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Abstract 

Background: Hepatocellular carcinoma often results in late-stage diagnosis, leading to decreased treatment 
success. To improve prognosis, this study integrates cuproptosis with immune risk scoring models for HCC 
patients. 
Method: We identified differentially expressed genes connected to cuproptosis and immune responses using 
Pearson correlation. A risk signature was then constructed via LASSO regression, and its robustness was 
validated in the International Cancer Genome Consortium dataset. Additionally, qPCR confirmed findings in 
tumor and normal tissues. 
Results: Eight genes emerged as key prognostic markers from the 110 differentially expressed genes linked to 
cuproptosis and immunity. A risk-scoring model was developed using gene expression, effectively categorizing 
patients into low- or high-risk groups. Validated in the ICGC dataset, high-risk patients had significantly reduced 
survival times. Multivariate Cox regression affirmed the risk signature's independent predictive capability. A 
clinical nomogram based on the risk signature was generated. Notably, low-risk patients might benefit more 
from immune checkpoint inhibitors. qPCR and western blotting results substantiated our bioinformatics 
findings. 
Conclusions: The genetic risk signature linked to cuproptosis and immunity holds potential as a vital 
prognostic biomarker for Hepatocellular carcinoma, providing avenues for tailored therapeutic strategies. 
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Introduction 
Hepatocellular carcinoma (HCC) is an intricate 

and multistep disease influenced by a combination of 
genetic and epigenetic factors. It ranks fourth globally 
in terms of cancer-related mortality rates [1, 2]. 
Hepatitis B, Hepatitis C, excessive alcohol 
consumption, and genetic predisposition are some of 
the causes of HCC [3]. At present, a clinico-
pathological staging system is the most important 
method of prognosticating HCC. It is therefore 
imperative to develop novel prognostic biomarkers 
for HCC to predict survival and outline personalized 

treatment plans. 
There are many types of programmed cell death 

(PCD), including apoptosis, ferroptosis, necroptosis, 
and cuproptosis, in which the cell dies upon 
stimulation by an external signal, ranging from 
physiological to pathological [4-8]. This form of 
programmed cell death (PCD) is induced by copper, 
called cuproptosis [9]. It has been shown that higher 
serum copper levels are associated with poorer 
survival in liver cancer [10]. According to previous 
research, liver copper content is closely associated 
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with hepatocellular carcinoma [11], The metabolism 
of copper affects the microenvironment of tumors as 
well. Hepatocellular carcinoma (HCC) still lacks a 
clear understanding of the mechanisms that cause 
cuproptosis. Thus, it is essential to comprehensively 
comprehend the association between cuproptosis and 
HCC and establish novel diagnostic and therapeutic 
approaches. 

In the past few decades, a profound under-
standing of the intricate interplay between tumors 
and the immune response has led to notable success in 
advancing tumor immunotherapy for tumor 
treatment [12]. In spite of this, immunotherapy is only 
beneficial for a small percentage of the population 
[13]. Tumorigenesis is closely linked to the immune 
microenvironment as well as to tumor progression 
and treatment effectiveness [14]. There is limited 
benefit for patients with HCC who take immune 
checkpoint inhibitors (ICPI) due to the complex liver 
immune microenvironment and immune suppression 
mechanisms [15]. Due to this, the development of a 
reliable and comprehensive index that can predict 
both survival and immune therapy efficacy for HCC 
patients is urgently needed. 

 It has been reported that a gene related to 
copper metabolism may serve as a biomarker for HCC 
prognosis after reviewing all the evidence presented 
during this study. HCC patients' survival and 
response to immunotherapy can also be predicted by 
immune-related genes in prior research [16, 17]. The 
primary aim of this study is to explore the prognostic 
implications of the interplay between cuproptosis and 
immune status in hepatocellular carcinoma (HCC). 
Specifically, we investigate a novel approach that 
integrates cuproptosis and immune-related factors to 
enhance the accuracy of prognosis prediction in HCC. 
This research aims to address key questions regarding 
the potential for novel diagnostic and therapeutic 
strategies in HCC, rooted in the understanding of 
cuproptosis and immune interactions.  

