HPA database. The comprehensive 
understanding of the multimolecular characteristics 
of UbRGs is expected to contribute to the 
development of a distinctive and promising approach 
for identifying HCC biomarkers and supporting 
future research endeavors. 

Materials and Methods 

Acquiring and Processing Transcriptome Data  

The TCGA database contains expression profiles, 
genetic mutations, and clinical information for LIHC 
(N=369). Patients without clinicopathological records 
or with overall survival (OS) times less than 1 month 
were excluded from this study. A total of 340 patients 
were enrolled and divided into a training group and a 
testing group in a 7:3 ratio. The model was 
constructed using the training group, and its 
reliability and efficiency were evaluated using the 
testing group. For subsequent analysis, a log2 
transformation was applied to all TPM data. The GEO 
database provided matrix files, essential clinical 
information, and survival data for the independent 
HCC dataset GSE76427 (N = 115). Patients who had a 
survival of less than one month were excluded. 
Ultimately, 95 patients were included in the study for 
external validation (Table S1). The comprehensive 
workflow of the study is illustrated in Figure 1. 

Screening of UbRGs  

The iUUCD 2.0 database provided information 
on UbRGs [13]. A total of 3223 genes were retrieved 
for subsequent studies (Table S2). The mRNA 
expression profiles of 1231 UbRGs were extracted 
from the GSE76427 and TCGA databases for further 
analysis. WGCNA has been effectively utilized in 
numerous biological studies [14-16]. The "WGCNA" 
package was used to transform the similarity matrix 
into an adjacency matrix using a weight coefficient of 
15. Combining highly similar modules resulted in a 
coexpression network. Among these modules, the 
brown module showed the highest correlation and 
was considered to have the strongest association with 
tumors (Table S3). Among the UbRGs, we found 155 
different expressed genes (DEGs) based on FDR < 0.05 
and |log2FC| > 1. Among the 155 UbRGs, 23 genes 
with expression variations were associated with a 
negative prognosis. The brown module, DEGs, and 
prognoses identified 11 UbRG genes. 
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Figure 1. Flowchart of this study. The workflow of the analysis steps (Created with BioRender.com). 

 

Construction of UbRGs Signature 
Eleven UbRG genes were identified based on the 

brown module, DEGs, and prognosis, and we 

identified prognostic UbRGs using univariate cox 
regression. Subsequently, the least absolute shrinkage 
and selection operator (LASSO), support vector 
machines-recursive feature reduction (SVM-RFE), and 
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gradient boosting machine (GBM) machine learning 
algorithms were employed for screening character-
istic genes. LASSO, a dimensionality reduction 
technique, evaluates high-dimensional data more 
effectively compared to regression analysis. We used 
the “glmnet” package to perform LASSO analysis 
with a tuning/penalty parameter and 10-fold 
cross-validation. Significant genes were selected 
through GBM analysis. SVM-RFE outperforms linear 
discriminant analysis and mean squared error in 
detecting important and redundant attributes. The 
genes screened by the machine learning algorithms 
are listed in Table S4. 

Construction and Validation of Prognostic 
Models 

Significant key genes were identified through 
machine learning analysis and integrated into a 
multivariate cox regression model (Table S5). 
Prognostic signatures based on UbRGs were 
established using multivariate cox proportional in the 
training cohort. Additionally, for each LIHC sample, 
the risk score was calculated based on the following 
formula: 

risk score = �(CoefiExpi)
k

n=i

 

Based on the median risk score, all cohorts in the 
training set, testing set, and external validating set 
were classified into low and high risk groups. 
Subsequently, we analyzed the performance of this 
prognostic index in all cohorts using survival analysis 
and receiver operating characteristic (ROC) curve. 
Additionally, univariate and multivariate prognostic 
models were employed to assess the reliability of this 
ubiquitination-based prognostic index as an indicator. 
In order to determine the probabilities of OS at 1, 3, 
and 5 years, a nomogram was developed 
incorporating the risk score and clinical features as 
prognostic factors. 

Tumor Mutation Burden (TMB) 
We utilized the "maftools" package to analyze 

and visualize mutation data using LIHC data. 
Non-synonymous and frameshift indels were 
considered, with a detection limit of less than 5%. The 
patients were classified into four groups based on 
their mean TMB and risk classification. 

Analyses of Pathway and Functional 
Enrichment  

The "clusterProfiler" package was employed to 
perform KEGG and GO enrichment analysis of 
biological processes and pathways. In addition, we 
employed the "GSVA" package to investigate 

differences in the levels of biological process activities 
among the TCGA samples. 

Immune Landscapes Related to the UbRGs 
Signature 

The "ESTIMATE" package was used to predict 
TME scores for LIHC. To assess immunocyte 
infiltration in the TME, we employed CIBERSORT 
and ssGSEA to estimate the density of immune cell 
infiltration in patients. The box plot diagram 
illustrated the differences between the two subtypes.  

Immune Checkpoint and Immunotherapy 
Assessments 

The expression of immune checkpoint genes was 
correlated with the response to immunotherapy. 
Moreover, Spearman correlation analysis identified 
the hub UbRGs that were highly correlated with 
immune checkpoints. The tumor immune dysfunction 
and exclusion (TIDE) score table was obtained from 
the TIDE database using transcriptome files as the 
data source. To validate the immune checkpoint 
blockade treatment cohort, we selected the 
IMvigor210 dataset. Using the IMvigor210 program, 
we extracted gene expression data and assessed the 
immunotherapeutic efficacy in a publicly available 
cohort from a previous study [17], and a violin plot 
was created to visualize the results. 

