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Abstract 

As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but 
poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to 
the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional 
therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying 
resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy 
(RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the 
anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the 
exhausted T cell function. The current review will help in tailoring combination regimens to enhance the 
efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the 
immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, 
RT, and metabolism targeting therapy in PDAC. 

Keywords: pancreatic ductal adenocarcinoma, immunotherapy, radiotherapy, metabolic reprogramming, tumor 
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1. Introduction 
Pancreatic ductal adenocarcinoma (PDAC) is the 

third leading cause of mortality from cancer among 
men and women, with approximately 23,930 deaths 
from 30,920 diagnoses globally in 2023. In addition, 
the condition is associated with a high incidence of 
solid tumor[1, 2]. By 2030, PDAC is expected to be the 
second leading cause of cancer-related deaths[3]. 
Currently, the 5-year survival rate of patients after 
surgery is only 20%–25%. This is because most 
patients are diagnosed in the late stages of the disease. 
As a result, surgical resection and conventional 
adjuvant treatment (chemotherapy and thermo-
therapy) improve survival in only a small percentage 
of patients. 

In recent years, immunotherapy has demons-
trated favorable results in the treatment of melanoma, 

renal cancer, and uroepithelial carcinoma. This 
treatment includes the use of immune checkpoint 
inhibitors (ICIs) that by inhibit immune checkpoint 
molecules such as programmed cell death protein-1 
(PD-1), programmed cell necrosis protein ligand-1 
(PD-L1), and cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4). However, translational clinical 
studies assessing PDAC have not revealed favorable 
results. PDAC is characterized by an immuno-
suppressive tumor microenvironment (TME) that is 
comprised of cancer-associated fibroblasts (CAFs) and 
its derived extracellular matrix as well as 
immunosuppressive cells such as regulatory T cells 
(Tregs), tumor-associated macrophages (TAMs), 
myeloid-derived suppressor cells (MDSCs), and 
neutrophils (NETs); this TME is the most significant 
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contributor to anticancer treatment failures[4]. 
Immunosuppression is primarily mediated by the 
release of immunosuppressive soluble mediators, 
such as interleukin 10 (IL-10) and transforming 
growth factor-β (TGF-β); the increased expression of 
immunosuppressive receptors such as PD-1 and 
CTLA-4 on antitumor immune cells; and the 
inhibition of essential metabolic substrates such as 
tryptophan and arginine by immune cells[5]. Owing 
to such alterations, cancer cells can escape 
surveillance by the immune system. In addition, 
cancer cells recruit several immunosuppressive cells 
that secrete immunosuppressive factors to inhibit the 
immune response, induce immune escape, and 
promote tumorigenesis. Currently, various synergistic 
immunotherapies have been developed. In addition, 
radiotherapy (RT) induces an immune response that 
enhances the immunogenicity of PDAC. Thus, 
combining RT with immunotherapy may improve the 
immunosuppressive microenvironment of PDAC. In 
addition, targeting tumor metabolism may enhance 
the efficacy of immunotherapy via the metabolic 
reprogramming of TME, thereby improving the 
function of immune cells. 

RT is an important treatment modality for 
intermediate to PDAC. Conventional RT aims to 
maximize the radiation dose to the tumor site while 
minimizing damage to the normal site[6]. Although 
clinical studies have highlighted the importance of RT 
as a treatment modality, the modulatory role of the 
immune system in cancer treatment has been 
neglected[7]. A recent study has found that RT can 
induce an in situ vaccination effect by causing cancer 
cell death and activating systemic immune 
response[8, 9]. The most prominent example is the 
abscopal effect, in which RT administered at one site 
may result in tumor regression at distal nonirradiated 
areas[10, 11]. In RT-sensitive breast cancer model, RT 
enhances antitumor immunity by augmenting the 
secretion of pro-inflammatory cytokines, tumor- 
associated antigens, and chemokines, which 
contributes to the establishment of a peritumoral 
proimmunogenic milieu[12]. In contrast to PDAC, RT 
causes the release of cytokines that mediate the 
polarization or recruitment of immunosuppressive 
cells, hence strengthening the TME's immunosup-
pressive qualities. These findings lay the groundwork 
for rationalizing immunotherapy in combination with 
RT for cancer treatment. In certain instances, RT and 
immunotherapy have demonstrated a synergistic 
antitumor effect and improved the prognosis of 
patients with PDAC[13]. Nonetheless, the 
immunosuppressive TME of PDAC has become the 
most significant barrier to immunotherapy and RT 
combination therapy. 

In addition to the fact that RT can enhance the 
efficacy of immunotherapy by increasing the 
immunogenicity of PDAC, metabolic modulation to 
improve the function of immune cells can additionally 
improve the clinical outcome of immunotherapy. In 
PDAC cells, metabolism is characterized by a high 
dependence on glycolysis and a reduced dependence 
on oxidative phosphorylation (OXPHOS). These 
metabolic alterations significantly contribute to PDAC 
cell proliferation and metastasis. The aberrant 
phenotype and metabolic modifications of PDAC 
facilitate an immunosuppressive TME that promotes 
cancer cell proliferation[14]. In addition, the increased 
consumption of glucose in the TME restricts the 
availability of nutrients to immune cells in the TME, 
compromising the normal function of immune 
cells[15]. Simultaneously, cytokines and other factors 
secreted by PDAC cells induce phenotypic changes 
and, ultimately, metabolic reprogramming of immune 
cells[16]. PDAC is the type of cancer induced by 
metabolic alterations and immune suppression. Given 
the importance of immune cell metabolic profiling in 
PDAC, this review aims to examine the effects of RT 
on immune cells and their metabolic changes in the 
TME of PDAC to provide novel insights into the 
development of unique immunotherapy combination 
regimens. 

2. Immunotherapy in PDAC 
Although immunotherapy has demonstrated 

efficacy in numerous malignancies[17, 18], it is 
ineffective in PDAC owing to numerous mechanisms. 
One factor is the dense stroma in the TME of PDAC 
which creates a physical barrier that impedes 
immunotherapy drug delivery. In addition, numerous 
cytokines, receptors, and metabolites produced by the 
TME play a significant role in reducing antigen 
presentation and inhibiting immune cell proliferation. 

2.1 Clinical investigation of immunotherapy 
for PDAC 

2.1.1 ICIs 
ICIs enhance the anti-tumor immune response 

by targeting T cells, thus boosting the immune 
response against tumors. Although blocking immune 
checkpoints using ICIs has demonstrated good 
efficacy in certain solid tumors, such as melanoma, 
renal cell carcinoma, and non-small cell lung cancer, it 
has little efficacy in PDAC[19, 20]. Currently, ICIs 
primarily target PD-1, PD-L1, and CTLA-4. Similar to 
PD-1, immune molecules such as TIGIT, TIM3, and 
LAG3 are inhibitory receptors. CD73 is a primary 
enzyme implicated in the synthesis of extracellular 
adenosine, a potent immunosuppressive, pro-angio-
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genic, and pro-tumor factor that accumulates in 
tumors. Vista is a novel checkpoint ligand homolo-
gous to PD-1/PD-L1 that inhibits T-cell activation. 
Although these immunosuppressive pathways are 
widely expressed in PDAC, the suppression of these 
immune pathways alone is ineffective. 

PD-1 inhibits T lymphocytes and other immune 
cells by binding to its ligand PD-L1. However, the 
inhibition of both PD-1 and its ligand activates T cells 
and enhances the immune response[21, 22]. 
Reportedly, the binding of PD-1 to its ligands, PD-L1 
or PD-L2, inhibits T-cell effectors, antagonizes T-cell 
receptor signaling, and inhibits transcription[23-25]. 
Pembrolizumab and nivolumab are PD-1 checkpoint 
inhibitors that are used to treat PDAC in a state of 
high satellite instability (MSI-H)[26]. In a follow-up 
study of a single-arm, phase 2 trial (NCT01876511) 
enrolling 86 patients with PDAC, durable responses 
(objective response rate [ORR] 53% [95% confidence 
interval: 42%–64%]) were observed, with 21% of 
patients achieving a complete response[27]. 
Nevertheless, the recent KEYNOTE-158 trial revealed 
that only 4 of 22 patients achieved partial remission or 
complete response[28]. However, the proportion of 
PDAC patients with MSI-H was between 0.8% and 
2%, indicating that PD-1 inhibition did not achieve the 
desired efficacy for most patients with PDAC. In 
another study of a subcutaneous PDAC mouse model, 
anti-PD-1/PD-L1 therapy significantly reduced tumor 
volume[29]. However, the clinical efficacy of 
anti-PD-1/PD-L1 therapy alone[19, 30] or in 
combination[31] has demonstrated poor efficacy, with 
an ORR of only 0%–3%, median progression-free of 
1.5 months, and overall survival of 3.1 months. These 
findings demonstrate that immune checkpoint 
blockade is ineffective for the treatment of PDAC for 
various reasons. 