Materials and Methods 
Data acquisition and preprocessing for 
Hepatocellular Carcinoma 

HCC samples retrieved from the Cancer Genome 
Atlas (TCGA) database (https://cancergenome 
.nih.gov/) were subjected to gene expression analysis, 
along with clinical factors such as survival status, 
overall survival time, age, gender, and tumor stage. 
Subsequently, patients lacking overall survival 
information were excluded from the analyses. The 
TCGA databases were directly accessed to obtain 
RNA-seq transcriptome data (FPKM value) and 
clinicopathological details from 374 HCC tissues and 
50 normal liver tissues. Furthermore, an in-depth 

investigation into genomic mutations of HCC 
patients, encompassing somatic mutations and copy 
number variants (CNVs), was conducted. To validate 
the findings, an additional analysis was performed 
using 202 normal liver tissues and 243 HCC samples 
sourced from the ICGC database. Additionally, four 
samples of HCC and four samples of normal tissue 
were obtained from the First Hospital of Shanxi 
Medical University. The ethics Committee of the First 
Hospital of Shanxi Medical University also approved 
it. Inclusion criteria are as follows: (1) Patients 
diagnosed with hepatocellular carcinoma via 
pathological examination; (2) Patients without severe 
preoperative cardiac, pulmonary, cerebral, or renal 
functional disorders. Exclusion criteria are as follows: 
(1) Pathological examination confirming intrahepatic 
cholangiocarcinoma or malignancies of other systems; 
(2) Patients who have received corresponding 
antitumor treatments prior to surgery. 

Differentially expressed genes associated with 
cuproptosis and immunity 

Through the utilization of the "limma" package, 
we discerned genes with DEGs between HCC and 
normal tissues in the TCGA cohorts. The DEGs were 
identified based on P-values less than 0.05 and |fold 
change| greater than 2. Additionally, we 
incorporated data from a previously published article 
on cuproptosis-related genes (n = 10) and the 
Immunology Data and Analysis Portal (ImmPort) 
genes (n = 2483) to form a focused gene set for our 
investigation. For the identification of cuproptosis- 
associated DEGs, we executed Pearson correlation 
analysis between the overall DEGs and cuproptosis- 
related genes, adhering to the criteria of Correlation 
Coefficient (Cor) > 0.5 and P-value = 0.05. Similarly, to 
identify immune-associated DEGs, we employed the 
same methodology to assess the correlation between 
the total DEGs and immune hallmark genes. To gain 
insights into the potential functions of these 
immune-associated DEGs, we conducted Gene 
Ontology (GO) enrichment analyses encompassing 
cellular components (CC), biological processes (BP), 
and molecular functions (MF). Furthermore, KEGG 
enrichment analyses were performed to explore their 
potential functions. To ascertain statistical 
significance in all our analyses, we set the p-value at 
0.05. 

An evaluation of the development and 
validation of a prognostic risk signature 
associated with cuproptosis and immune 
phenotypes 

Performing a univariate Cox regression analysis 
on the overlapping DEGs between cuproptosis and 
immunity yielded statistically significant results for 
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P-values < 0.05. Subsequently, a LASSO-based Cox 
regression model was constructed, incorporating 
genes with prognostic significance from the TCGA 
training cohort. To determine prognostic coefficients 
for the genes, lambda values were computed using 
the "glmnet" package with a 10-fold cross-validation 
setting. In the ensuing analyses, we identified a risk 
signature associated with both cuproptosis and 
immunity, capable of predicting outcomes in 
Hepatocellular Carcinoma (HCC). The risk score was 
calculated using the following formula, where Coefi 
represents the coefficients, and xi represents the 
expression level of the gene:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶𝑅𝑅 ∗  𝑥𝑥𝑅𝑅
𝑛𝑛

𝑖𝑖=1

 

The median risk score of the patients with HCC 
was then used to categorize them into high- and 
low-risk groups. Using a log-rank test, we compared 
the overall survival (OS) time between these groups 
using Kaplan-Meier analysis. We also performed 
receiver operating characteristic (ROC) analyses using 
the survival package, survminer package, and 
timeROC package to determine the level of 
predictability for the gene signature based on the 
survival, survminer, and timeROC packages. 
Validation of the gene signature's prognostic potential 
in the ICGC cohort was done using the same formula 
and statistical methods. 

Evaluation of signature genes' prognostic 
significance 

Each hub gene comprising the prognostic 
signature was evaluated using univariate Cox 
regression. Moreover, Kaplan-Meier survival curves 
for overall survival (OS) were derived using the 
"survminer" package in order to evaluate the 
prognostic signature and its relationship to survival 
outcomes. 

Gene signature associated with prognosis and 
clinical characteristics 

The correlation between the signature genes of 
individuals and their clinical characteristics was 
assessed utilizing the "limma" and "ggpubr" packages. 
Subsequently, two clinical characteristics were 
identified as significantly associated with the 
prognosis of HCC patients, employing univariate and 
multivariate Cox regression analyses, respectively. 
Based on these clinical characteristics and the risk 
score, a nomogram was developed to predict the 
overall survival rates of HCC patients. The 
construction of the nomograms and the assessment of 
their predictive ability were performed using the 
"RMS" package. Calibration curves were plotted to 

compare the predicted and observed overall survival 
rates. 

