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Abstract 

Objective: To delineate the immune landscape of ESCC patients mediated by aggrephagy through 
bioinformatics and identify prognostic cell cluster genes with causal attributes to esophageal cancer through 
Mendelian randomization. 
Methods: Quality control, dimension reduction, and annotation were performed on the ESCC single-cell 
dataset. NMF clustering of various cell subgroups was carried out based on the expression of AGG-related 
genes, and AGG-related genes in each cluster were identified. Pseudo-temporal analysis was used to observe 
changes in the expression of AGG-related genes in each cluster. Cell communication analysis was employed to 
observe interactions between cell subgroups. Changes in classification, metabolism, or KEGG pathways in 
related subgroups were observed based on different cell characteristics. The AGG cluster attributes of TCGA 
and GEO samples were assessed based on GSVA, and the prognosis of each cluster was observed. The immune 
treatment situation and the relationship between mutation level and prognosis of AGG cluster-related samples 
were observed through the TIDE database and microsatellite instability. Finally, the eQTL of genes in each 
prognostic AGG cluster was used as an instrumental variable, with esophageal cancer as the outcome factor. 
Through Mendelian randomization analysis, AGG cluster-related genes with a causal relationship to esophageal 
cancer were established.  
Results: Dimension reduction clustering of single-cell transcriptome data identified 19 different cell 
subgroups. After re-annotation of the 19 cell subgroups, it was found that the CAF cells, B cells, T cells, NK 
cells, etc., of ESCA patients were all elevated compared to the control group. CAF cells had a high degree of 
communication with most cells. There were significant differences in macrophage metabolism and 
B-cell-mediated signal transduction pathways in different AGG clusters. The TUBA1B+Mac-C0 cluster, along 
with other clusters, exhibits predictive prognostic and immunotherapeutic potential at the transcriptional level. 
Mendelian randomization analysis revealed a causal relationship between genes such as CTSZ, CTSC, DAD, 
COLEC12, ATOX1, within the AGG cluster, and the onset of esophageal cancer.  
Conclusion: Aggrephagy mediates and influences the alterations and interactions of various immune cells in 
patients with ESCC. We elucidate the roles of AGG-related clusters, such as TUBA1B+Mac-C0, 
VIM+CD8+T_cells-C0, UBB+Mac-C2, in mediating prognosis and immune therapy in ESCC patients. Genes 
causally associated with the occurrence of esophageal cancer are identified within the AGG cluster, including 
CTSZ, CTSC, DAD, COLEC12, ATOX1, etc., offering new evidence for clinical immune therapy. These 
findings underscore the significance of these gene clusters in influencing both prognosis and immune responses 
in the context of esophageal cancer, shedding light on potential therapeutic targets and prognostic markers. 
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Introduction 
Esophageal squamous cell carcinoma (ESCC) 

represents a significant subtype of esophageal 
cancer[1]. With its symptoms often concealed, late 
clinical manifestation, and rapid progression, the 
5-year survival rate for ESCC patients is a mere 30% to 
40%[2]. Current treatments for esophageal cancer 
primarily involve traditional surgical removal, 
radiation, and chemotherapy, but these interventions 
have limited efficacy and severe side effects[3]. This is 
associated with the poor immunogenicity of ESCC 
and its complex immunosuppressive microenviron-
ment. Numerous studies have suggested a potential 
link between the tumor's immune microenvironment 
and patient prognosis. Therefore, to accurately predict 
the molecular mechanisms and prognosis of ESCC 
patients, it is imperative to explore new and effective 
biomarkers for early diagnosis and accurate prognosis 
prediction of ESCC. 

Aggrephagy (AGG), a type of selective 
autophagy, is a critical pathway for cells to clear large 
amounts of misfolded proteins[4]. Protein aggregates 
are regulated by phase separation during their 
formation, transitioning between various states such 
as liquid and solid, which influences the nature of the 
aggregates and their clearance methods[5]. The 
formation of protein aggregates can generate new 
protein toxicities, which, in addition to losing their 
normal functions, can interact with other properly 
folded proteins, causing intracellular protein function 
disorder. Studies have shown that protein aggregates 
can affect various diseases, including cancer and 
cardiovascular diseases[6]. Clearing intracellular 
protein aggregates can assist in restoring normal 
cellular physiological functions and is an important 
way to delay disease progression[7]. It is certain that 
AGG mediates the effects of various immune cells on 
the occurrence and development of tumors in patients 
with ESCC through synergistic or opposing actions, 
but the specific roles and molecular mechanisms are 
still unclear. Therefore, how to analyze the clinical 
significance of the tumor microenvironment mediated 
by aggrephagy has become a challenge for 
researchers.  