Drug Sensitivity Analysis of Risk Groups 
We utilized the "oncoPredict" package to predict 

the half maximal inhibitory concentration (IC50) 
levels of HCC samples in LIHC for different 
antineoplastic drugs. The IC50 values and risk score 
were then subjected to a Spearman correlation 
analysis in order to identify sensitive and resistant 
drugs (|R| > 0.3 and p <0.05). 

Processing and Acquiring scRNA-seq Data  
The GSE149614 dataset comprises ten HCC 

samples in total. The quality of the scRNA-seq data 
was analyzed using the "Seurat" and "SingleR" 
packages. To ensure high-quality scRNA-seq data, we 
selected cells with less than 20% mitochondrial genes 
and genes showing expression levels between 200 and 
7,000. A total of 34,061 cells were considered eligible 
for further study. Following data normalization, we 
employed the "FindVariableFeatures" function to 
identify the top 2,000 hypervariable genes. Due to the 
data being derived from multiple samples, we 
employed the harmony method to remove batch 
effects that could confound subsequent analysis. We 
utilized the "IntegrateData" and "ScaleData" functions 
to achieve proper data integration and scaling. The 
top 20 principal components were analyzed to 
identify meaningful clusters. Cell cycle markers 
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included in the "Seurat" packages were utilized to 
assess the heterogeneity of the cell cycle. Additionally, 
we selected cell marker genes using the marker genes 
from the CellMarker 2.0 database (Table S6) [18]. 
Cell-type copy number variation (CNV) was 
predicted using the "infercnv" package to distinguish 
cancer cells from normal cell types. Single-cell data 
processing is illustrated in Figure S1. The "AUCell" 
package was employed to determine the enrichment 
scores of hub UbRGs for cell subtypes in the 
scRNA-seq dataset. Subsequently, each cell's UbRGs 
score was calculated based on the three hub genes 
using the “AddModuleScore” function. 

Reverse Transcription-quantitative (RT-qPCR) 
Human liver cancer cell lines (HepG2, Huh7, and 

MHCC97H) were purchased from ServiceBio, and 
human normal liver cell lines (LO2) were purchased 
from iCell Bioscience. RNA extraction was performed 
using an RNA rapid purification kit (ES science). The 
concentration and purity of RNA were assessed using 
Nano-Drop One (Thermo Fisher Scientific) by 
measuring the absorption ratio at 260-280 nm, which 
should fall within the range of 1.9 to 2.2. 
Subsequently, cDNA synthesis was performed using 
the s1000 instrument (Bio-Rad Laboratories) and the 
PrimeScript RT reagent kit (Takara Bio). RT-qPCR 
was conducted with SYBR Green (Shanghai Yeasen 
Biotechnology Co) following the manufacturer's 
protocol. The primer sequences for hub UbRGs and 
β-Actin were shown in Table S7. 

Western Blotting (WB) 
The total protein content of cells was extracted 

using lysis buffer (Beyotime Institute of Biotechno-
logy), phenylmethylsulfonyl fluoride solution 
(Beyotime Institute of Biotechnology), and a protease 
inhibitor cocktail (bimake). The protein concentration 
was determined using the Pierce BCA protein assay 
kit (Thermo Fisher Scientific). The 0.45 µm membrane 
was blocked with 5% skim milk. The membrane was 
incubated with anti-UBE2S (Proteintech), anti-BOP1 
(Proteintech), anti-CDC20 (Proteintech), and anti-β
-ACTIN (Affinity Biosciences). The membranes were 
washed three times and incubated with a secondary 
antibody (Thermo Fisher Scientific).  

Immunofluorescence (IF) 
Cells growing on coverslips were fixed for ten 

minutes at room temperature using a 3.7% 
formaldehyde solution. The cells were permeabilized 
with PBS containing 0.1% Triton X-100 (Beyotime) 
and then blocked with PBS containing 5% BSA 
(Beyotime). The cells were incubated overnight at 4°
C with antibodies diluted in PBS containing 3% BSA, 

followed by 1 hour of detection with Alexa Fluor 
488-conjugated secondary antibody (Beyotime). 
Nuclei were identified by DAPI (Beyotime) for 3 
minutes. 

Statistical Analysis 
Statistical analyses were performed using R 

4.2.2. The experiment's results were statistically 
analyzed using GraphPad Prism version 8.0. 
Continuous variables were described using mean and 
standard deviation. For continuous variables with a 
normal distribution, Student's t-tests were used; for 
non-normal variables, Wilcoxon rank-sum tests were 
used; and for categorical variables, Chi-square or 
Fisher's exact tests were used. Gene correlations were 
determined using Pearson correlation analysis. 
Statistical significance was defined as p < 0.05 
(two-tailed).  