CTLA-4 acts on tumor tissues and peripheral 
circulation, whereas PD-1/PD-L1 acts only on the 
tumor. Recent research suggests that PD-1/PD-L1 
recruitment affects peripheral T cells and tumor 
tissue[32]. Specifically, PD-1 immune checkpoint 
inhibition primarily affects CD8+ T cells. In contrast, 
CTLA-4 induces an indirect effect on CD8+ T cells by 
regulating CD4+ T cells and effector cells.  

2.1.2 Vaccines 
In addition to ICIs, vaccines play a significant 

role in cancer immunotherapy, modulating 
immune-related pathways, and inducing or 
enhancing antitumor immune responses[33].  

Antigenic vaccines are categorized into 
neoantigen and tumor-associated antigenic vaccines. 
Neoantigen vaccines are specific vaccines that target 
neoantigens. Neoantigens are non-autologous 

proteins specific to cancer cells and are produced by 
nonsynonymous mutations[34]. Since neoantigens are 
only expressed by cancer cells, they are unique targets 
for tumor immunotherapy as they stimulate an 
immune response by activating CD4+ and CD8+ T 
cells[35]. To date, clinical trials evaluating various 
neoantigen vaccines, such as peptide vaccines, have 
demonstrated high efficacy in patients with 
PDAC[36]. However, the efficacy of these vaccines 
varies significantly among patients, making it crucial 
to individualize their study[37]. Tumor-associated 
antigenic vaccines consist primarily of RAS peptides, 
mucin 1 (MUC1) peptides, and telomerase 
peptides[38-40]. Kras mutations are the most 
prevalent mutations (95%) in PDAC[41]. Using a 
combination of mutated Kras peptides and 
granulocyte-macrophage colony-stimulating factor 
(GM-CSF), some patients demonstrated a specific 
immune response to KRAS mutations[42, 43]. MUC1 
is a highly glycosylated, high-molecular-weight 
protein that is widely distributed on the surface of 
cancer cells and plays an essential role in cancer 
development and metastasis. Yamamoto et al. found 
the level of circulating anti-MUC1-IgG antibodies was 
increased in patients with PDAC who received a 
combination of MUC1 peptide and an adjuvant[44]. 
Studies have demonstrated that telomerase activity is 
inhibited in normal human tissues and is high in 
tumors; therefore, its activity has been elevated in all 
solid tumor types.  

Cellular vaccines include allogeneic cellular 
vaccines, autologous cellular vaccines, and dendritic 
vaccines. Allogeneic vaccines are produced using 
cancer cells and are then administered to elicit an 
immune response in another patient. GM-CSF gene 
transduced autologous tumor vaccine (GVAX) is an 
allogenic vaccine that has been extensively studied in 
PDAC. GVAX is essentially a group of PDAC cell 
lines (including CG8020/CG2505) that have been 
genetically modified to secrete GM-CSF for immune 
regulation. The study by Laheru et al. treated patients 
with PDAC using GVAX alone or in combination with 
cyclophosphamide. Treatment with GVAX induced 
mesothelin (MSLN)-specific T-cell responses in a few 
patients. Moreover, GVAX, either alone or in 
combination with cyclophosphamide, exhibited mini-
mal treatment-related toxicity, indicating the good 
safety of the vaccine[45]. In a mouse model of PDAC, 
Saung et al. demonstrated that GVAX treatment alone 
increased colony-stimulating factor 1-receptor 
(CSF-1R) expression in lymphoid polymers and was 
associated with a lower survival rate. In contrast, the 
combination of GVAX + anti-PD-1 + anti-CSF-1R 
increased the infiltration of PD-1+CD137+CD8+, 
PD-1+CD137+CD4+, and PD-1+OX40+CD4+ T cells 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2006 

within the tumor. Moreover, PD-1+CD137+CD8+ T 
cells induced high levels of interferon-γ (80%–90%) in 
response to CD3/CD28 activation using stimulation 
beads. Thus, the combination of anti-PD-1 antibodies, 
GVAX, and anti-CSF-1R antibodies may be an 
effective approach for the management of PDAC[46]. 
These findings indicate that irrespective of its 
resistance and poor efficacy, adding RT may enhance 
the effectiveness of antitumor vaccine immuno-
therapy.  

2.1.3 Adoptive cell therapy 
In adoptive cell therapy, tumor regression is 

induced by acquiring and expanding a patient’s 
tumor-specific T cells in vitro and then transferring 
them to the patient. This treatment has demonstrated 
favorable clinical outcomes in malignant hematologic 
diseases[47] but not PDAC. Chimeric antigen receptor 
T-cell (CAR-T) therapy is the most rapidly evolving 
clinical therapy. A study has found that MUC1-pulsed 
dendritic cells (DCs) activate T lymphocytes in 
patients' peripheral blood mononuclear cells. One 
patient with multiple lung metastases receiving this 
treatment experienced complete remission, and five 
patients with stable disease were among the twenty 
patients tested. The average length of survival was 9.8 
months[48]. Reportedly, Carcinoembryonic Antigen 
(CEA) and MUC1 are overexpressed on the surface of 
PDAC cells and therefore are the most promising 
targets for CAR-T[49, 50]. In a mouse model of PDAC, 
treatment with CAR-T targeting CEA and MUC1 
demonstrated a reduction in tumor size[51, 52]. 
Although adoptive cell therapy is a novel and 
promising field, it is associated with a few limitations. 
The most challenging aspect of CAR-T research is the 
selection of antigens, and the most recent CAR-T 
studies target tumor-associated antigens rather than 
tumor-specific antigens. Tumor-associated antigens 
lack specificity and exhibit variable or heterogeneous 
expression on tumor cells, which is associated with a 
significant risk of off-target toxicity. As with other 
immunotherapies, improving the efficacy of pericyte 
therapy alone in PDAC is difficult. 

2.2 Immunosuppression TME, the cause of 
immunotherapy's inefficacy   

Despite the promising therapeutic outcomes 
observed with immunotherapies such as ICIs, 
vaccines, and adoptive cell therapy in the treatment of 
renal cell carcinoma, non-small cell lung cancer, and 
melanoma, the present prognosis regarding PDAC 
remains unsatisfactory. Furthermore, optimistic 
outcomes of the majority of immunotherapeutic 
modalities have been observed exclusively in clinical 
trials involving PDAC patients with the MSI-H 

subtype. Regrettably, the MSI-H subtype comprises a 
mere 0-2% of all PDAC subtypes[53], indicating a 
deficient proportion of PDAC patients who exhibit 
sensitivity to immunotherapy. Other factors impede 
immunotherapy[54], apart from the fact that the 
majority of PDAC patients are in advanced stages at 
the moment of consultation. For instance, PDAC 
complex oncogenes override adaptive T-cell 
immunity to promote immunosuppression in early 
PDAC[55]. Furthermore, PDAC metastasis could hide 
signals of medication efficacy by creating additional 
immunological barriers along the cancer-immune 
axis[56]. Lastly, tumors depend on an immunosup-
pressed TME to evade the immune system. Therefore, 
in order to investigate the intrinsic mechanism of 
PDAC immunosuppression and devise combination 
therapies with immunotherapy, we must begin with 
the intricate immunosuppressive TME of PDAC. 

2.2.1 CAFs and Immunosuppression 
A critical determinant in determining the 

prognosis of PDAC is fibrosis[57, 58]. Approximately 
70% of the tumor tissue is comprised of the stromal 
component, and CAFs are significant constituent cells 
of the stroma. CAFs facilitate fibrosis while 
demonstrating an array of immune influences that 
promote tumor suppression[59]. 

Extensive connective tissue proliferation results 
from CAFs-mediated fibrosis in PDAC, which induces 
vascular collapse and generates high interstitial fluid 
pressures, thereby restricting the diffusion and 
perfusion of immunotherapeutic agents and small 
molecules. Paolo et al. significantly enhanced overall 
survival by targeting hyaluronic acid, normalizing 
interstitial fluid pressures, and combining it with 
chemotherapy to treat connective tissue hyperplasia. 
Hypoxic TMEs and the collapse of small blood vessels 
within the PDAC result in CD81 T cell suppression 
mediated by Tregs[60]. CAFs are also capable of 
facilitating immunosuppression through their 
interaction with cytotoxic lymphocytes (CTLs).C-X-C 
Motif Chemokine Ligand 12 (CXCL12) and activation 
of focal adhesion kinase (FAK) by CAFs restrict the 
migration of CTLs to stromal compartments, thereby 
impeding T cell initiation[61]. Jiang et al.[62] 
established that FAK activity is a crucial regulator of 
fibrosis and immunosuppressive TME in PDAC and 
that the FAK inhibitor VS-4718 substantially slowed 
tumor progression and increased survival. In a 
murine model of PDAC, Feig et al. significantly 
increased CD8+ T-cells by combining anti-PD-L1 
therapy with a CXCL12 antagonist, thereby delaying 
the progression of the tumor. Moreover, 
prostaglandin E1, TGF-, Indoleamine 2,3-dioxygenase 
(IDO), arginase, and IL-10, which CAFs all secrete, 
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have the potential to inhibit CTL function[63]. Lastly, 
by interacting with these immunosuppressive cells, 
inflammatory factors secreted by CAFs (IL-6, 
GM-CSF, and vascular endothelial growth factor) can 
promote their differentiation and reprogramming. 