Integrated functional enrichment analyses and 
gene set enrichment analyses 

The statistical significance of the results was 
determined by analyzing DEGs between high-risk 
and low-risk groups using the "limma" package. 
Using the R programming language and the GSVA 
package, we performed Gene Set Variation Analysis 
(GSVA) to investigate the biological functions and 
potential mechanisms associated with the Cuprop-
tosis- and Immune-Associated Risk Signature. 
Furthermore, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis was conducted using Cluster-
Profiler packages. Data visualization was performed 
using the "ggplot2" package. As part of the 
preparation for the analysis, a gene set named 
"c2.cp.kegg.v7.4.symbols" was downloaded directly 
from the MSigDB repository. 

The prognostic risk score and immune 
phenotype score (IPS) are related to the 
tumor microenvironment 

By performing single-sample gene set 
enrichment analysis (ssGSEA) on the RNA-seq 
expression matrix of Hepatocellular Carcinoma 
(HCC), the extent of immune cell infiltration within 
the tumor microenvironment (TME) was evaluated. 
The effect of immune checkpoint inhibitors (ICIs) was 
assessed by consulting the cancer immunogenome 
database (TCIA, https://tcia.at/home). Furthermore, 
the expression levels of immune checkpoints were 
compared using boxplots between individuals 
stratified as high-risk and low-risk. 

Quantitative polymerase chain reaction and 
RNA isolation 

With a NanoDrop 2000 spectrometer (Thermo 
Fisher, USA), we assessed the purity and 
concentration of the total RNA isolated from HCC 
samples using TRIzol reagent (Invitrogen, #15596026). 
An RT supermix kit (HiScript II Q RT SuperMix, 
Vazyme, #R222-01) was used to reverse transcription 
total RNA into cDNA. Supplementary Table 1 and 
Supplementary Table 2 describe the reaction system 
and conditions. For all genes except SNHG4, primer 
sequences were obtained from the PrimerBank 
database, except for SNHG4, where primer sequences 
were obtained from a previous study (PMID: 
33822671). In Supplementary Table 3, each primer's 
melting and annealing temperatures were listed (Tm 
and Tm-5 °C). In Supplementary Table 4 and 
Supplementary Table 5, the reaction system and 
conditions for a RT-qPCR assay (ChamQ Universal 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2263 

SYBR RT-qPCR Master Mix, Vazyme, #Q711-02) are 
described. Standardizing gene expression was done 
using GAPDH as a reference. Analysis of data was 
carried out using the 2-ΔCT method. All the primers 
for RT-qPCR were synthesized by Sangon Biotech 
company (Guangzhou, China) and the corresponding 
sequences were listed in Supplementary Table 1. 

Western blotting 
To extract protein content from HCC tissue 

samples, RIPA lysis buffer (Beyotime, #P0013B) 
supplemented with PMSF protease inhibitor 
(Beyotime, #ST506, 1:100) was used. SDS-PAGE 
(Beyotime #P0012A) was used to separate the protein 
samples, and nitrocellulose membranes (Beyotime, 
#FFN53) were then used to transfer them. TBST 
(Beyotime, #ST671) containing 5% skimmed milk was 
used to block the membranes for 2 hours, followed by 
overnight incubation with primary antibodies at 4°C. 
Western blot analysis was performed with the 
following primary antibodies: KIF18A (abcam, 
#ab72417, 1:1000), CENPE (proteintech, #28142-1-AP, 
1:1000), ATAD5 (abcam, #ab72111, 1:1000), KIAA1841 
(Themo Fisher, #PA5-71136, 1:500), CDCA2 

(proteintech, #17701-1-AP, 1:1000), PRR11 (abcam, 
#ab237526, 1:1000), TMEM164 (abcam, #ab122510, 
1:250), and GAPDH (proteintech, #10494-1-AP). An 
additional hour of secondary antibody (abcam, 
#ab205718; #ab6721) incubation was performed after 
the primary antibody incubation. Chemiluminescence 
imaging systems (clinx, #ChemiScope 6000 Touch) 
were used to detect protein bands using the ECL 
chromogenic kit (Thermo Fisher, # 32106). 

Statistical analysis 
Our statistical analysis was conducted using R 

software (version 4.1.3). Student's t-tests were used 
for data that were normally distributed.Wilcoxon tests 
were used for data that were not normally distributed. 
Kruskal–Wallis test (one-way ANOVA on ranks) was 
applied to compare statistically significant differences 
between multiple groups. The Chi-square test was 
used to compare categorical variables pairwise. 
Log-rank tests were used to compare overall survival 
(OS) times between groups. Two-tailed P-values of at 
least 0.05 were used to determine statistical 
significance. 