Results 
Identification of UbRGs Signature through 
WGCNA and Machine Learning  

To investigate the prognostic value of UbRGs in 
LIHC patients, a Venn diagram was used to visualize 
the co-expression of 1231 genes across three 
independent datasets: TCGA, GEO, and IUUCD 
(Figure 2A). The volcano plot was generated to 
illustrate the expression patterns of 1231 co-expressed 
genes in normal and tumor tissues (Figure 2B). 
Differential analysis of these co-expressed UbRGs 
between tumor and normal groups revealed 155 genes 
with significant differential expression. The heatmap 
showed that the majority of DEGs exhibited higher 
expression in tumor tissues (Figure 2C).  

In addition, we conducted a WGCNA using 1231 
UbRGs from the intersection to identify candidate 
genes significantly associated with clinical features 
(Figure S2). Anomalous samples were excluded by 
clustering the sample dendrogram and trait indicator 
based on Pearson correlation coefficients (Figure 
S2A). Patients with comprehensive information 
including age, gender, sample, futime, fustate, and 
stage were included in the study. The soft threshold of 
15, which corresponded to the lowest mean 
connectivity, was selected (Figure S2B). The 
MEDissThres was set to 0.08, resulting in the 
formation of four modules (Figure S2C). The blue 
module comprised 214 genes, the brown module 
comprised 127 genes, and the turquoise module 
comprised 422 genes. The grey module consists of 466 
genes that did not belong to any other module (Figure 
S2D). Correlation analysis showed a significant 
correlation between the brown module and the 
clinical features of LIHC (Figure S2E). Indeed, the 
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membership of the brown module genes exhibited a 
significant correlation with clinical characteristics 
(Figure S2F). The connectivity between the 127 genes 

identified as important genes in the brown module 
was calculated for further analysis. 

 

 
Figure 2. Signature of Ubiquitination-Related Genes (UbRGs). (A) The Venn diagram illustrates the overlap of co-expressed genes among the TCGA, GEO, and IUUCD 
2.0 databases. (B) The volcano plot visualizes the differentially expressed genes (DEGs) between tumor and normal tissue among the 1231 UbRGs. (C) The heatmap displays the 
expression pattern of 155 characteristic DEGs. (D) The Venn diagram illustrates the overlap of UbRGs among WGCNA, DEGs, and prognosis. (E) The network diagram 
visualizes the interactions among eleven genes. (F) The forest plot displays the expression of the eleven OS-related genes. (G) The distribution of coefficients in the LASSO model. 
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(H) Selection of the five optimal parameters in the LASSO model. (I) Validation of the expression of biomarker signature genes using the SVM-RFE algorithm. (J) Importance of 
feature genes are determined by the gradient boosting machine (GBM) algorithm. (K) The Venn diagram illustrates the overlap of diagnostic markers extracted by the LASSO, 
SVM-RFE, and GBM algorithms. (L) ROC curves are plotted for CDC20, BOP1, and UBE2S. 

 
Furthermore, we intersected the differentially 

expressed UbRGs associated with prognosis and 
genes selected through WGCNA, resulting in the 
identification of 11 key genes for survival analysis: 
CDC20, CHAF1B, AURKA, UBE2T, UBE2C, BOP1, 
CDCA3, DTL, UHRF1, WDR76, and UBE2S (Figure 
2D). Figure 2E illustrated the positive correlations 
among these 11 UbRGs. Forest plot analysis 
confirmed these 11 UbRGs as risk factors for HCC 
patients (Figure 2F). To further select UbRGs, three 
machine learning algorithms (LASSO, GBM, and 
SVM-RFE) were employed, which highlighted three 
hub UbRGs (CDC20, BOP1, and UBE2S) for 
constructing a risk model (Figures 2G-K). Finally, the 
predictive performance of those hub genes was 
excellent when evaluated using time-dependent ROC 
curves (Figure 2L). 

Construction of UbRGs-related Riskscore 
Model 

Based on the expression of hub UbRGs (CDC20, 
BOP1, and UBE2S), the risk score of HCC patients was 
calculated using a multivariate Cox proportional 
hazards model. The median risk score was used to 
categorize HCC patients in the training and validation 
sets into low-risk and high-risk groups. For internal 
validation, the test set and the entire dataset were 
used, while for external validation, the independent 
dataset GSE76427 was employed. The survival curves 
indicated significantly lower survival probability in 
high-risk patients compared to low-risk patients in 
both internal and external test sets (p < 0.05) (Figure 
3A). The mortality rate increased with higher risk 
scores based on the risk score and outcome from 
different sets (Figures 3B-C). Moreover, the heatmap 
showed higher expression levels of three hub UbRGs 
in high-risk patients, which was consistent with the 
findings of the external validation set (Figure 3D). To 
further evaluate the predictive accuracy of three hub 
genes for the prognosis of HCC patients, ROC curve 
analysis was performed on the training set and 
various test sets, resulting in AUC values all greater 
than 0.6 (Figure 3E). The model successfully 
distinguished HCC patients through PCA analysis of 
different sets (Figure 3F). These findings suggest that 
the prognostic model associated with ubiquitination 
hub genes can effectively predict the survival rate of 
HCC. 