Single-cell sequencing technology reveals the 
highly complex cellular composition of tumor tissues 
with high resolution, making it a powerful tool for 
studying tumor heterogeneity and the interactions 
among various cell groups[8]. Mendelian randomi-
zation (MR) is a newly emerged method for inferring 
causal effects. This method uses genetic variation as 
an instrumental variable, based on the strong 
association between the instrumental variable and the 
exposure factor to explore the causal relationship 
between exposure and outcome[9]. In this article, 

through a joint analysis of single-cell transcriptome 
data and transcriptomes, we focus on the molecular 
actions mediated by AGG-related genes in different 
cell subgroups of ESCC, and identify prognosis- 
related expression quantitative trait genes (EQTL) 
through Mendelian randomization, aiming to provide 
new insights for the precision treatment of ESCC. 

1. Methodology 
Data Acquisition and Processing 

Single-cell transcriptomic data were sourced 
from the GSE196756 dataset in the GEO database. 
Data were read using R and the Seurat package. Cell 
quality control criteria included[10]: (1) Cells 
expressing <300 genes. (2) UMI (Unique Molecular 
Identifiers) of mitochondrial genome >50%. (3) UMI 
of ribosomal genome <3%. Genes from the 
mitochondrial genome, housekeeping gene MALAT1, 
and those detected in fewer than three cells were 
removed. Normalization and other processing were 
conducted following standard procedures, and the R 
package Harmony was used to integrate metastatic 
and primary cancer samples[11]. Transcriptomic data 
were obtained from the public databases The Cancer 
Genome Atlas (TCGA, https://cancergenome.nih 
.gov/) and GEO database (https://www.ncbi 
.nlm.nih.gov/geo). The TCGA database contained 160 
cases of esophageal cancer tissue, 11 cases of normal 
esophageal tissue, and 183 cases of related clinical 
data were downloaded, including age, clinical stage, 
tumor grade, and survival status. The GSE53625 
dataset in the GEO database contained mRNA 
transcription data for 129 normal and 129 tumor 
tissues. 

Cell Annotation and Clustering 
The Seurat package was used for quality control 

of single-cell data. Principal component analysis 
(PCA) was used for dimension reduction, followed by 
secondary dimension reduction using the uniform 
manifold approximation and projection (UMAP) 
algorithm. Based on the PCA dimension reduction 
results, UMAP was used for visualization of 
single-cell clustering, and the t-distributed stochastic 
neighbor embedding (t-SNE) clustering algorithm 
was used to obtain subdivided cell clusters. Cells 
were annotated based on cell marker genes from the 
literature. Subgroup cells were processed following 
the Seurat standard procedure. Immune cell 
clustering mainly referred to the report by Zhang 
Zemin's team[12–14], and CAF (cancer-associated 
fibroblast) clustering referred to the research by 
Elyada and others and NuRmik and others[15,16]. 
AGG-related genes were sourced from The Molecular 
Signatures Database (MSigDB, https://www.gsea- 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

1942 

msigdb.org/)[17]. 

Feature Analysis of Cell Subgroups 
Based on the expression of AGG-related genes, 

the NMF package was used for dimension reduction 
and clustering of each cell group[18]. The expression 
of Maker genes was used to further identify related 
subgroups within each cell group. Specific cells were 
extracted for NMF clustering and AGG clustering. 
The Monocle R package was used for pseudo- 
temporal analysis and single-cell differentiation 
trajectory analysis of AGG genes in each cell 
group[19]. SCENIC was used to explore the 
expression of transcription factors in cells[20]. The 
ClusterProfilerR software package was used for gene 
ontology (GO) functional enrichment analysis and 
Kyoto encyclopedia of genes and genomes (KEGG) 
pathway enrichment analysis of differential gene sets. 
CellChat was used for analysis of cell communication. 
This software identifies overexpressed receptor pairs 
and constructs a PPI network based on gene 
expression in single-cell transcriptome sequencing, 
calculates communication probabilities, and infers the 
communication network of cell interactions[21]. 
Heatmaps were used to display the number and 
intensity of interactions between cells. The 
classification, metabolism, or changes in KEGG 
pathways of related subgroups were observed based 
on the characteristics of different cells. 

Construction and Verification of Prognostic 
Models 

Gene set variation analysis (GSVA) was 
employed to analyze the transcriptional differences of 
AGG-related genes between ESCC patients and 
normal individuals. We extracted marker genes for 
the AGG clusters defined in our single-cell 
transcriptome analysis. Single-sample enrichment 
analysis through GSVA was conducted to obtain 
AGG-related cluster scores for each transcriptome 
sample. Discrepancies in each AGG cluster between 
ESCC patients and normal samples were observed. 
The surv_cutpoint function from the survminer 
package was utilized for optimal cutpoint 
determination and visualization of continuous 
variables in survival data. The TCGA dataset served 
as the training set, while the GEO dataset was used for 
validation[22]. Single-factor COX regression analysis 
was performed to assess the impact of each AGG 
cluster on the prognosis of esophageal cancer patients, 
with visualization using the ggplot2 package. 