 

 
Figure 1. A workflow of the study. 
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Results 
Detection and annotation of cuproptosis- and 
immune-related DEGs in HCC 

Figure 1 depicts the study workflow. Initially, 
we utilized the "limma" R package to identify 3917 
DEGs from the TCGA-LIHC dataset. Figure 2A was 
utilized to generate a heatmap, demonstrating the 
transcriptional levels of these DEGs in both tumor and 
normal samples. To establish the association between 
HCC DEGs and cuproptosis-related genes, a Pearson 
correlation analysis was executed, resulting in the 
recognition of 111 HCC DEGs linked to cuproptosis. 
Conducting KEGG pathway analysis and GO 
enrichment analysis allowed us to gain deeper 
insights into 2531 DEGs linked to immune-related 
HCC. The results indicated that cuproptosis- 
associated DEGs were primarily linked to nuclear 
division, organelle fission, spindle, cellular senes-
cence, and viral carcinogenesis. Significant correla-
tions were observed between immune-associated 
DEGs and cell cycle, neuroactive ligand-receptor 
interactions, and cAMP signaling pathways. 
Moreover, immune- and cuproptosis-related DEGs 
were closely linked to cellular function, pathway 
regulation, and carcinogenesis. (Supplementary 
Figure 1A-D).  

Cuproptosis and immune response in HCC: 
development and validation of a prognostic 
signature 

A total of 110 DEGs were identified by 
combining cuproptosis-associated and immune- 
associated DEGs. Three hundred seventy-four 
Hepatocellular Carcinoma (HCC) patients from the 
TCGA database with complete survival information 
were used in univariate Cox regression analysis to 
identify genes associated with prognosis. From this 
analysis, we identified 76 genes that met the criteria 
with a significance level of P-value less than 0.05 
(Figure 2B). Furthermore, we calculated correlation 
coefficients between these genes, revealing 
predominantly positive regulation among the 
prognosis-related genes (Figure 2C). 

In order to determine the most influential 
weighting coefficients for HCC genes, LASSO Cox 
regression analyses were conducted. By utilizing the 
minimal criterion optimal λ value (Figure 2D, E), A 
model of eight gene risk signatures was developed. 
The risk score was computed as follows: risk score = 
(0.369 * KIF18A expression) + (2.258 * CENPE 
expression) + (0.293 * SNHG4 expression) + (-0.240 * 
ATAD5 expression) + (0.363 * KIAA1841 expression) 
+ (0.032 * CDCA2 expression) + (0.063 * PRR11 
expression) + (0.190 * TMEM164 expression). 

After the initial analysis, HCC patients were 
stratified based on median risk scores into high-risk 
and low-risk groups (Figure 3A). There was a positive 
correlation between higher risk scores and higher 
mortality rates (Figure 3B). Two distinct clusters of 
patients with divergent risk statuses were identified 
using Principal Component Analysis (PCA) and 
Stochastic Neighbor Embedding (t-SNE) (Figure 3C, 
D). Based on Kaplan-Meier analysis, the overall 
survival of high-risk groups was significantly shorter 
than that of low-risk groups, which suggests a better 
prognosis for low-risk groups (Figure 3E). An analysis 
of the Receiver Operating Characteristics (ROC) was 
performed to determine how effective the risk 
signature was (Figure 3F). ROC curves showed that 
the risk signature model was accurate at predicting 
1-year and 3-year survival according to one-year 
survival, 0.669 for three-year survival, and 0.614 for 
five-year survival. The International Cancer Genome 
Consortium (ICGC) validation dataset showed similar 
findings. (Supplement Figure 2). 

Prognostic and clinical characteristics 
validation of eight signature genes risk model  

Based on univariate Cox regression analysis, 
eight signature genes were identified as being 
associated with unfavorable outcomes in HCC 
patients (Figure 4A). As shown in Figure 4B, TCGA 
participants' clinical and pathological characteristics 
were correlated with the expression profiles of these 
eight genes. There was a significant increase in the 
expression of these genes among the high-risk group, 
as well as a significant difference in tumor stage, T, 
grade, and gender. For each of the eight genes, 
Kaplan-Meier survival curves demonstrated that 
higher expression levels were associated with worse 
survival outcomes (Figure 4C-J), correlating with 
previous findings. The predictive ability of our risk 
model for HCC was assessed using both univariate 
and multivariate Cox regression (Supplement Figure 
3). Predicting cancer outcomes was found to be 
possible based on risk scores and tumor stages. 