2.2.2 Immunosuppressive cells—the key actors in the 
TME 

     Approximately 50% of the TME of PDAC is 
comprised of immunosuppressive cells TAMs, 
MDSCs, and Tregs. By promoting the polarization 
and recruitment of these immune cells, the 
immunosuppressive features of the TME of PDAC are 
enhanced. The predominant variety of TAMs in the 
TME of PDAC is M2 (pro-tumourigenic phenotype). 
The Dectin1/galectin-9 axis directly induces 
apoptosis of T cells[64] and PD-L1[65] expression in 
TAMs. IL-10, which is maintained in functional Treg 
populations, promotes Th2 development and is 
produced by M2 TAMs[66]. By increasing IL-12 
expression in DCs, inhibition of IL-10 enhanced the 
infiltration and chemotherapeutic effectiveness of 
CTLs. TAMs are also capable of inhibiting CTLs via 
the production of arginase-1[66]. MDSCs are highly 
efficient producers of nitrogen species and reactive 
oxygen, which disrupt the activity of TCRs and 
IL-2[66]. MDSCs induce proliferative arrest of 
antigen-activated T cells by depleting micronutrients 
via arginase–1–dependent consumption and 
L-cysteine sequestration, thereby downregulating the 
T-cell receptor[67].  Beyond their capacity to disrupt 
TCRs, MDSCs are also capable of inducing T-cell 
apoptosis and promoting the activation and 
proliferation of Tregs. More T-cells infiltrated the 
tumor stroma subsequent to the genetic deletion of 
CXCR2, a chemokine receptor that is predominantly 
present on Gr-MDSCs[68]. By inhibiting MDSCs via 
CXCR2 blockade in a genetically engineered mouse 
model of PDAC, fibrosis was reduced, MDSCs within 
the TME were diminished, and ICB acted 
synergistically with these effects[69]. CD4 helper T 
cells exhibit a tumor-promoting Th2 phenotype and 
are abundant in the TME in comparison to CD8 T 
cells[70]. While Treg density is lower in frequency 
compared to Th2 cells, it exhibits an upward trend as 
the disease advances. It has been associated with 
lymph node metastases and unfavorable survival 
outcomes[71, 72]. PDAC cells secrete a slew of 
cytokines linked to Treg migration and accumulation, 
including IL-10, TGF-B, and CCL5[73]. These 
immunosuppressive T cells block CD86 and CD40, 
among other anticancer immunologic actions.CD86 
and CD40 are necessary for the activation of CD81 T 
cells and the development of local immunological 
suppression[74, 75]. By eliminating Tregs in a PDAC 

mouse model, DCs were able to induce a CD81- 
dependent, potent antitumor immune response[76]. 
However, in a clinically relevant genetic model of 
PDAC, Treg depletion had no effect on CD8 T-cell 
recruitment, implying that Treg removal alone is 
insufficient to restore productive T-cell immunity[77]. 

3. Effect of RT on TME 
In PDAC, the TME is highly complex and 

dynamic. Specifically, the stroma is a critical 
component of the PDAC microenvironment, 
consisting primarily of immune cells, fibroblasts, and 
blood vessels. The complex TME in PDAC renders 
immunotherapy alone ineffective[78]; therefore, 
evaluating different combination therapies is critical 
for improving the prognosis of patients with PDAC. 
Notably, a recent study has demonstrated that RT 
affects the TME (Figure 1). Owing to its 
immunosuppressive TME, PDAC is classified as a 
“cold” tumor, and immunotherapy alone has a 
suboptimal effect. Therefore, it has been hypothesized 
that combining immunotherapy with RT can 
overcome immunotherapy tolerance observed in 
PDAC. The combination treatment can directly cause 
DNA damage to PDAC cells as well as modulate 
immune responses, such as antigen presentation and 
T-cell activation[79]. Thus, immunotherapy combined 
with RT is likely to emerge as a promising treatment 
option to transform a “cold” tumor into a “hot” one. 

3.1 RT induces immune responses in the TME 
of PDAC 

RT may induce a systemic immune response, the 
most representative example of which is the abscopal 
effect. However, the abscopal effect observed is a rare 
event, and there appears to be no therapeutic value of 
this effect in clinical practice. With the increasing 
understanding of immunotherapy, it was realized 
that RT also induces a significant immunostimulatory 
effect, and combining immunotherapy with RT may 
enhance the abscopal effect[80, 81]. The abscopal 
effect is closely related to RT-induced systemic 
immune response, which involves reprogramming 
the TME and immune cell infiltration. Although 
international guidelines certify RT as a treatment 
modality, the exact mechanism, dose, duration, and 
efficacy in PDAC remain to be studied[82].  

3.2 CAFs and RT 
The stroma in PDAC tumors comprises the vast 

majority of the tumor and consists of fibroblasts, 
blood vessels, and extracellular matrix. CAFs, 
mesoderm-derived heterogeneous cells, are a 
significant component of the TME and are associated 
with cancer at all stages of progression[83]. CAFs in 
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PDAC are classified into three major subtypes: 
inflammatory CAFs, myofibroblastic CAFs, and 
antigen-presenting CAFs. Inflammatory CAFs can be 
triggered by IL-1 and further secrete various 
cytokines and chemokines, such as IL-6, IL-8, and 
IL-33. These cytokines and chemokines regulate other 
immune cells in the TME, including TAMs, MDSCs 
and DCs, to create an immunosuppressive TME. 
Initially, IL-6 produced by CAF was found to promote 
monocyte bias towards M2 polarization[84]. 
Numerous pro-inflammatory cytokines (CXCL2, 
GM-CSF, CCL2, CSF-1) have been implicated in the 
recruitment of MDSCs and the polarization of 
M2-type TAMs, both of which contribute to the 
formation of an immunosuppressive TME[85-87], as 
determined by CAF proteomics research. In recent 
years, et al. demonstrated that STAT3-mediated IL-6 
production by CAF of PDAC can induce the MDSC 
phenotype in monocyte precursors. TSLP, which CAF 
additionally secretes, can polarize DCs through 

polarization, thereby promoting fibrosis and an 
immunosuppressive Th2 phenotype[88]. Myofibro-
blastic CAFs located near cancer cells have anti-tumor 
and myogenic functions related to stromal generation 
and remodeling. Because different CAF subtypes 
have different anti-tumor and pro-tumor effects, 
blindly targeting CAFs does not immediately improve 
efficacy. 

RT can impact tumor progression and treatment 
sensitivity. CAFs, unlike cancer cells, are believed to 
be highly resistant to RT. CAFs survive and undergo 
senescence despite receiving high doses of RT. 
However, RT induces long-term DNA damage in 
CAFs, which inhibits their proliferation[89]. Ohuchida 
et al. demonstrated in a co-culture system of PDAC 
cells and CAFs. Compared to CAFs without RT 
treatment, co-culture of CAFs after RT (5 Gy or 10 Gy) 
with PDAC cells can significantly enhance the 
invasive ability of PDAC cells[90]. According to 
Al-Assar et al., PDAC cells increase the 

 

 
Figure 1: The effect of RT on immune crosstalk in the TME of PDAC. Abbreviation: TME: tumor microenvironment; PDAC: pancreatic ductal adenocarcinoma; RT: 
radiotherapy; EMT: epithelial–mesenchymal transition; CAF: cancer-associated fibroblasts; iCAFs: inflammatory cancer-associated fibroblasts; myCAFs: myofibroblastic 
cancer-associated fibroblasts; MDSCs: myeloid-derived suppressor cells; M-CSF: macrophage colony-stimulating factor. Created with MedPeer (https://www.medpeer.cn/; 
accessed on 28 April 2023). 
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radio-resistance of PDAC cells by releasing TFG-β 
and other factors, thereby promoting epithelial–
mesenchymal cell transformation[91]. Furthermore, 
RT-treated CAFs promote CXCL12 secretion via the 
upregulation of the P38 pathway, which promotes 
invasion, metastasis, and epithelial–mesenchymal cell 
transformation of pancreas cancer cells[92]. To 
summarize, the function of RT in treating PDAC is far 
more complex than that identified in studies. As 
previously stated, the effect of CAFs on the response 
of cancer cells to radiation varies based on CAF 
subtypes. Moreover, the anti-tumor or pro-tumor 
effects of CAFs are affected by cancer cell type, RT 
pattern, and dose[93].  

3.3 Immune cells and reactive T Cells 
The immunological microenvironment of PDAC 

has various immune cell types and subtypes, 
including TIL, TAM, MDSCs, and tumor-associated 
NETs. These cell types can interact with one another 
as well as crosstalk with TME, resulting in pro-tumor 
or tumor-suppressive outcomes[94, 95]. Under-
standing the effect of RT on different types of immune 
cells is therefore critical for both understanding the 
TME in PDAC and developing a rational therapeutic 
strategy.  