Evaluation of Immunotherapy and 
Microsatellites 

Jiang P and others developed the Tumor 
immune dysfunction and exclusion (TIDE) algorithm 

(http://tide.dfci.harvard.edu) by integrating two 
mechanisms of tumor immune evasion[23]. A lower 
TIDE score indicates a better response to 
immunotherapy. We conducted an analysis of the 
relationship between GSVA scores of different AGG 
clusters in patients and their response to 
immunotherapy. Logistic regression analysis was 
performed on the results from TCGA and GEO 
datasets to observe the consistency between the two 
datasets. The impact of different AGG clusters on 
disease prognosis was validated using the IMvigor210 
cohort. 

Mendelian Randomization Verification of Key 
Gene eQTLs 

Maker genes with prognostic difference clusters 
were extracted, and related eQTLs were extracted 
from the IEU Open GWAS project database 
(https://gwas.mrcieu.ac.uk/datasets/) as exposure 
factors[24]. The esophageal cancer queue also came 
from this database, with the ID ieu-b-4960, which 
contained whole genome data of 372,016 normal 
samples and 740 esophageal cancer samples, which 
were used as outcome data. Mendelian 
randomization analysis was conducted on the eQTL 
of maker genes in each cluster and esophageal cancer 
to find out the maker genes with causal relationship 
with esophageal cancer in each cluster. In our study, 
there was no sample overlap between populations, 
and all participants belonged to the European 
population, mitigating potential bias due to racial 
differences. When using Maker genes as the exposure 
factor[25], we initially selected SNPs that were 
strongly correlated with gene expression and reached 
genome-wide significance at P < 5×10-8. Subsequently, 
we computed the F-statistic to assess the strength of 
the association between the instrumental variable and 
the exposure factor, using the formula F = (beta/se)2, 
where beta represents the allelic effect size, and se 
denotes the standard error[26]. SNPs with F-values 
less than 10 were excluded to address potential weak 
instrumental variable bias[27]. The inverse 
variance-weighted fixed-effects model (IVW-FE) was 
employed as the primary Mendelian randomization 
(MR) analysis method. Cochran's Q test was applied 
to assess heterogeneity among instrumental variables, 
with P > 0.05 suggesting minimal likelihood of 
heterogeneity. The MR Egger intercept test was 
conducted to evaluate horizontal pleiotropy, and if 
the intercept term was statistically significant, it 
indicated substantial horizontal pleiotropy. Finally, 
genes exhibiting both heterogeneity and pleiotropy 
were excluded to identify prognostic genes causally 
related to esophageal cancer. Subsequently, 
GeneMANIA database (http://genemania.org/) and 
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the enrichplot package were utilized for 
protein-protein interaction (PPI) and Gene Ontology 
(GO) analyses. 

Results 
Processing of Single-Cell Transcriptome Data 

Dimensionality reduction and clustering of 
single-cell transcriptomic data identified 19 distinct 
cellular subgroups (Figure 1 A). These 19 cell 
subgroups were re-annotated based on the expression 
of marker genes for immune cells and other cells 
(Figure 1 B, C). Upon re-annotation of these 19 cell 
subgroups, it was found that in ESCA patients, the 
levels of CAF cells, B cells, T cells, NK cells, and other 
cell subgroups were elevated compared to the control 
group (Figure 1 D, E). Cell communication results 
revealed a high degree of communication between 
CAF cells and the majority of other cells, suggesting 
that fibroblasts may interact with various immune 

cells (Figure 1 F). Genes such as HSP90AA1, UBA52, 
RPS27A, TUBB4B, UBB, UBC, and VIM were 
generally highly expressed in various cell subgroups 
(Figure 1 G). Interestingly, the enrichment and 
expression strength of these genes differed among 
different cell subgroups. For instance, most genes 
such as HSP90AA1, UBA52, and UBB were enriched 
in B cells, NK cells, and T cells, yet the expression 
levels of genes such as VIM and UBB were stronger in 
fibroblasts, macrophages, and adipocytes (Figure 1 
H). 

Analysis of Cancer Associated Fibroblasts 
(CAFs) 

Cancer Associated Fibroblasts (CAFs) are 
considered one of the most abundant stromal cells in 
all types of solid tumors, associated with a series of 
pro-tumorigenic biological processes such as tumor 
cell invasion, cancer stem cell renewal, chemotherapy 
resistance, and immune cell evasion[28–31]. 