Prognostic Model Clinical Validation 
Next, we performed multivariate cox regression 

analysis using clinical information and risk scores to 

identify independent prognostic factors. The analysis 
revealed that stage III (HR = 2.468, 95% CI: 
1.551-3.930, p < 0.001), stage IV (HR = 6.065, 95% CI: 
1.825-20.16, p = 0.0033), and riskscore (HR = 1.502, 
95% CI: 1.273-1.770, p < 0.001) were identified as 
independent prognostic factors (Figure 4A). To 
accurately and conveniently quantify HCC, we 
developed a nomogram that incorporates age, gender, 
stage, and riskscore to predict OS. By utilizing this 
nomogram, we can provide a more accurate 
assessment of patient risk and make informed 
decisions regarding future treatment strategies 
(Figure 4B). To evaluate the prediction accuracy of the 
nomogram, we employed a calibration curve that 
compares the observed outcomes with predicted 
outcomes (Figure 4C). The AUC values at 1, 3, and 5 
years were 0.795, 0.768, and 0.728, respectively 
(Figures 4D-F). These values were significantly higher 
than the AUC values associated with clinical 
characteristics. These results suggest that the riskscore 
serves as an independent prognostic indicator, and 
the nomogram accurately predicts the prognosis of 
HCC patients. 

Tumor Mutation Characteristics 
Somatic mutations were also evaluated in the 

distinct risk groups. Figures 5A-B displays the top 20 
genes with the highest mutation frequencies in each 
risk category. In the low-risk group, the five most 
frequently altered genes were CTNNB1 (28%), TTN 
(25%), ALB (14%), MUC16 (13%), and TP53 (13%), 
while the high-risk group was characterized by TP53 
(45%), CTNNB1 (22%), TTN (20%), MUC16 (19%), and 
PCLO (11%) as the top five most mutated genes. 
There was a significant difference in TMB, with the 
high-risk group showing a higher frequency of tumor 
mutations compared to the low-risk group (p = 0.026) 
(Figure 5C). Additionally, patients showed a 
significantly improved prognosis (p = 0.016) in the 
low-risk group (Figure 5D). Moreover, our prognostic 
analysis, integrating TMB and UbRGs, demonstrated 
that patients with low risk and low TMB had the most 
favorable prognosis, while patients with high risk and 
TMB had the poorest prognosis (Figure 5E). 

Gene Function Enrichment Analysis 
The high-risk group exhibited significantly 

worse survival and tumor pathology compared to the 
low-risk group (Figure 6A). Additionally, the 
high-risk group had a higher proportion of patients 
who were Stage II and III compared to the low-risk 
group (Figure 6B).  
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Figure 3. Construction of the UbRGs risk score model. (A) Kaplan-Meier curves for OS based on the stratification of risk scores in different datasets. (B) Distribution of 
risk scores in different datasets. (C) Distribution of survival time of patients in different datasets. (D) Heatmap illustrating the expression levels of CDC20, BOP1, and UBE2S in 
different datasets. (E) ROC analysis for the prediction of OS at 1, 3, and 5 years in different datasets. (F) Principal component analysis of different datasets. 
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Figure 4. Clinical validation of the prognostic model. (A) Analysis of risk score and clinicopathological features using a forest plot. P-values were calculated using 
Mann-Whitney U tests. (B) Nomogram for predicting OS. (C) Calibration plot of the nomogram comparing projected and observed outcomes. (D) AUC values for predicting 
1-year OS. (E) AUC values for predicting 3-year OS. (F) AUC values for predicting 5-year OS. 
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Figure 5. Tumor mutation characteristics in different subgroups based on UbRGs. (A) Mutation type and number in low risk groups. (B) Mutation type and number 
in high risk groups. (C) Differences in Tumor mutation burden (TMB) between the two risk groups. (D) Kaplan-Meier survival analysis of TMB. (E) Effects of combined UbRGs 
risk score and TMB. 

 
To explore the potential functional differences 

between the two risk groups defined by (three) hub 
UbRGs, we performed differential expression analysis 
and functional annotation. GO enrichment analysis 
revealed the involvement of DEGs in various 
biological processes, such as mitotic cell cycle, 
checkpoint signaling, cell cycle, histone ubiquitination 
and deubiquitination, regulation of T cell activation, 
innate immune response, adaptive immune response, 
negative regulation of lymphocyte activation, and 
other processes (Figure 6C). KEGG pathway analysis 
identified alterations in multiple signaling pathways, 
including lysosomes, mTOR signaling pathway, 
spliceosome, p53 signaling pathway, and NK 
cell-mediated cytotoxicity (Figure 6D). Moreover, we 
investigated the disparities in biological functions 
between the two risk groups using GSEA. The 
analysis results revealed that the high-risk group 
showed enrichment of diverse biological processes, 
including cell cycle phase transition, immune effector 
process, and mitotic cell cycle process (Figure 6E). 

Additionally, pathways such as FC-mediated 
phagocytosis, chemokine signaling pathway, and 
leukocyte transendothelial migration were also 
enriched. The enrichment analysis results revealed a 
complex relationship between hub UbRGs and 
biological processes pathways of the immune system 
(Figure 6F). These findings unveiled distinct 
pathophysiological mechanisms underlying HCC and 
suggested that this complexity might contribute to the 
differences in disease progression and patient 
outcomes. 