3.3.1 TILs  
Most TILs in the TME of PDAC support cancer 

invasion and progression. TILs include various 
subgroups of cytotoxic (CD8+) T cells, Treg cells, and 
natural killer cells[96]. Studies have reported that RT 
promotes T-cell filtration by inducing DNA damage 
as well as functions as an in situ vaccine, inducing 
neoantigen production and eliciting a tumor-specific 
immune response[97]. Reportedly, Balachandran et al. 
found that rather than the number of neoantigens, 
neoantigen quality was a biomarker for immunogenic 
tumors. Thus, when combining RT and 
immunotherapy, the combination producing the 
highest quality neoantigens must be screened. As a 
result, stereotactic body RT (SBRT) appears more 
appropriate than CRT for treating PDAC when 
combined with ICIs[98]. SBRT has been shown to 
enhance antigen delivery and stimulate the number of 
cytotoxic T lymphocytes in a mouse model of 
PDAC[99]. Moreover, patients treated with SBRT 
have demonstrated a significant reduction in the 
distribution of CD8+/CD4+ T cells within the tumor as 
well as a substantial reduction in the number of 
perivascular CD8+ T cells[100]. It has been reported 
that as precancerous lesions transform into PDAC, 
tertiary lymphoid structures (TLS) accumulate 
immunosuppressive cells. SBRT treatment has been 
found to reduce immunosuppressive cell accumu-

lation in TLS and decrease TLS area and number in 
the PDAC tissue[100].  

3.3.2 TAMs 
TAMs are immune cells derived from the bone 

marrow that are recruited into the TME and promote 
the initiation and progression of PDAC[101]. TAMs 
are negatively correlated with the prognosis of 
patients with PDAC. There are two major subtypes of 
macrophages: M1 (antitumor) and M2 (protumor). M1 
exerts its antitumor effects via the secretion of 
pro-inflammatory cytokines, whereas M2 promotes 
tumor angiogenesis and invasion[102]. In contrast, the 
M2 phenotype dominates the TME of PDAC, 
releasing multiple immunosuppressive factors, 
including IL-10, Chemokine Ligand 2(CCL2), and 
TGF-β[103, 104]. The significance of TAMs in 
immunosuppression, angiogenesis, stromal remodel-
ing, and cancer cell invasion has been demonstrated 
in preclinical PDAC mouse models[105-107]. 
Moreover, preclinical studies have demonstrated that 
depletion and reprogramming to target TAMs have 
yielded positive results, but it is challenging to attain 
efficacy in clinical studies[104].  

Most TAMs in the TME of PDAC are 
M2-polarized, a characteristic linked to immunosup-
pression and pro-tumor proliferation. Seifert et al. 
established a PDAC mouse model and found that RT 
induced a higher proportion of immunosuppressive 
M2 TAMs[108], which may inhibit T cell-mediated 
antitumor responses. Moreover, RT induced the 
secretion of macrophage colony-stimulating factor 
(M-CSF), which resulted in the recruitment of TAMs 
and their M2 polarization. Treatment with M-CSF 
inhibitors prevented RT from modifying the 
proportion of M2 macrophages while delaying tumor 
progression[108]. Notably, the effect of RT on the 
recruitment of TAMs and their polarization of M2 
phenotype could only be observed at early time points 
after RT, and M-CSF expression returned to the 
baseline levels after some time[108]. This indicates 
that the inflammatory stimulus induced by RT for 
recruiting and programming TAM may diminish over 
time. M2 TAMs secrete more immunosuppressive 
cytokines, such as IL-10 and TGF-β, following RT[109, 
110]. 

Immunosuppressive factors and chemokine 
receptors released by M2 TAMs, including CCL2 and 
CCR2/CCR5, are also regulated by RT and are linked 
to RT resistance. Kalbasi et al.[111] have found that RT 
promotes the synthesis of CCL2 in PDAC cells and 
induces the recruitment of TAMs in the TME, which 
may lead to RT resistance. In vivo experiments in 
PDAC mouse models have revealed that RT increased 
TAMs, inflammatory monocytes/macrophages 3 days 
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after treatment. However, treatment with CCL2 
antagonists inhibited the recruitment of macrophages 
and monocytes, restoring the sensitivity to RT and 
chemotherapy. Additionally, CCL2 knockdown in 
PDAC cells restores radiosensitivity. Contrary to 
popular belief, treatment with CCL2 inhibitors 
without RT is not effective against PDAC. A study by 
Wang et al. has demonstrated that CCR2 and CCR5 
are associated with TAMs infiltration in the tumor; 
however, targeting CCR2 or CCR5 alone does not 
sensitize PDAC tumors to immunosuppression in the 
absence of T-cell initiation mechanisms[112]. The 
study determined that the combination of anti-PD-1 
immunosuppressant, CCR2/CCR5 antagonists and 
RT (3 × 8 Gy) was found to inhibit the infiltration of 
M2-type TAMs, Tregs and MDSCs, and this 
combination had better anti-tumor effects. 

3.3.3 MDSCs 
MDSCs can trigger FoxP3+ Treg production by 

secreting interferons and IL-10, thereby maintaining 
TME immunosuppression[113]. The granulocyte 
MDSC (G-MDSC) is the most prevalent subtype of 
MDSCs, accounting for roughly 80% of all MDSCs. It 
induces post-translational modifications in T-cell 
receptors via the STAT3-TANs pathway. The other 
subtype, monocyte MDSCs, accounts for 
approximately 20% of all MDSCs and inhibits T-cell 
responses while inducing T-cell apoptosis via the 
STAT1/NO axis[114, 115]. 

Using a PDAC mouse model and human PDAC 
samples, Oweida et al. found that RT (8 Gy) increased 
the frequency of G-MDSCs and NETs. In addition, 
they demonstrated that RT-induced STAT3 
phosphorylation was associated with MDSC 
infiltration and growth in PDAC. RT combined with 
STAT3 inhibition decreased collagen deposition and 
fibrosis, which resulted in remodeling of the stroma in 
PDAC TME and eventually reversing RT-induced 
immunosuppression[110]. Specifically, RT has been 
shown to increase MDSC pro-tumorigenic action. 
Specifically, RT induces the Warburg effect, which 
increases lactate secretion, modulates MDSC 
activation, and induces MDSCs to adopt an 
immunosuppressive phenotype[109]. However, 
another study revealed that RT (5 × 6 Gy) did not 
significantly alter MDSC cell populations in a PDAC 
mouse model[116]. Thus, further studies are required 
to evaluate the effect of RT at various irradiation 
doses on immune cells to determine the best 
treatment modality for PDAC.  

4. Metabolic targeting: A breakthrough in 
PDAC therapy 

Despite several advancements in the 

combination of RT and immunotherapy over the past 
few years, the combination has not been extensively 
used in clinical treatment, indicating the need for 
further studies for treating PDAC. It is believed that 
KRAS mutations and inactivating mutations in the 
oncogenes TP53, SMAD4, and CDKN2A are essential 
for cancer progression and refractoriness in 
PDAC[117]. As mentioned previously, the poor 
efficacy of combination therapy has also been linked 
to an immunosuppressive TME and extensive 
connective tissue proliferation[118]. Moreover, it has 
been discovered that cancer metabolism plays a 
significant role in limiting the therapeutic effect. 
Specifically, in recent years, reprogramming of cancer 
cell metabolism has reemerged as a prominent aspect 
of anticancer treatment[119, 120]. It is well known that 
cancer cells reprogram numerous metabolic pathways 
to mediate their growth, division, and survival. 
Recent findings suggest that metabolic alterations can 
promote the development of PDAC via epigenetic 
alterations[121, 122]. Further evidence has suggested 
that the metabolism of PDAC is closely related to RT 
tolerance and immunosuppression[123, 124]. By 
classifying patients with PDAC into distinct metabolic 
subgroups, namely quiescent, glycolytic, 
cholesterolemia, and mixed, it is possible to predict 
the prognosis and potentially feasible therapeutic 
approaches for the subgroups[125, 126]. Thus, 
analyzing the metabolic profile of PDAC offers 
emergent, viable treatment options[126, 127], and 
treatments targeting metabolism may represent a 
breakthrough for the combination treatment of RT 
and immunotherapy. 