 

 
Figure 1. Processing of Single-Cell Transcriptome Data. A. Dimensionality reduction clustering of ESCA samples. B. Expression of tissue cell marker genes. C. Expression of 
immune cell marker genes. D. Cell annotation tSNE clustering. E. Cell annotation UMAP clustering. F. Cell communication. G. Heatmap of AGG gene expression in different 
cells. H. Expression of AGG high expression genes in different cells.  
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Dimensionality reduction of fibroblast subgroups 
followed by pseudotemporal analysis revealed 
temporal differences in the expression levels of 
AGG-related genes (Figure 2 A). Cell trajectory 
analysis simulated the differentiation trends of 
different clusters (Figure 2 B). Based on the expression 
of AGG-related genes, fibroblasts were clustered 
using NMF. Three new clusters were identified based 
on the expression of AGG-related genes in each 
cluster, namely TUBA1A-CAF-C0, HSP90AA1- 
CAF-C1, and VIM-CAF-C1. Cell communication 
analysis showed that all three clusters had strong 
interactions with epithelial cells (Figure 2 E, F). 
Multiple co-receptors such as PTN, MIT, EGF, etc., 
also showed varying levels of expression in epithelial 
cells and the three clusters (Figure 2 G). Transcription 
factors such as KLF6, JUN, FOSB, etc., also had 
different expressions in the three clusters (Figure 2 H). 
Comparing the expression of different CAF subgroup 
maker genes revealed that VIM-CAF-C1 cluster only 
had higher expression in pan-myCAFs. Both 
TUBA1A-CAF-C0 and HSP90AA1-CAF-C1 clusters 
were distributed in other CAF subtypes, especially the 
genes related to TUBA1A-CAF-C0 cluster showed 
stronger expression in non-pan-myCAFs subtypes, 
indicating a more pronounced manifestation of its 

other CAF subtypes (Figure 2 I). In addition, different 
clusters mediated different TME genes, which could 
potentially mediate the occurrence of different tumor 
microenvironments (Figure 2 J). 

Analysis Related to CD8+ Cells 
Upon dimensionality reduction of T cells, a 

significant variation in the number of T cell clusters 
was observed between cancer patients and normal 
individuals (Figure 3A, B). After extracting and 
annotating the marker genes of different T cell 
subgroups, it was observed that the subgroups of CD4 
and CD8 cells in cancer patients were significantly 
elevated (Figure 3C, D). Pseudo-temporal analysis 
revealed notable expression changes in genes such as 
HSP90AA1, TUBA4A, PCNT, and VIM among CD8 
cells at different stages of differentiation, and the 
differentiation of different clusters also showed a 
certain sequence (Figure 3E, F). After re-clustering the 
CD8 cell subgroups post-NMF clustering, VIM+CD8 
T_cell-C0, TUBB4B+CD8+T_cell-C1, HSP90AA1+ 
CD8+T_cell-C2 were identified (Figure 3G, H). 
Cellular communication analysis revealed that all 
three clusters had a low degree of interaction with 
epithelial cells, and the interaction among them was 
also weak (Figure 3I, J). However, the intensity of 

 

 
Figure 2. Analysis of Cancer Associated Fibroblasts (CAFs). A. Pseudo-temporal analysis of AGG gene in CAF cells. B. Cellular trajectory of CAF cells. C. NMF clustering of CAF 
cells based on the expression of the AGG gene. D. Annotation of AGG clusters after dimension reduction of CAF cells. E. Communication between AGG clusters and Epithelial 
cells. F. Global communication between AGG clusters and Epithelial cells. G. Receptor-related interaction strength between AGG clusters and Epithelial cells. H. Distribution of 
transcription factors in CAF cell subtypes. I. CAF subtypes in AGG clusters. J. Expression of immune microenvironment-related genes in AGG clusters. 
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communication-related signals showed high and low 
expressions among different clusters (Figure 3K). 
Most transcription factors were expressed most highly 
in the HSP90AA1+CD8+T_cell-C2 cluster, but were 
less expressed in the VIM+CD8+T_cell-C0 cluster 
(Figure 3L). TME-related genes such as CTLA4, 
LAIR1, CD247 were also expressed more in the 
HSP90AA1+CD8+T_cell-C2 cluster, but were less 
expressed in the other two clusters (Figure 3M). 
Analysis of CD8 T cell subtypes showed that in the 
VIM+CD8+T_cell-C0 cluster, the proportion of 
exhausted T cells and cytotoxic T cells was relatively 
high, while other clusters did not show significant 
subtype characterization (Figure 3N). 