Landscape of Immunity 
The tumor microenvironment, especially 

tumor-infiltrating immune cells, plays a crucial role in 
tumor progression and therapeutic outcomes [19]. 
The pathway analysis above indicated that the 
high-risk group, determined by the ubiquitination 
score, exhibited enrichment in immune system- 
related pathways. Therefore, we investigated the 
variations in the TME and immune cell infiltration.  
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Figure 6. Enrichment analysis of gene functions in risk groups using gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). (A) 
Heatmap illustrating the clinical characteristics of patients in the low-risk and high-risk groups. (B) Bar graphs depicting the distribution of different risk groups based on patient 
survival status and tumor stage. (C) Heatmap illustrating the activation state of GO pathways in different groups after processing using GSVA. (D) Heatmap illustrating the 
activation state of KEGG pathways in clustered groups after processing using GSVA. (E) Enriched GO pathways associated with DEGs in the predicted groups using GSEA. (F) 
Enriched KEGG pathways associated with DEGs in the predicted groups using GSEA. 

 
The high-risk group, showed significantly higher 

stromal, immunological, and ESTIMATE scores (p < 
0.05), indicating an enhanced overall immune status 
and immunogenicity in the TME of the high-risk 
group (Figures 7A-C). To further explore the immune 
landscape across different risk groups, we employed 
CIBERSORT and ssGSEA for evaluation. The ssGSEA 
was used to quantify the enrichment scores of 
immune cell infiltration in different groups and 

examine the correlation between immune cells and 
their functions (Figure 7D). The CIBERSORT analysis 
revealed a significant enrichment of macrophages M0, 
CD8+ T cells, and macrophages M2 in the high-risk 
group, while activated B cells and resting CD4+ 
memory T cells were significantly enriched in the 
low-risk group (Figure 7E). Those results showed 
differences between the two risk groups in 
macrophages, T cell co-inhibition, type II IFN 
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response, and other factors. Furthermore, we assessed 
the correlation between hub UbRGs and immune 
cells, as the abundance and functionality of immune 
cell infiltration significantly influence tumor 
immunotherapy. The majority of immune cells 
showed strong correlations with the three hub UbRGs 

and risk scores. Importantly, macrophages M0 and 
macrophages M2 exhibited the strongest and most 
significant correlation with the risk score (Figure 7F). 
The correlation scatter plots depicted the relationship 
between macrophages M0 and resting CD4+ memory 
T cells (Figures 7G-H).  

 

 
Figure 7. Comparison of immune status between different risk groups. (A) Comparison of stromal scores. (B) Comparison of immune scores. (C) Comparison of 
ESTIMATE scores. (D) Comparison of immune cell enrichment scores. (E) Comparison of immune cell infiltration. (F) Correlation analysis between immune cells and UbRGs. (G) 
Correlation analysis between risk score and macrophages M0. (H) Correlation analysis between risk score and T cells CD4 memory resting. (*p < 0.05; **p < 0.01; ***p < 0.001). 
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The above findings indicate distinct immune 

landscapes between the two risk groups, and 
variations in immune response levels may reveal 
prognostic disparities in HCC. 

Immunotherapy Prediction  
As immunological checkpoints play a critical 

role in tumor immunotherapy, we investigated the 
differences in immune checkpoint transcription 
between the two risk groups. High-risk patients 
demonstrated significant up-regulation of 33 immune 
checkpoint genes (Figure 8A), indicating their 
potential benefit from targeted therapies against 
up-regulated immune checkpoints. Subsequently, we 
explored the correlation between risk scores of hub 
UbRGs and positive immune checkpoints. Most 
immunological checkpoints and risk scores showed 
positive correlations, with CD276 having the strongest 
association, as indicated by the heat map (Figure 8B). 
We further conducted the TIDE analysis to investigate 
the interaction between TMB and immunotherapy 
and to determine potential differences in response to 
immunotherapy among patients with diverse risk 
patterns. The study results revealed that the high-risk 
group showed significantly elevated TIDE score and 
Exclusion score, as well as a lower MSI score (Figure 
8C). These findings indicate an increased potential for 
immune escape in the high-risk group and suggest a 
potential poor efficacy of immune checkpoint 
inhibition therapy (ICI). Additionally, TCIA was used 
to predict the response to immunotherapy. Patients in 
the low-risk group with negative PD-1 and CTLA-4 
expression responded better to immunotherapy than 
those in the high-risk group, whereas patients in the 
high-risk group with negative PD-1 expression and 
positive CTLA-4 expression responded more 
favorably to immunotherapy than those in the 
low-risk group (Figure 8D). These findings indicate 
that high-risk and low-risk patients show distinct 
immune statuses, and our hub UbRGs-based 
signature has the potential to identify individuals 
who are suitable for checkpoint inhibitor treatment. 

Drug Sensitivity Analyses  

To aid in the development of personalized 
treatment programs, we evaluated the sensitivity of 
patients in different risk categories to selected 
chemotherapeutic drugs in the current clinical setting. 
High-risk patients exhibited lower IC50 values for 
fulvestrant, vorinostat, leflunomide, nilotinib, 
sepantronium bromide, and temozolomide compared 
to low-risk patients. This suggests that patients may 
potentially benefit more from the mentioned drugs in 

the high-risk group. Selumetinib and NU7441 
exhibited higher IC50 values in the high-risk group, 
suggesting that these two chemotherapeutic agents 
were more resistant in the high-risk group (Figures 
9A and 9C). Additionally, a significant correlation 
was observed between the risk score and drug 
sensitivity (Figures 9B and 9D). These findings 
emphasize the substantial potential of hub UbRGs in 
predicting chemotherapy sensitivity and indicate its 
potential value in guiding clinical treatment decisions. 