4.1 Metabolic reprogramming in PDAC TME 
The TME of PDAC comprises various 

components, such as cancer cells, stromal cells, 
immune cells, and extracellular matrix, and 
elucidating the metabolic crosstalk between these 
components[54, 128] is essential for identifying 
effective therapeutic options. It is well known that 
cancer cells are characterized by a malnourished and 
hypoxic state as they are enveloped by a proliferating 
collagen network. This collagen network provides 
proline to cancer cells, thus promoting cancer cell 
survival and metabolism in the absence of adequate 
nutrition[129]. In addition, these proliferating 
connective tissues promote glycolysis via irregular 
shear stress, which results in the production of 
reactive oxygen species (ROS) and the upregulation of 
the PI3K/AKT signaling pathway[130]. In addition, 
cancer cell glycolysis results in the production of 
lactate, which must be eliminated without OXPHOS 
to maintain normal metabolism. Dovmark et al. have 
hypothesized that connexin-43 (Cx43) channels are 
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essential for dissipating lactate anions from glycolytic 
PDAC cells and for transporting excess lactate from 
these cells in the core of the tumor to the periphery, 
which they act as a substrate for OXPHOS in the 
well-perfused, normal cells. Furthermore, Cx43 is also 
thought to be a novel target for influencing metabolite 
processing in connection-coupled tumors[131]. 
G-protein-coupled receptor 81(GPR81), a Gi-coupled 
receptor present on PDAC cells, promotes the 
expression of monocarboxylase transporters and 
CD147 and can detect lactate in the TME. Activated 
GPR81 can upregulate the levels of peroxisome 
proliferator-activated receptor gamma coactivator-1 
and boost mitochondrial biogenesis and respiration. 
Together, lactate uptake and utilization increased, 
crucial for the growth of PDAC cells in the TME under 
low-glucose conditions following metabolic 
remodeling[132]. Hui et al. discovered that during 
fasting, the contribution of circulating lactate to TCA 
cycle intermediates exceeds that of glucose; moreover, 
lactate is the primary TCA substrate in most tissues 
and tumors[133]. 

4.2 Metabolic reprogramming in CAFs and 
PSCs 

Aerobic glycolysis, known as the Warburg effect, 
is a characteristic metabolic feature of cancer cells. 
CAFs, the major component of stromal cells, are 
stimulated by neighboring cancer cells and exhibit 
aerobic glycolysis while secreting a variety of 
metabolites, including lactate and pyruvate. It is 
believed that OXPHOS has been abandoned partially 
in CAFs. These metabolites produced by the CAFs' 
aerobic glycolysis are taken up by adjacent cancer 
cells, and this crosstalk is known as the reverse 
Warburg effect, which has received a great deal of 
attention in recent years[134, 135]. Shan et al. 
demonstrated that CAFs in PDAC exhibited a similar 
reverse Warburg effect. CAFs secreted more lactate in 
a co-culture model with PDAC cells, whereas PDAC 
cells promoted invasion and migration[136]. Besides, 
studies have found that CAFs release exosomes to 
supply the TME with metabolites, including amino 
acids, lipids, and TCA cycle intermediates, which are 
essential for the growth of cancer cells in the 
nutrient-deficient TME (Figure 2). Zhao et al. 
demonstrated that PDAC cells ingested CAFs derived 
exosomes may exhibit metabolism reprogramming, 
namely increased glycolysis and decreased 
OXPHOS[137]. The majority of CAFs originate from 
pancreatic stellate cells and can synthesize 
autophagy-derived alanine as an alternative carbon 
source when stimulated by cancer cells. These PSCs 
can be activated by PDAC cell-derived KRAS (G12D) 
signaling, which regulates cancer cell proliferation 

and apoptosis, increases mitochondrial capacity via 
the IGF1R/AXL-AKT axis, and modifies metabo-
lism[138]. Bin et al. have identified that pancreatic 
stellate cells secrete the PSC-paracrine hepatocyte 
growth factor (HGF) via the HGF/c-MET/YAP/ 
HIF-1 signaling, which promotes glycolysis in PDAC 
cells[139]. Moreover, saturated and monounsaturated 
fatty acids appear to have contradictory effects on 
fibrosis and PSC activation[140]. A combination of 
LipidemTM, an emulsion rich in omega-3 fatty acids, 
and gemcitabine substantially reduces PSC 
proliferation and inhibits PDAC cell invasion[141]. 

4.3 Metabolic reprogramming of immune cells 
in the TME of PDAC 

4.3.1 Metabolic reprogramming of T cells  
T cells can be categorized into natural killer cells, 

Tregs, C toxic T cells, memory T cells, Th cells, and 
gamma delta (γδ) T cells[96, 142]. These 
subpopulations of T cells demonstrate significant 
disparities in the metabolic profiles. Tregs, for 
instance, rely on fatty acid oxidation (FAO), whereas 
CD4+ Th cells and CD8+ Teff cells rely on glycolysis. In 
PDAC, these metabolic pathways regulate T-cell 
differentiation and immune responses against cancer 
cells[143]. Moreover, the concentration of amino acids 
in the TME affects the function of both cancer cells 
and activated T cells. Compared with adjacent 
nontumor tissues, glutamine is the amino acid most 
consumed by the PDAC cells[144]. In addition, 
glutamine fuels the TCA cycle, which produces 
nucleotides and proteins[145]. Studies have shown 
that the restriction of glutamine and leucine inhibits 
Th1 and Th17 differentiation but does not affect Treg 
differentiation[146]. Another metabolic alteration seen 
in PDAC cells is FAO. CD4+ T cells and PDAC cancer 
cells must upregulate the very-long-chain acyl-CoA 
dehydrogenase (VLCAD) enzyme to acclimatize to 
the lipid-rich microenvironment of the tumor. In 
contrast, CD8+ T cells selectively downregulate 
VLCAD, resulting in the accumulation of both 
long-chain fatty acids (LCFAs) and very LCFAs, 
which leads to lipotoxicity. This progressive 
accumulation of specific LCFAs in pancreatic CD8+ T 
cells impairs mitochondrial function, which induces 
transcriptional reprogramming of lipid metabolism 
pathways and ultimately decreases CD8+ T cell 
lipolysis[147]. T cells, like PDAC cells, are highly 
dependent on glucose as a nutrient and energy 
source. Moreover, the clinical use of PD-1, CTLA-4, 
and PD-L1 antibodies has been demonstrated to 
restore glucose levels in the TME. This restoration of 
glucose levels can activate T cells, stimulate the 
production of interferon-gamma, and initiate 
glycolysis[16]. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2012 

 
Figure 2: Reprogramming of immune cells in the tumor microenvironment of PDAC. Presented are metabolic changes in immune stromal cells (macrophages, T cells, B cells, 
and MDSCs). Created with MedPeer (https://www.medpeer.cn/; accessed on 28 October 2023). 

4.3.2 Metabolic reprogramming of TAMs 
Macrophages are an integral component of the 

immunosuppressive TME and participate in 
metabolic reprogramming. The function and 
phenotype of macrophages may be influenced by 
cellular metabolites. Compared to normal 
macrophages, TAMs possess a unique glycolytic 
profile that facilitates PDAC metastasis and 
angiogenesis, as demonstrated in metabolic flux 
assays[148]. Ye et al. have demonstrated that TAMs 
stimulate glycolysis in PDAC cells via a paracrine 
pathway. Moreover, lactate in the TME induces the 
polarization of TAMs towards the M2 phenotype, 
further suppressing immunity[149]. Metavert, as an 
inhibitor of glycogen synthase kinase 3 beta and 
histone deacetylases, can normalize glucose 
metabolism in PDAC cells and facilitate the 
conversion of oncogenic M2 TAMs to the anticancer 
M1 phenotype in a mouse model[150].  Moreover, M1 
macrophages can inhibit mitochondrial TCA cycling, 
improve glycolytic metabolism, and produce ATP to 
sustain their phagocytosis[151]. Alternatively, lipid 
metabolism also plays a crucial role in macrophage 
activation and function regulation. Moreover, lipid 
metabolism enables macrophages to perform 
phagocytosis and secrete more cytokines more 

efficiently. Increased free fatty acids and lipoprotein 
absorption notably exacerbates the inflammatory 
response[152]. 

4.3.3 Metabolic reprogramming of MDSCs 

MDSCs primarily utilize glucose, lipid, and 
amino acid metabolism pathways. MDSCs in the TME 
have a high glycolysis rate, and increased glycolysis 
significantly increases the levels of lactic acid, owing 
to which MDSCs consistently exert immunosup-
pressive activity. Additionally, increased glycolysis 
protects MDSCs from apoptosis, which reduces ROS 
production. In the hypoxic and nutrient-deficient 
TME, modulating MDSC function and glucose 
metabolism via HIF-1α results in the alteration of the 
tumor's hypoxic response. As a regulator of energy 
metabolism, AMPK has some effect on MDSCs and 
glycolysis. Tumor-invasive MDSCs acquire ATP via 
the crucial step of FAO activation. In contrast to 
polymorphonuclear MDSCs, which rely more on 
glycolysis and OXPHOS, mononuclear MDSCs accept 
ATP primarily through FAO activation. In addition, 
glutamine catabolism is essential in promoting MDSC 
maturation[153, 154]. In conclusion, the therapeutic 
approach for PDAC may be optimized by regulating 
MDSC metabolism. 
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4.3.4 Metabolic reprogramming of NETs 
The presence of numerous NETs in the TME of 

PDAC suggests that the function and number of NETs 
play an essential role in tumor development[155]. 
NETs participate in additional metabolic pathways, 
including glycolysis, glutamine catabolism, the TCA 
cycle, OXPHOS, the pentose phosphate pathway, and 
mitochondrial FAO. During the early phases of ROS 
production, NETs are primarily dependent on 
glycolysis, as opposed to the later stages, in which the 
cells are more dependent on mitochondrial FAO[156]. 
It is believed that for NETs, the primary metabolic 
substrate is glucose, which is metabolized via 
glycolysis and the pentose phosphate pathway. In 
tumor-associated NETs, metabolic alterations result 
from blood insufficiency, which causes nutrient 
deficiencies and local cytokine accumulation in the 
TME. The pentose phosphate pathway contributes 
nicotinamide adenine dinucleotide phosphate 
(NADPH) to the process by which NETs perform their 
biological functions. Reportedly, autophagy is 
activated in the nutrient-deficient TME to maintain 
metabolism. Inhibition of the essential autophagy 
gene Atg7 increases mitochondrial oxidation and 
glycolysis. Providing mitochondria with pyruvate 
and fatty acids promotes the formation of 
Atg7-deficient NETs and increases glycolysis and ATP 
production. Additionally, cells can use fatty acids and 
glutamine oxidized by tumor-associated NETs to 
synthesize additional ATP for tumorigenesis[157]. 
Furthermore, under limited glucose conditions, 
mitochondria produce ROS via NADPH oxidase and 
maintain intracellular NADPH levels. Studies also 
show that immature c-Kit+ NET subpopulations 
modulate mitochondrial oxidative metabolism[158]. 
In conclusion, the numerous metabolic patterns of 
NETs provide several novel strategies for the 
treatment of PDAC. 