Developing a nomogram-based survival 
prediction model 

The gene risk model's clinical utility in 
predicting overall survival in HCC patients is limited. 
Thus, we developed a nomogram that integrates the 
riskscore with other clinical characteristics to predict 
overall survival at one, three, and five years. The 
nomogram plot exhibited the riskscore as a significant 
predictor of long-term survival (Figure 5A). The 
calibration chart displayed the nomogram's 
commendable performance in accurately predicting 
and observing survival rates with high agreement 
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(Figure 5B). In the evaluation of prognosis, both 
univariate and multivariate Cox regression analyses 
were performed. Independent prognostic factors 
identified in the univariate Cox regression analysis 
included the pathological T stage and the nomogram. 
However, only the nomogram maintained its 

independence in the prediction through multivariate 
Cox regression. According to the ROC analysis, the 
AUC of the nomogram surpassed that of the clinical 
characteristics, signifying a superior accuracy in 
forecasting survival compared to the clinical traits. 
(Figure 5C). 

 

 
Figure 2. Identification of the prognostic Cuproptosis - and Immune--related DEGs in the TCGA cohort (A) The heatmap showed the expression levels of Cuproptosis - and 
Immune--related DEGs in tumor and normal tissues, where red indicates high expression and blue indicates low expression. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Forest 
plots displaying the outcomes of the univariate Cox regression analysis between the expression of Cuproptosis- and Immune-related DEGs and OS (C) Association network of 
genes. (D) LASSO parameter profiles of the genes in the training cohort. (E) Parameter profile plot with the log(λ) sequence. 
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Figure 3. Prognostic analysis of the 8-gene signature in the TCGA cohort (A) Risk score curve shows the distribution of the model and the median score (B) Distribution of 
survival statuses and risk scores(C) Principal component analysis (PCA) plot (D) t-distributed stochastic neighbor embedding (tSNE) plot (E) Survival analysis in the two risk 
subgroups. (E) AUC of the risk model (AUC: area under the curve).  

 

Enrichment analysis of immune- and cuprop-
tosis- associated risk model 

In the two risk groups, the gene functions and 
pathways were scrutinized by recognizing 
differentially expressed genes (DEGs) having a 
P-value less than 0.05. Subsequent to this, GO and 
KEGG pathways were employed to evaluate the 

DEGs. The DEGs were discerned to be substantially 
implicated in nuclear division, carboxylic acid 
biosynthesis, and the segregation of mitotic sister 
chromatids through GO enrichment analysis (Figure 
6A). The analysis of further KEGG pathways 
uncovered a marked enrichment of DEGs in chemical 
carcinogenesis DNA adducts, receptor activation 
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linked with chemical carcinogenesis, and the 
cytochrome P450-mediated metabolism of xenobiotics 
(Figure 6B). Investigating the two risk groups was 
also carried out with the application of Gene Set 
Variation Analysis (GSVA). As revealed in Figure 6C, 
the evidence suggests that the group at higher risk is 
characterized by significant enrichments in gene 
alterations and cellular pathways, encompassing 
degradation of RNA, the p53 signaling pathway, and 
the cell cycle. 

The relationship between genomic instability 
and clinical characteristics based on the risk 
score model 

In the prognostic model, tumor somatic 
mutations were the focus of investigation within this 
study, employing the TCGA cohort. Differences in 
mutations between the low-risk and high-risk groups 
were analyzed through the utilization of the R 
package maftools. A waterfall chart was constructed 
to depict the mutation distribution across various risk 
groups (Figure 7A, B), revealing that the most 
frequent somatic mutations in both high- and low-risk 
groups were TP53, CTNNB1, and TTN. The high-risk 
group exhibited a noteworthy difference in the 

prevalence of TP53 mutations (40%), signifying that 
TP53 was the gene most often mutated within that 
group. For the high tumor mutation burden (TMB) 
and low tumor mutation burden (TMB) subgroups 
within the risk model, survival analysis was executed 
(Figure 7C, D), demonstrating a deterioration in 
overall survival rates for the groups with high risk 
and high TMB, respectively. An association analysis 
was also performed between the status of HBV 
infection and the riskscore model, uncovering that the 
riskscore for patients with HBV was markedly distinct 
from that for non-HBV patients. Additionally, in the 
low-risk group, there was an observation of a reduced 
number of patients who were not infected with HBV. 
(Figure 7E, F). 

The role of risk score in immune infiltration 
and anti-HCC therapies 

The immune characteristics of the signature were 
verified through the examination of immune cells and 
risk scores. A majority of immune cells exhibited a 
positive correlation with risk scores, as depicted in 
Supplement Figure 4A. A robust association was 
discerned between higher risk scores and wound 
healing (immune C1), which manifested as an 

 

 
Figure 4. Independent prognostic validation of the eight signature genes. (A) Forest plot of univariate Cox regression analysis based on data from TCGA. (B) Heatmap (blue: low 
expression.red: high expression) and clinicopathologic characteristics of risk groups (*p < 0.05, **p < 0.01, *** p < 0.001). (C–I) Kaplan–Meier survival of each Cuproptosis - and 
Immune-related DEGs expression based on data from TCGA.  
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augmentation in the expression of angiogenic genes 
and proliferation (Supplement Figure 4B). 
Additionally, an analysis employing ssGSEA revealed 
affirmative connections between the activation of type 
2 T helper cells, natural killer T cells, dendritic cells, 
and CD4 T cells (Supplement Figure 4C). 