Analysis Related to Macrophages 
Upon re-dimensioning and clustering of 

macrophages, a notable difference in the number of 
clusters between tumor samples and normal samples 
was observed (Figure 4A). The expression of maker 
cells within each cluster was re-annotated (Figure 4B). 
The clusters after dimension reduction were found to 
be divided into macrophages and monocytes (Figure 
4C). Following NMF clustering of the macrophages, 
the macrophage population could be divided into 
TUBA1B+Mac-C0, Non-Aggre-Mac-C1, and UBB+ 
Mac-C2 clusters (Figure 4F, G). Pseudo-time analysis 
revealed changes in the expression of the AGG gene at 
different times (Figure 4D). The cell trajectory 
diagram revealed the differentiation trend of 
macrophages (Figure 4E). Cell communication also 
showed direct interaction between the three 
macrophage clusters and epithelial cells, and network 
interaction among the four (Figure 4 H, I). There were 

 

 
Figure 3. Analysis Related to CD8+ Cells. A. t-SNE dimensionality reduction clustering of T cells. B. UMAP dimensionality reduction clustering of T cells. C. Marker genes of 
T cells. D. Subgroup annotation of T cells. E. Pseudo-temporal analysis of AGG genes in CD8+ cells. F. Cellular trajectory of CD8+ cells. G. NMF clustering of CD8+ cells based 
on the expression of AGG genes. H. Annotation of AGG clusters after dimensionality reduction of CD8+ cells. I. Communication between AGG clusters and Epithelial cells. J. 
Global communication between AGG clusters and Epithelial cells. K. Interaction intensity related to receptor pairing between AGG clusters and Epithelial cells. L. Distribution 
of transcription factors in AGG clusters. M. Distribution of TME genes in AGG clusters. N. Types of T cells in AGG clusters. 
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significant changes in the outgoing and incoming 
signals of different clusters (Figure 4J). The cell 
metabolic pathway indicated that the 
TUBA1B+Mac-C0 cluster had a higher enrichment 
level in metabolic pathways such as Sulfur 
metabolism, Steroid hormone biosynthesis, and 
Steroid biosynthesis. The Non-Aggre-Mac-C1 had a 
higher enrichment level in metabolic pathways such 
as Glycerophospholipid metabolism, Glycerolipid 
metabolism, and Galactose metabolism. The 
UBB+Mac-C2 had a higher enrichment level in 
metabolic pathways such as Ether lipid metabolism, 
Citrate cycle (TCA cycle), and Butanoate metabolism 
(Figure 4K). Macrophage polarization analysis 
showed that the three types of macrophage clusters 
tended to polarize towards M1 type (Figure 4L, M). 

Analysis Related to B Cells 
Upon re-dimensioning the B-cell clusters, there 

appears to be no significant changes between the 
ESCA samples and the normal samples (Figure 5 A). B 
cell-related markers were extracted (Figure 5 B). Upon 
re-annotation of the re-dimensioned B cell cluster, a 
portion of plasma cells was identified (Figure 5 C). 
Following NMF clustering, new B cell clusters 
TUBA1A+B cell-C0, UBE2N+B cell-C1, and 
Non-Aggre-B_cells-C2 were identified (Figure 5 D, E). 
Cell communication showed direct interaction and 
potential association between the three B cell clusters 
and T cells. The proportions within different clusters 
of B cells and plasma cells varied, with the 
TUBA1A+B cell-C0 cluster having the highest 
proportion within B cells, and the UBE2N+B cell-C1 

 
 

 
Figure 4. Analysis Related to Macrophages. A. tSNE and UMAP dimensionality reduction clustering of macrophages. B. Marker genes of macrophages. C. Subgroup annotation 
of macrophages. D. Pseudo-temporal analysis of AGG gene in macrophages. E. Cellular trajectory of macrophages. F. NMF clustering of macrophages based on the expression of 
AGG gene. G. Annotation of AGG cluster after dimensionality reduction of macrophages. H. Communication between AGG cluster and Epithelial cells. I. Global communication 
between AGG cluster and Epithelial cells. J. Interaction strength related to receptor pairing between AGG cluster and macrophages. K. Differences in metabolic pathways of 
macrophages in AGG cluster. L. Expression of marker genes of M1 and M2 macrophages in AGG cluster. M. Spatial distribution of M1 and M2 macrophages in AGG cluster. 
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cluster having the lowest (Figure 5 F, G). In contrast, 
within plasma cells, the UBE2N+B cell-C1 cluster had 
the highest proportion and the TUBA1A+B cell-C0 
cluster the lowest (Figure 5 H). Enrichment analysis 
revealed that TUBA1A+B cell-C0 was enriched in the 
IL-17 signaling pathway and Apoptosis pathway, 
UBE2N+B cell-C1 in the Oxidative phosphorylation 
pathway, and Non-Aggre-B_cells-C2 in the Tight 
junction pathway (Figure 5 I). Global cell 
communication analysis of all clusters and cell 
subgroups revealed high communication intensity 
between clusters such as HSP90AA1-CAF-C1, 
TUBA1A-CAF-C0, UBB+Mac-C2 and other subgroups 
(Figure 5 J). 