5. Combining immunotherapy: A clinical 
investigation 
5.1 Immunotherapy combined with RT  

5.1.1 ICI combined with RT 
In recent years, immunotherapy, particularly ICI 

combined with RT, has emerged as a new research 
focus[79, 159] owing to the substantial 
immunomodulatory effects of RT. ICI combined with 
RT has achieved excellent efficacy in some solid 
tumors, such as non-small cell lung cancer and 
melanoma[160-162]; however, its efficacy in PDAC is 
suboptimal[163], primarily due to the unique and 
complex immunosuppressive TME. Using an in situ 
homozygous PDAC mouse model, Fujiwara et al. 

assessed the efficacy of RT combined with PD-1 
blockade and Indoleamine 2,3-dioxygenase; 
treatment. Of all combinations, low-grade RT (8 Gy × 
3 times for 3 days) combined with PD-1 blockade 
significantly improved survival, resulted in the best 
systemic interferon-γ response; and induced the 
highest local expression of immune-activating genes 
(Cd28 and Icos)[164]. Azad et al. constructed KPC and 
Pan02 homozygous transplantation mouse models 
and found that high (12, 5 × 3. 20Gy) but not low (6,5 
× 2Gy) RT doses combined with anti-PD-L1 
significantly delayed tumor progression. Moreover, 
the combination of anti-PD-L1 and RT was associated 
with increased infiltration of CD45+CD8+ T cells and 
decreased infiltration of CD11b+Gr1+ myeloid 
cells[165]. In addition, the combination of RT and 
anti-PD-L1 increased T-cell activation markers (CD69, 
CD44, and FasL) as well as CD8: Treg ratios[165]. 
Using the UN-KC6141 mouse model of in situ PDAC, 
Lee et al. demonstrated that ablative RT combined 
with anti-PD-L1 significantly improved mouse 
survival. Specifically, 67% of mice in the combination 
group survived longer than 30 days after tumor 
inoculation; in contrast, the median survival time in 
the control group was 16.5 days. These findings imply 
that in combination with anti-PD-L1 treatment, 
ablative RT is more effective than conventional 
graded RT for recruiting T cells[166]. The ataxia 
telangiectasia-mutated gene (ATM) is the apical 
kinase that plays a role in mediating RT-induced 
DNA damage response. It has been shown that 
silencing ATM increases PD-L1 expression, thereby 
increasing the sensitivity of PDAC tumors to 
PD-L1-blocking antibodies. Using a subcutaneous 
PDAC mouse model, Zhang et al. have demonstrated 
that ATM inhibition improves the therapeutic efficacy 
of anti-PD-L1, which is further improved in 
combination with RT (8 Gy), resulting in enhanced 
tumor immunogenicity. This demonstrates the 
therapeutic potential of combining anti-PD-L1 and RT 
with ATM inhibition to treat PDAC[167]. In a recent 
phase 2 trial (NCT02704156), postoperative patients 
with locally recurrent PDAC received SBRT at doses 
ranging from 35 to 40 Gy. The findings revealed that 
increased doses of SBRT may improve the 
progression-free survival of pembrolizumab 
(anti-PD-1) and trametinib (MEK inhibitor) with 
gemcitabine; however, no improvement in the overall 
survival was noted[168]. A phase I study compared 
the safety of durvalumab (anti-PD-L1) and SBRT in 
patients with metastatic PDAC. Only two of the 39 
patients evaluated for efficacy demonstrated partial 
responses, for an overall efficacy rate of 5.1%. 
Notably, no dose-limiting toxicity was observed, and 
lymphocytopenia was the most common adverse 
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event. Thus, the safety profile of ICI combined with 
RT is acceptable for treating PDAC[169]. In a 
non-randomized, single-arm phase II trial 
(NCT03104439), RT was found to significantly 
increase the effectiveness of ICIs. The combination 
group using RT (3 × 8 Gy) with nivolumab (anti-PD-1) 
and ipilimumab (anti-CTLA-4) demonstrated a 
significantly higher disease control rate than the other 
treatment groups[170]. In an open-label, phase 2 
randomized controlled study, the median overall 
survival (mOS) of patients in the SBRT + 
pembrolizumab + trametinib group was 24.9 months, 
whereas it was 22.4 months in the SBRT + gemcitabine 
group. Thus, SBRT combined with pembrolizumab 
and trametinib may be a novel treatment option for 
postoperative patients with PDAC. However, a phase 
III trial is needed to confirm these findings[171]. The 
postoperative pathology report of a patient with 
advanced PDAC preoperatively treated with RT and 
pembrolizumab (anti-PD-1) demonstrated a nearly 
complete pathologic response[172]. In contrast, an 
additional phase I trial combining low-split RT and 
pembrolizumab demonstrated that four patients with 
PDAC presented with progressive disease, with all RT 
target lesions metastasizing in the liver rather than the 
pancreas[173].     

CTLA-4 is a receptor that inhibits T lymphocyte 
activation; therefore, inhibiting CTLA-4 activates T 
lymphocytes[174]. In a phase 2 CheckPAC study 
(NCT02866383), patients with metastatic PDAC who 
were treated with nivolumab + ipilimumab (CTLA-4 
blocker) + 15 Gy SBRT achieved an ORR of 37.2% 
(24.0–52.1) compared with those treated with 
nivolumab alone who achieved an ORR of 17.1% (8.0–
30.6)[175]. Thus, ICI in combination with RT (SBRT) to 
treat patients with metastatic PDAC has implications 
for future research. The precise function of SBRT in 
the treatment remains to be determined. 

Nonetheless, the majority of phase 1 and phase 2 
clinical trials have failed to demonstrate efficacy in 
most patients with PDAC. However, combining 
immunosuppressive agents with RT or chemotherapy 
is crucial in the treatment of patients with prostate 
cancer. Data from the recent clinical studies 
combining ICI and RT or chemotherapy in patients 
with PDAC are listed in Table 1. 

5.1.2 Vaccine combined with RT  
Algenpantucel-L is a vaccine comprising PDAC 

cells expressing the -1,3-galactosyltransferase gene. In 
a phase II clinical trial conducted by Hardacre, 70 
patients with PDAC were treated with RT and 
Algenpantucel-L. After a median of 21 months of 
follow-up, this study yielded encouraging results, 
with a 12-month disease-free survival rate of 62% and 

an overall 12-month survival rate of 86%[176]. 
However, algenpantucel-L immunotherapy did not 
improve survival in patients with resectable or locally 
advanced unresectable PDAC at the treatment 
margin[177]. GVAX is a transgenic vaccine containing 
GM-CSF developed for the treatment of PDAC. In a 
phase 2 study involving 60 patients with PDAC, a 
combination of GVAX + RT resulted in a median 
disease-free survival of 17.3 months and a median 
survival of 24.8 months. Compared with the survival 
data on cancer resection, overall survival was higher 
when immunotherapy combined with RT, and 
patients tolerated the immunotherapy well[178]. 

5.2 Immunotherapy in conjunction with 
metabolic targeting therapy  

5.2.1 Combination of ICIs and metabolic targeting 
therapy 

ICIs have poor therapeutic efficacy in PDAC, 
whether used alone or in combination with RT[75]. 
This is primarily due to the complex TME of PDAC. 
An essential immune checkpoint receptor in activated 
immune cells is PD-1, which also promotes the 
proliferation of Tregs and has enhanced 
immunosuppressive properties. The binding of PD-1 
to PD-L1 or PD-L2 induces inhibitory signals. 
Reportedly, the highly conserved C-terminal tyrosine 
of PD-1 is associated with Src homology region 2 
domain-containing phosphatase-1 (SHP-1) and Src 
homology region 2 domain-containing phosphatase-2 
(SHP-2) in both human and mouse transcripts. The 
interaction between T-cell receptor signaling and 
PD-1 induces the phosphorylation of the cytoplasmic 
tyrosine structural domain, which recruits SHP-2 to 
the C-terminal tyrosine. 