Prior studies have demonstrated that IPS is an 
effective predictor of immunotherapy response [18, 
19]. Immune Profile Score (IPS), along with IPS-PD1 
blockers, IPS-PD1/CTLA4 blockers, and IPS-CTLA4 
blockers, were evaluated and scored. Figure 8A-D 
indicates that low-risk patients demonstrate a more 
favorable response to Immune Checkpoint Inhibitors 

(ICIs) as compared to their high-risk counterparts, 
inferring that the scores for the low-risk group are 
elevated. The relationship with the risk score was 
further explored through the examination of PD1, 
CTLA-4, LAG-3, and TIGHT. An increased expression 
of PDL-1, CTLA-4, and TIGHT was observed in the 
high-risk category (Figure 8E-H). Although no 
significant variances were found between the groups, 
an ascending trend in LAG3 was exhibited by 
high-risk subjects. These observations hint that ICIs 
may elicit a more favorable response in low-risk 
patients.  

 

 
Figure 5. Construction and validation of the riskscore-related nomogram (A-B) Nomogram to predict the 1-year, 3-year, and 5-year overall survival rate of HCC patients in 
TCGA and ICGC cohorts. (C) Calibration curve for the overall survival nomogram model in the TCGA cohort. (D) ROC curve for the overall survival nomogram model in the 
TCGA cohort (E) Decision curve analysis of the nomogram in TCGA cohort. (F-H) Calibration curve, ROC curve, DCA curve of the nomogram in ICGC cohort. 
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Figure 6. Enrichment analysis of the differentially expressed genes. (A) Barplot graph displayed GO enrichment, with the longer bar represented as the more enriched genes, and 
the increasing depth of red as the more obvious difference. (B) The results of the KEGG enrichment in TCGA cohort. The abscissa represents the gene ratio, and q-value as the 
adjusted p-value. (C) GSVA enrichment analysis showed the activation states of biological pathways in high risk group and low risk group. The red represented activated pathways 
and blue represented inhibited pathways.  

 

Validation of risk signature genes model 
The validation of the results was achieved 

through a quantitation polymerase chain reaction 
(qPCR) assessment of genes related to Cuproptosis- 
and Immune-Associated Risk Signature. An 
examination of tumor specimens revealed an 
escalation in the expression of KIF18A, in conjunction 

with heightened levels of CENPE, SNHG4, 
KIAA1841, CDCA2, and PRR11 mRNA (Figure 
9A-H). Although no statistically significant 
differences were identified between cancer samples 
and normal samples concerning ATAD5 and 
TEME164 expressions, a tendency for these genes to 
be more prominently expressed in cancer specimens 
was noted. Moreover, Western blot analysis was 
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employed to ascertain the protein concentrations of 
the model genes, revealing that all the genes were 
expressed at augmented levels in HCC tissues (Figure 
9I). These results were consistent with the 

bioinformatics data. Additionally, we conducted a 
search on PubMed to identify genes associated with 
Cuproptosis and obtained a gene signature [20-22].  

 

 
Figure 7. Tumor mutation analysis in TCGA cohort and Differences of riskscore signature in HBV and No-HBV. (A) Waterfall plots in the high-risk group. (B)Waterfall plots 
in the low-risk group. (C-D) The percent weight of patients with HBV and No-HBV in low or high riskscore group. (E) Survival curves of the high-TMB group and the low-TMB 
group. (F) Survival curves of the comprehensive analyses between TMB and risk score.  
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Figure 8. IPS analysis and correlations between risk score and common immune checkpoints (A–D) Comparison of the scores of IPS-CTLA4 blocker, IPS-PD1 blocker, 
IPS-PD1/CTLA4 blocker and IPS between different risk groups (E) Correlations between risk score and PDL1, CTLA4, LAG3 and TIGIT.  