Prognostic Analysis of AGG Clusters at the 
Transcriptomic Level 

Based on the expression levels of AGG-related 
genes in each sample from the TCGA data, a ssGSEA 
analysis was performed. The results indicated that the 
enrichment degree of AGG-related genes in ESCA 
patients was higher compared to normal samples 
(Figure 6 A). The expression of AGG genes in 
different clusters also shows significant differences 

from the normal group (Figure 6 B). A prognostic 
model is constructed based on the related genes of 
different clusters (Figure 6 C). It is found that the 
prognosis of 6 clusters in the TCGA dataset has 
significant differences. However, after verification in 
the GEO dataset, only 3 clusters have statistically 
significant prognosis, but the prognosis of 
UBE2N+B_cell-C1 cluster is opposite to that in the 
TCGA dataset (Figure 6 D). A bubble chart is 
constructed based on the results of univariate COX 
regression of the two datasets, and the prognostic 
effects of most clusters in the two datasets are largely 
consistent (Figure 6 E). 

Immune Response and Prognostic Analysis of 
AGG Clusters and Microsatellite Instability 

Through the immune response analysis by TIDE, 
the effect of immunotherapy on each sample was 
predicted. The results revealed that the response of 
each cell cluster characteristic sample group to 
immunotherapy varied. Among them, clusters such as 
TUBA1A+CAF-C0, HSP90AA1+CAF-C1, VIM+ 
CAF-C2, TUBA1B+Mac-C0 exhibited a lesser degree 
of sensitivity to immunotherapy in both TCGA and 

 

 
Figure 5. Analysis Related to B Cells. A. tSNE and UMAP dimensionality reduction clustering of B cells. B. Marker genes of B cells. C. Subgroup annotation of B cells. D. NMF 
clustering of B cells based on AGG gene expression. E. Annotation of AGG clusters after dimensionality reduction of B cells. F. Communication between AGG clusters and T 
cells. G. Global communication between AGG clusters and T cells. H. Proportion of each AGG cluster in B cells and plasma cells. I. Signal transduction mediated by AGG clusters 
in B cells. J. Global communication of AGG clusters in various cells. 
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GEO samples (Figure 7A, B). There were also certain 
differences in the final outcomes of each cell cluster 
characteristic sample group in the TCGA database 
(Figure 7C). The prognostic risk bubble chart also 
showed that most clusters are risk factors for patients, 
often leading to unfavorable prognoses (Figure 7E). In 
the independent microsatellite cohort of bladder 
cancer, validation of our clusters revealed that the 
prognosis of patients in multiple clusters was better 
(Figure 7D). This suggests that our AGG gene 
set-associated cell clusters not only necessitate 
immunotherapy in esophageal cancer cohorts but also 

hold potential value for targeted therapy in other 
cancers. 

Mendelian Randomization Validates Key 
Gene's eQTL and Its Causal Relationship with 
Esophageal Cancer 

Maker genes that reflect prognostic 
characteristics were extracted from the AGG clusters. 
Through Mendelian randomization of eQTL, it was 
found that the TUBA1B+Mac-C0 cluster and other 
cluster have the most maker genes with a causal 
relationship to esophageal cancer (Table 1).  

 

Table 1. Mendelian Randomization Validation of Maker Genes in AGG-Related Clusters 
AGG_celltype Exposure Method Nsnp β Se Pval Lo_ci Up_ci Or Or_lci95 0r_uci95 
VIM+CD8+T_cells-C0 SCML4 IVW 3 0.0007 0.0003 0.0184 0.0001 0.0013 1.0007 1.0001 1.0013 
VIM+CD8+T_cells-C0 HNRNPF IVW 3 0.0004 0.0002 0.0155 0.0001 0.0008 1.0004 1.0001 1.0008 
UBB+Mac-C2 IFRD1 IVW 6 0.0004 0.0002 0.0255 0 0.0007 1.0004 1 1.0007 
TUBA1B+Mac-C0 CTSZ IVW 3 0.0006 0.0003 0.042 0 0.0012 1.0006 1 1.0012 
TUBA1B+Mac-C0 CTSC IVW 7 -0.0023 0.001 0.0268 -0.0043 -0.0003 0.9977 0.9957 0.9997 
TUBA1B+Mac-C0 DAD1 IVW 2 0.0007 0.0003 0.0282 0.0001 0.0014 1.0007 1.0001 1.0014 
TUBA1B+Mac-C0 COLEC12 IVW 7 0.001 0.0003 0.1095 0.0003 0.0016 1.001 1.0003 1.0016 
TUBA1B+Mac-C0 C2 IVW 2 0.0005 0.0002 0.0181 0.0001 0.0009 1.0005 1.0001 1.0009 
TUBA1B+Mac-C0 ATOX1 IVW 2 0.0005 0.0002 0.0596 0.0001 0.0009 1.0005 1.0001 1.0009 
Non-Aggre-Mac-C1 CSTA IVW 3 0.0016 0.0007 0.2724 0.0002 0.003 1.0016 1.0002 1.003 
HSP90AA1+CAF-C1 ABL1 IVW 2 0.0004 0.0002 0.0968 0 0.0008 1.0004 1 1.0008 