Consequently, SHP-2 dephosphorylates the Ras 
and PI3K-AKT pathways, inhibiting subsequent 
signaling (Figure 3). PI3K-AKT signaling inhibition 
decreases T-cell proliferation and cytokine 
production[179]. Moreover, PD-1 and PD-L1 may 
inhibit T-cell metabolism by inhibiting aerobic 
glycolysis as well as the PI3K/AKT/mTOR signaling 
pathway[180]. CTLA-4, another immune checkpoint 
receptor, can inhibit glucose uptake in cytotoxic T 
cells by binding to CD80/CD86, thereby downregu-
lating the PI3K/AKT pathway. Unsurprisingly, it has 
been demonstrated that combination therapy with 
ICIs and metabolic targeting slightly enhances the 
efficacy of immunotherapy. Preclinical studies using 
murine melanoma models, anti-PD1 or anti-CTLA4 
with glutaminase inhibitors, and other metabolic 
modulators have demonstrated that modulating the 
metabolism can increase the efficacy of PD-1/PD-L1 
therapy[181]. Specifically, DAC cells are characterized 
by GLUT-1 receptor activation and an increase in 
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lactate accumulation. In human PDAC samples, this 
increase in GLUT-1 expression was associated with 
increased PD-1 plus T cell density. These findings 
convey that both cancer and immune cells can reduce 
the efficacy of immunotherapy by activating glucose 
transporter receptors. 

5.2.2 Combining vaccines and metabolic targeting 
therapy 

The combination of vaccines and metabolic 
targeting may synergistically benefit the treatment of 

PDAC by targeting metabolic pathways of immune 
cells to enhance their activity in the TME. This is 
additionally mediated by limiting nutrients in the 
TME to increase the number of activated immune cells 
and boost the immune response[182]. Studies have 
demonstrated that vaccines alone are not optimally 
effective in patients with PDAC, and adding 
metabolic targeting therapies to vaccines has given 
this immunotherapeutic modality a new promise and 
direction. 

 
 

Table 1: Status of the combination of immunotherapy and RT in clinical research 

Systemic agents Phase N RT scheme Note Reference 
Gemcitabine + pembrolizumab 
+ trametinib 

II 147 35 to 40 Gy mOS: 15.1 months 
 

[168] 

Durvalumab + tremelimumab I 59 1 × 8 Gy or 5 × 5 Gy ORR: 5.1% [169] 
Nivolumab + ipilimumab II 25 3 × 8 Gy ORR: 12% [170] 
Pembrolizumab + trametinib II 85 5 × 7–8 Gy mOS: 14.9 months [171] 
Nivolumab +/-ipilimumab II 84 1 × 15 Gy mOS: 3.8 months 

ORR: 14% for the triple combination  
[175] 

Gemcitabine + algenpantucel-L 
(cancer vaccine) 

II 70 28 × 1.8 Gy (+ 5-FU) 1-year DFS: 62% [176] 

FFX or Gem-Np +/- 
algenpantucel-L 

III 303 28 × 1.8 Gy (+ 5-FU or 
capecitabine) 

mOS: 14.3 months (vs. 14.9 for SOC) [177] 

GVAX (cancer vaccine) II 60 28 × 1.8 Gy (+ 5-FU) mDFS: 17.3 months [178] 

RT: radiotherapy; ORR: objective response rate; mOS: median overall survival. 
 
 

 
Figure 3: Small molecules and checkpoint inhibitors on Th cells and pancreatic ductal adenocarcinoma (PDAC). Programmed death-ligand 1 (PD-L1)/programmed cell death 
protein-1 (PD-1) sends stimulatory signals to T cells and inhibits PI3K activation. Small molecules inhibit the PI3K/mTOR pathway to inhibit PDL-1 and signal transducer and 
activator of transcription 3 (STAT-3) transcription. The activation of p-P70S6K and p-4E-BP1 affects Th cells via the mTOR pathway. Chimeric antigen receptor-T (CAR-T) cells 
target the HER2-specific PDAC receptor. Anti-CTLA-4, vaccine therapy, or both disrupt the interaction between dendritic cell T-cell receptor and MHC-1. Created with 
MedPeer (https://www.medpeer.cn/; accessed on 28 October 2023). 
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KIF20A, a kinesin superfamily protein 20A 
member, is an overexpressed motor protein in 
patients with PDAC. In a study enrolling patients 
with metastatic cancer who failed gemcitabine-based 
regimens, vaccination with a protein vaccine 
containing KIF20A-66 elicited a CD8+ effector T-cell 
response against the peptide. Moreover, the results 
revealed a median overall survival of 4.2 months[183]. 
The overexpression of vascular endothelial growth 
factor (VEGF) promotes the development and 
metastasis of PDAC as well as the appearance of 
aberrant vascular structures. In addition, patients 
with PDAC who co-expressed VEGF receptor 1/2 had 
a shorter survival. In a phase II/III clinical trial, the 
median overall survival rates of patients treated with 
combination of vascular endothelial growth factor 
receptor 2 (VEGF2) and peptide-based vaccine versus 
gemcitabine were comparable at 8.4 and 8.5 months, 
respectively[184]. Survivin 2B peptide (SVN-2B) is an 
essential protein that participates in programmed cell 
death and cell cycle regulation during embryonic and 
fetal development. SVN-2B activation is associated 
with drug resistance and poor prognosis in 
approximately 80% of patients with PDAC. Shima et 
al. developed a vaccine against SVN-2B to target 
survivin and enhance the number of CD8+ T cells 
specifically targeting survivin. Another protein is 
MUC1 which regulates signaling and cell 
differentiation in pancreatic tissues, is overexpressed 
in approximately 60% of patients with PDAC, and is 
strongly linked to PDAC development. A dendritic 
cell vaccine administered with MUC1-loaded MUC1 
is non-toxic and can induce an immune response 
against the tumor antigen MUC1 in patients with 
advanced cancer[40]. MSLN is highly expressed in 
most patients with PDAC and is frequently activated 
alongside CA-125. The co-expression of both these 
genes promotes tumor invasion and metastasis. 
CRS-207 is a vaccine that has been demonstrated to 
enhance the frequency of MSLN-specific CD8+ T cells 
in 60% of patients with chemoresistant PDAC[185]. 
Understanding the mechanisms of PDAC resistance 
and underlying metabolic pathways in the TME may 
contribute to the development of more effective 
combination therapies to improve patient prognosis. 

5.2.3 Combining CAR-T with metabolic targeting 
therapy 

Fusion of an antibody in a single-chain fragment 
variable with intracellular signaling structural 
domains such as CD3-chain, CD28, and CD137 
generates CARs[186]. Specifically, CAR-T cells 
express CARs on their membranes, allowing them to 
recognize and attach to PDAC cells to produce 
specific antigens. CAR-T cells mediate MHC- 

unrestricted tumor cell killing by allowing T cells to 
bind to target cell surface antigens, which induces the 
apoptosis of PDAC cells[187]. Owing to the absence of 
co-stimulatory signaling, first-generation CAR-T cells 
with CD3 or FcR signaling structural domains have 
demonstrated low clinical efficacy. However, second- 
or third-generation CAR-T cells are more effective 
against PDAC with immunosuppressive TME. 
Reportedly, CAR-T cell therapy demonstrates 
excellent clinical efficacy in B-cell carcinoma; 
however, the optimal therapeutic combination for the 
treatment of this cancer type has not been determined. 
Nevertheless, it has been postulated that targeting 
PDAC metabolism may enhance CAR-T efficacy. 

MSLN-targeting CAR-T cells may be effective 
against PDAC. A phase I clinical trial has 
demonstrated that treatment of a PDAC patient with 
MSLN-CAR-T cells resulted in subsequent 
stabilization, with no damage to the normal tissues. In 
addition, Beatty et al. found that two of six patients 
with PDAC who were treated with messenger 
ribonucleic acid-based MSLN-CAR-T cells had stable 
disease. Moreover, they reported that the 
metabolically active volume of individual tumor 
lesions remained stable in three patients and 
decreased by 69.2% in one patient with MSLN 
expression, as confirmed by biopsy[188]. In animal 
models, CAR-T cells targeting PSCA have 
demonstrated efficacy in PDAC cells. Furthermore, 
additional preclinical studies assessing the efficacy of 
CAR-T cells targeting upregulated MUC1 have 
demonstrated promising therapeutic effects. In 
another study, CAR-T was demonstrated to recognize 
the rare glycol-Tn antigen on MUC1 and thus mediate 
an excellent antitumor activity in a PDAC-loaded 
murine tumor model. Several early clinical trials are 
ongoing to evaluate the efficacy of MUC1-targeting 
CAR-T cells for the treatment of PDAC[189]. 