Single-cell Sequencing Data Analysis 
The GSE149614 dataset, comprising 10 HCC 

tumor samples, was downloaded from the GEO 
database to investigate the expression of hub UbRGs 
in tumor cells (Figure 10A). After performing quality 
control on each tumor sample, a total of 34,061 cells 
were included in the study. The quality-controlled 
cells were subsequently divided into 16 clusters 
(Figure 10B), and the differences among the cells 
within each cluster were analyzed. A heat map was 
generated to visualize the expression patterns of the 
top five most important genes (Figure 10D). Eight 
major cell types, including HCC, B cells, 
macrophages, fibroblasts, endothelial cells, mast cells, 
CD4+ T cells, and CD8+ T cells, were identified in the 
tumor samples (Figure 10C). Additionally, we 
provide the relative proportions of different cell types 
within the tumor samples. Upon examining the 
distribution of the eight cell lineages, the most 
predominant cell type in the tumor samples was 
HCC, followed by macrophages, CD4+ T cells, and 
CD8+ T cells (Figure 10E). Furthermore, UMAP 
analysis revealed heterogeneous levels of hub UbRGs 
enrichment in tumor cells and immune cells (Figure 
10F), with the highest enrichment observed in HCC 
cells, followed by CD8+ T cells (Figure 10G). Cluster 6 
exhibited significantly elevated UbRGs activity 
compared to other HCC cell subtypes (Figure 10H). 
Subsequent analysis revealed significant enrichments 
of the hallmark cell cycle (E2F targets, G2M 
checkpoint, MYC targets v2, DNA repair) and 
metabolism (glycolysis) pathways in cluster 6 (Figure 
10I). Furthermore, DEGs between high and low 
UbRGs-scored HCC clusters exhibited significant 
enrichments in metabolism, angiogenesis, cell 
differentiation, and immune-related pathways, 
including glycosaminoglycan biosynthesis 
chondroitin sulfate, VEGF, WNT, B and T cell receptor 
signaling pathway (Figure 10J). Overall, these 
findings highlight the importance of hub UbRGs in 
the context of HCC cells and immune cells within 
TME.  
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Figure 8. Immune checkpoint analysis, TIDE and TCIA. (A) Expression of immune checkpoints in different risk groups. (B) Association between immune checkpoints and 
UbRGs. (C) TIDE, scores for T cell exclusion and dysfunction, and MSI in different risk groups. (D) Differences in immune checkpoint inhibitor response between the high-risk 
and low-risk groups. (*p < 0.05; **p < 0.01; ***p < 0.001). 
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Validation of UbRGs Expression 
We conducted a combined analysis using the 

HPA database and cytological experiments to further 
validate the expression of hub genes for UbRGs. The 
HPA database was utilized to investigate the 
immunohistochemistry of BOP1, CDC20, and UBE2S 
in HCC tissue samples (Figure 11A). The results 
revealed higher staining intensity of CDC20 and 
UBE2S compared to normal liver tissue. 
Subsequently, RT-qPCR was used to evaluate the 
differences in gene expression levels between the 
normal liver cell line (LO2) and three liver cancer cell 
lines (HepG2, Huh7, MHCC97H). The results 

demonstrated the up-regulation of BOP1, CDC20, and 
UBE2S in liver cancer cells (Figure 11B). The western 
blot bands exhibited consistency with the RT-qPCR 
results (Figure 11C). The bar chart quantitatively 
illustrates the variation in protein levels of hub genes 
for UbRGs among different cell lines (Figure 11D). 
Considering the current studies, there is insufficient 
evidence regarding the cellular sublocalization of hub 
genes for UbRGs. Hence, we investigated HCC cells 
using IF. The results showed predominant expression 
of BOP1 in the nucleus, while CDC20 and UBE2S 
exhibited high expression in the cytoplasm (Figure 
11E). 

 
 

 
Figure 9. Drug sensitivity analyse. (A, C) Comparison of drug sensitivity between the low-risk and high-risk groups. (B, D) Correlation between risk scores and drug 
sensitivity. Statistical significance was defined as p < 0.05. 
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Figure 10. Single-cell analysis of HCC sample. (A) Different samples in the HCC dataset. (B) 34,061 cells belonging to sixteen cell clusters in ten HCC samples. (C) 
Different cell types. (D) Heatmap showing the expression of the top five marker genes for each cluster. (E) Frequency distribution of cell types across ten samples. (F) UMAP 
visualization of UbRGs expression in different cell subsets. (G) Boxplots illustrating the scores of UbRGs in different cell clusters. (H) Boxplots illustrating the scores of hub 
UbRGs in different cell clusters. (I) Heatmap showing different hallmark pathways enriched in HCC cell clusters by GSVA. (J) Differences in KEGG pathway activities scored per 
HCC cell by GSVA between hub UbRGs high and low score cells.  
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Figure 11. Validation of UbRGs expression was based on HPA database and experiments. (A) The expression profiles of UbRGs in normal and tumor tissues were 
retrieved from the TCGA database, and the immunohistochemistry images of UbRGs were obtained from the HPA database. (B) RT-qPCR was used to measure the expression 
levels of BOP1, CDC20, and UBE2S genes in the normal liver cell line (LO2) as well as in liver cancer cell lines (HepG2, Huh7, MHCC97H). (C) Western blotting (WB) was 
performed to detect the protein levels of BOP1, CDC20, and UBE2S in the normal liver cell line (LO2) as well as in liver cancer cell lines (HepG2, Huh7, MHCC97H). (D) The 
bar graph illustrates the expression differences of UbRGs among different cell types. (E) Immunofluorescence was used to determine the subcellular localization of UbRGs in 
tumor cells. 