 
 

 
Figure 6. Prognostic Analysis of AGG Clusters at the Transcriptomic Level.A. Differential analysis of AGG gene set in TCGA via ssGSEA. B. Expression profiles of different AGG 
clusters in TCGA. C. Prognostic value of AGG clusters in TCGA. D. Prognostic value of AGG clusters in GEO. E. Prognostic risk bubble chart of AGG clusters in both TCGA 
and GEO. 
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Figure 7. Immune Response and Prognostic Analysis of AGG Clusters and Microsatellite Instability. A. TIDE status of different AGG clusters in TCGA. B. TIDE status of different 
AGG clusters in GEO. C. Outcomes after immunotherapy of different AGG clusters. D. Prognostic differences of AGG clusters in microsatellite instability. E. Prognostic risk 
bubble chart of AGG clusters in TCGA and GEO. 

 
Figure 8. Co-expression Network and GO Enrichment Analysis of Causal Genes in AGG-Related Clusters. A. Co-expression network of causal genes in AGG-related clusters. 
B. GO enrichment analysis of causal genes in AGG-related clusters. 
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Among them, the genes CTSZ, CTSC, DAD, 
COLEC12, ATOX1, etc., in the TUBA1B+Mac-C0 
cluster have a causal relationship with esophageal 
cancer. In the other clusters, the genes SCML4, 
HNRNPF, IFRD1, CSTA, ABL1, etc., have a causal 
relationship with esophageal cancer. The network 
diagram drawn clearly shows the related genes 
contained in each cluster (Figure 8A). The GO 
enrichment analysis revealed that these causal genes 
are predominantly associated with changes in cellular 
components such as the endoplasmic reticulum-Golgi 
intermediate compartment membrane, COPII-coated 
ER to Golgi transport vesicle, and collagen-containing 
extracellular matrix. Furthermore, they are related to 
molecular functions including protein self-associ-
ation, cysteine-type endopeptidase activity, and 
endopeptidase activity (Figure 8B). This implies that 
changes in the expression of these genes can affect the 
occurrence of esophageal cancer. 

Discussion 
Historically, our understanding of tumor 

initiation, progression, and metastasis has been 
largely derived from the genetic and phenotypic 
characteristics of tumor cells[32]. However, as 
research deepens, it has become evident that tumor 
development is inextricably linked to the tumor 
microenvironment, with both aspects influencing and 
promoting each other. Some scholars even propose 
that "cancer is a disease of the microenvironment and 
immunity." According to reports, changes in the 
immune microenvironment can lead to chronic 
inflammation in esophageal epithelial cells, thereby 
activating pro-inflammatory signaling pathways. 
Tumor cells can suppress the anti-tumor immune 
response by recruiting different immune cell 
populations in the microenvironment or expressing 
inhibitory molecules, enabling tumor cells to evade 
immune surveillance. Cell groups such as T cells, B 
cells, etc., promote immune escape of cancer cells by 
secreting cytokines and activating pro-inflammatory 
pathways, thereby facilitating the malignant 
progression of esophageal cancer[33,34]. CAFs 
contribute to tumor cell migration and invasion by 
secreting growth factors and altering the extracellular 
matrix, forming a tumor niche. Macrophages also 
exhibit other pro-tumor functions, including inducing 
blood vessel formation and promoting tumor cell 
invasion. It is important to note that changes in the 
immune microenvironment are often influenced by 
various signal transduction pathways. In this study, 
we employed Non-negative Matrix Factorization 
(NMF) clustering based on the expression of 
Aggrephagy-related genes to explore the interactions 
between cancer cells mediated by Aggrephagy and 

various immune cell subpopulations in esophageal 
cancer. 