 
Subsequently, we gathered models and 

performed a comparative analysis between our model 
and others, revealing that our model demonstrated 
superior accuracy and predictive ability (Supplement 
Figure 5). Employing the IMvigor210 cohort data, our 
predictive model demonstrates enhanced clinical 
efficacy over Wang's, especially within the low-risk 
patient group, evidenced by a statistically significant 
elevation in the proportion of complete and partial 
responses (CR/PR) (Supplement Figure 6). 
Furthermore, our model yields more favorable 
response scores in comparison to Wang's, as denoted 
by the box plots which reveal a superior distribution 
of response scores correlating with CR/PR events. 
Concurrently, in conjunction with data from 
supplementary Figure 5, the area under the curve 
(AUC) values within the Receiver Operating 
Characteristic (ROC) analysis further corroborate the 
superiority of our model over Wang's signature. This 
indicates a heightened proficiency of our model in 
prognosticating positive clinical responses among 

patients stratified into the low-risk category. 

Discussion 
HCC's overall prognosis remains unfavorable 

despite advances in diagnostic methods and 
treatment approaches that have contributed to 
improved outcomes in early-stage patients.[23]. 
Hence, the identification of a reliable biomarker holds 
great significance in the assessment of prognosis and 
treatment outcomes in patients diagnosed with 
hepatocellular carcinoma (HCC). Recent research 
findings provide emerging evidence supporting the 
distinct nature of cuproptosis, which represents a 
unique form of programmed cell death, separate from 
other cell death pathways associated with oxidative 
stress, such as apoptosis, ferroptosis, and necroptosis 
[24]. Numerous studies have demonstrated the 
significant involvement of copper death-related genes 
in clear-cell renal cell carcinoma [25] Immune 
infiltration plays a pivotal role in cancer, and the 
advancements in the field of immunotherapy have 
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significantly contributed to tumor treatment. 
Similarly, He et al. have made significant 
contributions in this area. [26] On the basis of 
immune-related gene expression, they developed a 
prediction model for treatment outcome.  

Within the TCGA-LIHC cohort, this study 
identified 110 differentially expressed genes (DEGs) 
pertinent to cuproptosis and immune response, 
manifesting distinct expression patterns between 
hepatocellular carcinoma (HCC) and normal liver 
tissues. To ascertain the prognostic relevance of these 

DEGs, a univariate Cox regression analysis was 
employed, leading to the recognition of 76 genes 
having a connection to the prognosis of HCC. Further, 
through the application of LASSO Cox regression 
analysis, an 8-gene risk signature was formulated and 
subsequently corroborated with an external ICGC 
dataset. The risk signature, combined with clinical 
traits, was integrated into a nomogram constructed to 
forecast the 1-, 2-, and 3-year overall survival (OS) 
rates in patients diagnosed with HCC.  

 
 

 
Figure 9. RNA and protein expression levels of Cuproptosis- and Immune-Associated Risk Signature genes in tumor and normal samples. (A–H) qPCR shows expression levels 
of KIF18A, CENPE, SNHG4, KIAA1841, CDCA2, PRR11, ATAD5 and TEME164. (I-J) Western Blot analysis *p < 0.05, **p < 0.01, ***p < 0.001. 
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Using LASSO analysis, a set of eight signature 
genes was identified (KIF18A, CENPE, SNHG4, 
ATAD5, KIAA1841, CDCA2, PRR11, and TMEM164). 
Notably, KIF18A has been implicated in the 
differentiation and activation of dendritic cells (DCs), 
suggesting its potential as a therapeutic target for 
immune-mediated diseases [27]. Elevated expression 
of KIF18A was observed in HCC tissues, stimulating 
the cell cycle pathway in conjunction with pathways 
associated with Akt and MMP-7/MMP-9. This led to 
the promotion of HCC cell proliferation, invasion, and 
migration [28]. Among the spindle checkpoint 
proteins, human centromere-associated protein 
(CENPE) induces apoptosis of HCC cells and is 
antitumor promoting [29]. CD4+ T cells are inhibited 
from undergoing apoptosis when they are exposed to 
small nucleolar RNA host gene 4 (SNHG4), which is 
known to be a key component of immunological 
escape from cancer [30, 31]. ATAD5 gene is 
upregulated by activating E2F1, a key regulator of cell 
cycle progression, which promotes HBV replication 
and protects tumor cells from anticancer drugs. B cell 
division is reduced in the presence of ATAD5 
deficiency, which affects Igh recombination [32, 33]. 
KIAA1841 has been identified as being directed to the 
nucleus, where it is predicted to play a role in 
regulating transcription, which may function as 
tumor suppressors in lung tissue. However, there 
have been limited reports concerning its role in HCC 
[34]. CDCAF2, a protein associated with cell division, 
contributes to the regulation of protein phosphatase 1 
(PP1) g-dependent DNA damage response (DDR) by 
forming a complex with PP1γ [35]. CCND1/CDK4/6 
and CCNE1/CDK2 are upregulated by CDCA2 and 
contribute to HCC proliferation via G1/S transition, 
according to Wang JH et al. [36]. Human chromosome 
17q22 contains the gene for proline-rich protein 11 
(PRR11) [37], which is expressed widely in solid 
tumors. PRR11 is implicated in the regulation of Wnt 
expression, contributing to the proliferation and 
metastasis of HCC cells to some extent [38]. 
TMEM164, classified as a member of the transmem-
brane protein (TMEM) family, is characterized by its 
presence in various biological membranes and its 
independent influence on lung carcinoma prognosis 
[39]. The transmembrane protein 164 (TMEM164) has 
been shown to be involved in selective 
autophagosome formation during ferroptosis that is 
dependent on the ATG5 receptor [40]. Furthermore, 
the functional role of TMEM164 remains poorly 
understood, with limited available information. A risk 
score model was formulated based on the expression 
patterns of the 8 signature genes, and intriguingly, 
this score displayed associations with cuproptosis, 
immunity, and prognosis. Favorable outcomes were 