 

Discussion 
HCC accounts for 90% of liver cancer cases and 

has a 5-year survival rate of 18% [1, 20]. 

Unfortunately, only 25% of HCC patients carry at 
least one potential targetable therapeutic mutation, 
while the majority of the primary cancer-causing 
genes remain untargetable [21]. Furthermore, HCC 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2597 

does not typically respond well to conventional 
chemotherapies. As a results, hepatic resection and 
transplantation are the most effective treatments [22]. 
New hepatic TME modulating therapies have 
emerged since 2017. Pembrolizumab and nivolumab, 
two PD-1-targeting immune checkpoint inhibitors, 
have received FDA approval as second-line therapies 
for advanced HCC [23, 24]. However, despite these 
remarkable results, only 20%–30% of patients derive 
benefits from immunotherapies, and biomarkers have 
thus far failed to identify the responsive groups [25, 
26]. Identifying new therapeutic targets and 
prognostic biomarkers is an imperative necessity. 

Ubiquitination is the covalent attachment of 
ubiquitin to lysine residues on target proteins, which 
serves as a post-translational protein modification 
[27]. Mounting evidence suggests that ubiquitination, 
along with its reverse process, deubiquitination, plays 
crucial regulatory roles in innate and adaptive 
immune responses by modulating the functions of 
diverse immune cells. For instance, ubiquitination 
regulates apoptosis and autophagy in macrophages 
[28], MHC II expression in dendritic cells [29], TCR 
signaling and T cell activation [30], as well as B cell 
development and activation [31]. Ubiquitination 
research has primarily focused on the phenotypic 
changes induced by individual proteins. However, 
studies investigating the multi-omics characteristics 
of UbRGs have been reported infrequently. To 
elucidate the biological function and clinical 
significance of ubiquitination in HCC, we conducted 
an analysis of the genomic and transcriptomic 
characteristics related to UbRGs. 

We investigated the significance of UbRGs in 
HCC through bioinformatics analysis using RNA-seq 
and scRNA-seq techniques. Initially, we identified a 
signature of UbRGs using WGCNA and machine 
learning (Figure S2 and Figure 2). Three UbRGs 
(BOP1, CDC20, UBE2S) were identified using Cox 
regression, SVM-RFE, LASSO, and GBM algorithms. 
Subsequently, prognostic models were constructed 
based on these three genes (Figure 3). These ubiquitin 
hub genes are associated with the progression of 
HCC. BOP1, an RNA-binding protein, is involved in 
ribosome biogenesis, as well as cell cycle regulation 
and cell proliferation [32]. Ubiquitination of hnRNPU 
mediated by CDC20 regulates chromatin 
condensation through the modulation of the 
CTCF-cohesin complex-hnRNPU interaction [33]. 
Dysregulation of the CDC20-hnRNPU axis is 
implicated in tumor growth and treatment resistance 
[34]. CDC20 has emerged as a promising therapeutic 
target for cancer treatment, as reported by researchers 
[35]. UBE2S, a ubiquitin-conjugating enzyme, 
regulates cell cycle progression, apoptosis, and 

protein ubiquitination, which are directly associated 
with tumor growth [36]. UBE2S serves as a predictive 
biomarker for patients, and the UBE2S-PTEN-pAKT 
signaling axis holds promise as a therapeutic target 
for HCC [37]. Nevertheless, there are no published 
studies investigating the association between these 
three potential ubiquitin hub genes and prognosis in 
HCC patients, specifically for the construction of 
prognostic models. We believe that our study can 
offer valuable insights for future clinical 
decision-making processes. 

Prognostic models for HCC were developed 
using the signature of UbRGs (BOP1, CDC20, and 
UBE2S). The model categorizes patients into high and 
low risk subgroups, which exhibit significantly 
different prognoses (Figure 3A). This classification 
was achieved by evaluating each patient's risk score 
based on the median risk values. ROC curves were 
generated using different datasets, and the AUC 
values were calculated at 1, 3, and 5 years. Among 
these, the highest AUC value of 0.845 was observed 
(Figure 3E). Multivariate analysis indicated that the 
new signature could potentially serve as an 
independent prognostic factor (Figure 4A). For 
precise and efficient quantification of HCC patients' 
clinical characteristics, we developed a nomogram 
incorporating age, gender, stage, and risk score. This 
nomogram, illustrated in Figure 4B, accurately 
predicts patients' overall survival and facilitates more 
precise risk assessment, aiding in diagnosis and 
treatment decisions. The calibration curves of the 
established nomogram demonstrated a high level of 
accuracy in aligning actual observations with 
predictions (Figure 4C). Furthermore, clinically 
relevant ROC curves provide evidence that risk scores 
outperform other clinical features in terms of their 
efficacy for clinical applications (Figures 4D-F). 
Consistent with conventional clinical staging, the 
high-risk group had a higher proportion of patients in 
stage II-III. These findings suggest that the model can 
provide improved predictions of patient prognoses. 