5.3 Possibility of immunotherapy and RT in 
conjunction with metabolic targeting therapy 

In recent times, RT has been regarded as an 
effective treatment for inhibiting the progression of 
numerous solid tumors[190]; however, for the 
treatment of PDAC, RT alone is ineffective. Among 
the innumerable molecular pathways via which RT 
mediates its efficacy, metabolic alterations in PDAC 
are a significant factor contributing to RT 
resistance[191]. This is because PDAC cells resist the 
effect of RT by inducing metabolic alterations. To this 
extent, clinical investigations have shown that RT is 
less effective in PDAC patients with high baseline 
metabolic levels[192, 193]. Specifically, MUC1 
expression reduces RT-induced cytotoxicity and DNA 
damage in PDAC cells by upregulating glycolysis, the 
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pentose phosphate pathway, and nucleotide 
biosynthesis[123]. However, a study has found that 
2-deoxy-D-glucose, a glucose analog that competi-
tively inhibits metabolism, induces a significant 
increase in metabolic oxidative stress by increasing 
glutathione disulfide accumulation and the 
NADP(+)/NADP(-) ratio, resulting in radiosensiti-
zation[194]. In mice with xenografts of MiaPaCa-2 
cells, a high-fat, low-carbohydrate, ketogenic diet 
increased RT sensitivity. However, the extrapolation 
of this study to a phase I trial involving patients with 
PDAC did not produce the expected results owing to 
inadequate adherence (NCT01419483) [183]. 
Moreover, studies have reported that fatty acid 
synthase upregulation causes RT resistance[195], in 
addition to its effects on glucose metabolism. Notably, 
specific genes in the cholesterol synthesis pathway 
also contribute in some capacity to RT resistance. By 
inhibiting the overexpression of farnesyl diphosphate 
synthase (FDPS), zoledronic acid (Zol) can sensitize 
PDAC cells to RT[195]. In addition, Parthasarathy et 
al. have found that the overexpression of FDPS in 
PDAC cells was associated with a reduced RT 
response and decreased survival. In in vitro and in vivo 
studies, pharmacological inhibition of CRISPR/Cas9 
and FDPS in human and mouse homozygous PDAC 
cells using Zol + RT increased PDAC radiosensi-
tization. Intriguingly, mouse and human tumors 
treated with Zol + RT demonstrated substantial 
growth suppression. Reportedly, Zol induces 
radiosensitization by modulating Rac1 and 
Rho-organization, inducing DNA damage, altering 
radiation response signaling, and enhancing systemic 
immune cell activation. Preliminary findings of an 
ongoing phase I/II trial (NCT03073785) demonstrated 
that Zol + RT treatment improved failure-free 
survival, increased immune cell activation, and 
decreased microenvironment-associated transcripts. 
Overall, Zol improved the efficacy of RT by inhibiting 
FDPS, indicating a novel therapeutic mode of targeted 
metabolism[196]. 

PDAC is characterized by minimal 
immunogenicity and a highly immunosuppressive 
microenvironment. Specifically, the role of TME is 
mediated by three major immune cell types: Tregs, 
M2-type TAMs, and MDSCs. In PDAC, immunosup-
pression and immunotherapeutic resistance are 
closely linked with metabolism. Aerobic glycolysis 
plays an important role in activating immune function 
by CD8+ effector T cells and producing interferons by 
CD4+ T cells[197, 198]. In contrast, glycolysis is critical 
for the functioning of CD4+ effector T cells (Th1, Th2, 
and Th17) and M1 TAMs. Tregs and M2-type TAMs 
are chiefly fueled by lipid oxidation[199, 200]. 
Notably, tumor-associated MDSCs undergo metabolic 

reprogramming to sustain survival and effectuate 
their immunosuppressive functions via increased 
FAO and glycolysis[201, 202]. In addition, 
tumor-derived lactate elicits an M2-like phenotype 
and downregulates the function of CD8+ cytotoxic T 
cells in TAMs, further remodeling the TME[203, 204]. 
Importantly, lactate induces an immunosuppressive 
microenvironment in PDAC by upregulating MDSC 
and inhibiting natural killer cell activity[205]. In 
addition, in a mouse model of caloric restriction, 
tumor-induced IL-6 was found to compromise its 
metabolism (ketogenic response), thus suppressing 
anti-tumor immunity[206]. In conclusion, targeted 
metabolic therapies offer novel approaches to 
immunosuppression and contribute to novel concepts 
for immunotherapy combination therapies. 

Owing to the poor prognosis of surgical 
treatment for PDAC and the poor tolerability of RT 
and chemotherapy, immunotherapy has emerged as 
an alternative modality for the treatment of PDAC in 
recent years. Several immunotherapies for PDAC, 
including ICIs[207] and therapeutic vaccines[208, 
209], are being evaluated in clinical trials; however, 
most immunotherapies alone have suboptimal out-
comes. Recent research indicates that immunotherapy 
mediated by T cells can optimize treatment efficacy by 
modulating cellular metabolism[210]. In addition, 
ICIs can support lymphocyte metabolism in tumors 
and enhance their anti-tumor effects[124, 211]. Given 
the relationship between immunotherapy and 
metabolism, it is possible to integrate metabolic 
modulation with conventional immunotherapy. In 
addition to enhancing the capacity of lymphocytes to 
combat tumor effects, targeting the immunosup-
pressive TME is emerging as a new therapeutic 
option[212]. Several cytokines also play a significant 
role in PDAC immunosuppression. IDO, a metabolic 
enzyme expressed in most human tumors, inhibits 
immune cell responses by metabolizing tryptophan in 
the TME[213, 214]. Thus, by combining the inhibition 
IDO and of tumor connective tissue proliferation, 
Edwin et al.[215] achieved significant anti-tumor 
activity in a mouse model of PDAC. An ongoing 
phase II trial (NCT03006302) is evaluating the efficacy 
of IDO inhibitors and immunotherapy or 
cyclophosphamide for the treatment of patients with 
PDAC. Given the significance of metabolism in 
immunity, metabolic modulation has the potential to 
enhance the clinical efficacy of immunotherapies. 

6. Conclusion 
PDAC is an aggressive malignancy and is 

associated with one of the highest mortality rates 
among all cancers. There have not been considerable 
advances in PDAC treatment owing to the 
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immunosuppressive TME of PDAC. Although 
immunotherapy has demonstrated improved efficacy 
for treating several cancers, ICIs and vaccines are less 
effective in patients with PDAC. This failure of 
immunotherapy is primarily attributable to the 
immunosuppressive microenvironment of PDAC. 
First, the dense stroma of PDAC TME acts as a 
physical barrier to immunotherapeutic drug delivery. 
By converting to CAF, astrocytes in the TME induce 
collagen deposition and promote fibrosis. Second, the 
immunosuppressive TME of PDAC encourages the 
proliferation of immunosuppressive cells, the 
suppression of immune effector cells, and a reduction 
in antigen presentation. Moreover, the immuno-
suppressive characteristics of the TME substantially 
contribute to the production of metabolites, receptors, 
and cytokines. RT has demonstrated an 
immunomodulatory effect, which can help avoid 
immunotherapeutic resistance to PDAC-antigen 
presentation and T-cell activation. Although RT plays 
a significant role in improving immunotherapy 
efficacy in patients with PDAC, targeting the TME is 
more of an “on/off” control that determines the 
overall efficacy of PDAC therapy. In patients with 
PDAC, neither RT alone nor RT in combination with 
immunotherapy has been demonstrated to be 
effective. Therefore, it is critical to determine effective 
methods to modulate the complex interactions in the 
TME for the development of PDAC therapeutic 
strategies. In cancer, metabolic reprogramming is a 
convergence of biological phenomena and potential 
clinical targets. Despite the discovery of several 
potential metabolic molecules, clinical trials focusing 
on the metabolism of cancer therapies have not 
yielded significant results. Several factors, including 
adverse effects, metabolic heterogeneity, flexibility 
and plasticity, and complex interactions between 
tumors and the TME limit the efficacy of metabolic 
therapies. To overcome these obstacles, numerous 
steps must be taken. Integration of multi-omics, 
single-cell, and spatial assays is required to identify 
more preferable metabolic targets. In addition, the 
development of metabolomics and other technologies 
could expedite the discovery of novel metabolic 
targets and pathways. The development of precision 
medicine approaches in combination with 
metabolically targeted therapies is another crucial 
area of research. These approaches consider an 
individual's metabolic profile, resulting in the 
development of more personalized therapies. 
However, integrated computational modeling and 
experimental methodologies are essential for the 
advancement of these precision medicine approaches. 
In addition, tools to monitor and visualize metabolic 
reorganization processes more precisely and 

dynamically are required. These developments will 
help with advancements in personalized metabolic 
therapies for patients in clinical settings. The 
metabolic targets shared by PDAC cells and immune 
cells require further investigation to develop new 
therapeutics and treatment methods for PDAC. 
However, a few key questions that need to be 
addressed for combination immunotherapy remain: 
how to identify the unique metabolic pathways and 
metabolites of PDAC cells as targets for targeted 
inhibition, how to utilize the plasticity of differential 
metabolism, and how to balance tumor suppression 
and maintenance of immune cell activity. 
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