more commonly observed among low-risk patients 
compared to those in the high-risk category. The Gene 
Set Variation Analysis (GSVA) approach was 
employed to explore the underlying biological 
processes of these risk groups, revealing that the 
high-risk category was characterized by 
dysregulation in areas such as the p53 signaling 
pathway, DNA replication, RNA degradation, and 
regulation of the cell cycle. Conversely, the low-risk 
group exhibited alterations in metabolic pathways, 
including those related to fatty acids, aspartate, and 
glutamate. An analysis indicated that HCC patients 
within the high-risk group manifested a greater 
prevalence of TP53 mutations and a poorer prognosis, 
consistent with earlier studies, such as those 
conducted by Tang et al. The conclusion drawn was 
that an unfavorable prognosis is likely for patients 
categorized as high-risk. In addition to the eight-gene 
risk signature, a nomogram that fused clinical 
characteristics with the eight-gene risk signature was 
crafted, serving as a beneficial diagnostic instrument 
for individualized hepatocellular carcinoma (HCC) 
assessment. 

In the study's ssGSEA expression profile, the 
low-risk score group was found to be associated with 
activated CD4 T cells, activated dendritic cells, natural 
killer T cells, and type 2 T helper cells. Immuno-
therapy utilizing immune checkpoint inhibitors (ICIs) 
has been used to treat various advanced malignancies, 
including hepatocellular carcinoma (HCC). While 
some cancer patients have responded favorably to this 
therapy, others have not, emphasizing the necessity to 
pinpoint the individuals likely to gain from this 
approach. The investigation sought to understand 
whether immunity prognostic scores (IPS) correlated 
with responses to immunotherapy, exploring the link 
between IPS and risk scores. The findings showed that 
patients who were scored as low-risk had elevated IPS 
scores, encompassing IPS-PD1 inhibitors, IPS-PD1/ 
CTLA4 inhibitors, and IPS-CTLA4 inhibitors. This 
suggested that lower scores might foretell a promising 
response to immunotherapy. The research also 
explored the connection between risk scores and 
immune checkpoints, such as PD1, CTLA-4, LAG-3, 
and TIGIT. Patients within the high-risk category 
expressed these markers more than those in the lower 
risk group, hinting that ICIs might prove more 
efficacious in lower-risk patients. A risk score model, 
framed around cuproptosis and immune-related 
genes, could steer personalized immunotherapy by 
evaluating immune cell infiltration levels. Real-time 
PCR was used to analyze the expression of these 
genes, revealing a significant upregulation of SNHG4, 
KIF18A, KIAA1841, and CDCA2 within the study. 
Additionally, ATAD5 and TEME164 were more 
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frequently found in HCC tissues in contrast to normal 
samples. These findings were further substantiated by 
Western Blot analysis. 

Nonetheless, certain constraints are present in 
this research. The bioinformatics examinations were 
grounded on data that is publicly accessible, thus 
necessitating the formation of more expansive 
prospective research and additional in vivo and in 
vitro trials to authenticate these discoveries. 
Furthermore, a post-translational scrutiny of the 
genes engaged in cuproptosis and immunity was not 
performed. Plus, one must not disregard the 
heterogeneity inherent within tumors. Specific cell 
types that express particular genes can be identified 
through transcriptome technology, thereby furnishing 
an augmented comprehension of the hepatocellular 
carcinoma (HCC) microenvironment. 

Conclusion 
This study presents a newly developed 

prognostic model incorporating eight genes 
associated with cuproptosis and immune response, 
which was achieved through extensive analyses. 
Moreover, the predictive worth of this model was 
authenticated using an external ICGC database, 
offering additional affirmation of its dependability. 
Notably, our model exhibited the capacity to predict 
the response to immunotherapy, suggesting its 
potential as an independent biomarker and 
therapeutic target in clinical applications. 
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