Immune interactions are crucial features of 
tumorigenesis and represent a therapeutic target for 
HCC. Immune cells and stromal cells are the major 
constituents of TME, and both immune scores and 
stromal scores have been found to correlate with 
clinicopathological characteristics and prognosis [3]. 
Pathway analysis showed that the high-risk group 
identified by the ubiquitination score was enriched in 
pathways related to the immune system (Figure 6). By 
utilizing the ESTIMATE algorithm, we calculated 
these scores and found that the high-risk group had 
significantly higher immune and stromal scores 
(Figures 7A-B). These results suggest a potential 
association between ubiquitination and the TME, 
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which may influence the initiation and progression of 
neoplasia. The relative abundance of 22 immune cell 
groups in the HCC samples was determined using the 
CIBERSORT method. The activation of immune cells 
can impact prognosis. The high-risk group exhibited 
higher rates of immune cell infiltration compared to 
the low-risk group, specifically showing increased 
abundance of macrophages M0, macrophages M2, 
and T cells CD8. Macrophages, T cell co-inhibition, 
and type II IFN response exhibited differences among 
risk groups as determined by ssGSEA (Figure 7D). 
The correlation analysis between immune cells, 
expression of hub UbRGs, and risk scores revealed a 
strong positive correlation between macrophages and 
ubiquitination genes (Figure 7F). M2 macrophages are 
recognized as crucial contributors to tumor 
progression and have been associated with poor 
prognoses [38]. Ubiquitin promotes macrophage M2 
polarization and activates the CXCR4/ERK signaling 
pathway, thereby facilitating the invasion of HCC 
[39]. Serpinc1 suppresses HCC by inducing apoptosis 
and inhibiting macrophage polarization through the 
ubiquitin-proteasome system [40]. These findings 
suggest that the ubiquitination process in M2 
macrophages plays a critical role in HCC. 

Cancer cells employ checkpoints to suppress T 
cell reactivity and evade immune destruction [41]. 
The success of treatment with immune checkpoint 
inhibitors can be predicted by assessing TMB, which 
serves as an indicator of the mutational burden in 
cancer [42, 43]. The major histocompatibility complex 
proteins present neoantigens to T cells following 
mutations. In this study, we observed that the 
high-risk group with a high TMB exhibited the 
poorest prognosis (Figure 5E). Immune checkpoints 
are critical for immune responses [44]. We observed a 
significant up-regulation of immunological 
checkpoint-related genes in the high-risk group 
(Figure 8A). The high-risk group exhibited a higher 
TIDE score, suggesting a greater potential for immune 
escape and less effective immune checkpoint 
inhibition in these individuals (Figure 8C). 
Furthermore, patients from the IMvigor210 cohort 
who responded to anti-CTLA-4 treatment showed a 
significant decrease in UbRGs (Figure 8D). Responses 
to immunotherapy, as indicated by PD-1 and CTLA-4 
expression, differed across risk groups. Signatures 
based on hub UbRGs may identify patients who could 
benefit from checkpoint inhibitor therapy, thus aiding 
in the advancement of targeted liver cancer treat-
ments and enhancing immunotherapy approaches. 
Finally, we evaluated the drug sensitivity of each 
potential regulator (Figure 9). Chemotherapy 
sensitivity varied among patients in different risk 
groups, with notable correlations between risk scores 

and drug response (Figures 9B and 9D). Utilizing 
UbRGs, we can foresee chemotherapy response in 
high and low-risk groups, aiding clinicians in 
devising personalized treatment strategies. Precise 
forecasts in drug discovery and development can 
optimize time and resource utilization [45]. 
Ubiquitination hub genes can predict the 
immunotherapy and medication sensitivity responses 
of patients. 

This research had several limitations. Firstly, we 
confirmed the expression of hub UbRGs in HCC cells 
through cytological experiments at both the gene and 
protein levels. To elucidate the specific underlying 
mechanisms, further in vitro experiments need to be 
conducted. Secondly, despite constructing a 
prognostic signature and validating it using both 
external and internal datasets, the possibility of source 
bias remains. Therefore, additional clinical cohorts are 
required to validate our findings. Thirdly, our model 
is based on three specific UbRGs and the roles of 
additional UbRGs in HCC biology warrant further 
investigation. Nonetheless, this study can still provide 
valuable assistance to clinicians in risk stratification of 
patients and in selecting appropriate therapies. 

Conclusion 
In conclusion, our findings suggest that the 

model incorporating the UbRGs signature can 
accurately predict the prognosis of patients with 
HCC. Furthermore, we have confirmed the expression 
of UbRGs signature in HCC through cellular 
experiments. The UbRGs signature shows promise as 
a novel biomarker, with potential applications in 
prognosis assessment, immunotherapy, and drug 
sensitivity prediction for HCC patients. These 
findings contribute to the understanding and 
potential clinical implications of the UbRGs signature 
in HCC management. Further studies are warranted 
to validate and explore the full potential of the UbRGs 
signature in improving patient outcomes. 
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