Interestingly, we found that the VIM-CAF-C1 
cluster only had high expression on pan-myCAFs. 
Pan-myCAFs represent the main CAF subgroups 
present in many tumors and can promote cancer cell 
invasion[35]. VIM can drive epithelial-mesenchymal 
transition and fibroblast-to-myofibroblast transforma-
tion through the TGF-β/Smad signaling pathway, 
making it a common marker for fibroblasts. 
Consequently, the identified VIM-CAF-C1 cluster in 
our study may exhibit a higher invasiveness, given its 
association with fibroblasts and their potential role in 
promoting cellular transformations[36,37]. Cytotoxic 
T cells are the most potent influencers in anti-tumor 
immune responses, but when the effector function of 
T cells is low, they transform into an exhausted T cell 
phenotype. This is often manifested as a decrease in 
the ability of T cells to secrete cytokines, an increase in 
chemokine expression, and an increase in the 
expression of various inhibitory receptors such as 
PD-1, T cell immunoglobulin mucin domain 3 
(TIM-3), lymphocyte-activation gene 3 (LAG3), 
CTLA-4, and T cell Ig and ITIM domain (TIGIT). In 
the VIM+CD8+T_cell-C0 cluster, both exhausted T 
cells and cytotoxic T cells showed an increasing trend. 
This suggests that the T cells in the 
VIM+CD8+T_cell-C0 cluster are more active and 
mediate intense cellular immunity in the body. 
Different macrophage clusters also have varying 
degrees of enrichment in cellular metabolic pathways. 
For example, the TUBA1B+Mac-C0 cluster shows 
high enrichment in metabolic pathways such as Sulfur 
metabolism, Steroid hormone biosynthesis, and 
Steroid biosynthesis[38]. The metabolism of these 
sulfur compounds in the body can promote various 
biological processes such as enzyme catalysis, energy 
transfer, and redox metabolism, thereby affecting 
tumor development. Steroid hormones have potent 
anti-inflammatory and immunosuppressive effects, as 
well as pleiotropic effects on innate and adaptive 
immune responses[39]. Non-Aggre-Mac-C1 shows 
high enrichment in metabolic pathways such as 
Glycerophospholipid metabolism, Glycerolipid 
metabolism, and Galactose metabolism. Abnormali-
ties in these glycolipid metabolisms can promote 
disease progression and prognosis[40]. UBB+Mac-C2 
shows high enrichment in metabolic pathways such 
as Ether lipid metabolism, Citrate cycle (TCA cycle), 
and Butanoate metabolism[41]. In particular, the TCA 
cycle mediates a series of closed-loop reactions in cells 
to form a metabolic engine, producing various 
intermediate metabolites that affect the cellular 
environment. Macrophage polarization analysis 
shows that the three types of macrophage clusters 
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tend to polarize towards the M1 type. M1 type 
macrophages promote inflammation at the beginning 
of inflammation, forming an inflammatory environ-
ment and promoting tumor growth[42]. B cell 
cluster-related KEGG analysis shows that TUBA1A+B 
cell-C0 is enriched in the IL-17 signaling pathway and 
Apoptosis pathway. UBE2N+B cell-C1 is enriched in 
the Oxidative phosphorylation pathway. Non-Aggre- 
B_cells-C is enriched in the Tight junction pathway. In 
summary, these clusters themselves affect changes in 
the internal molecular mechanisms of ESCC patients 
through corresponding pathways. In addition, 
communication between different immune cells also 
plays an important role in tumor development[43]. 
Our research results show that there are different 
intensities of cell interactions between these clusters, 
with clusters such as HSP90AA1-CAF-C1, TUBA1A- 
CAF-C0, and UBB+Mac-C2 having higher 
communication intensities with other subgroups. This 
suggests that they may jointly mediate changes in 
certain cancer phenotypes. Based on the maker genes 
of each cluster, we constructed a prognostic model at 
the transcriptome level and found that only the 
prognosis of the UBE2N+B_cell-C1 cluster showed 
strong heterogeneity between the training set and the 
validation set, but most tended to be consistent. 
Finally, we also revealed the sensitivity of clusters 
such as TUBA1A+CAF-C0, HSP90AA1+CAF-C1, 
VIM+CAF-C2, and TUBA1B+Mac-C0 to 
immunotherapy. 

The Mendelian randomization results indicate a 
causal relationship between genes such as CTSZ, 
CTSC, DAD1, COLEC12, ATOX1 in the 
TUBA1B+Mac-C0 cluster and the occurrence of 
esophageal cancer. Similarly, genes like SCML4, 
HNRNPF, IFRD1, CSTA, ABL1 in other immune cell 
clusters also exhibit a causal relationship with 
esophageal cancer. Previous reports suggest that these 
genes impact the body's internal environment 
through various pathways. For instance, Cathepsin Z 
(CTSZ) and Cathepsin C (CTSC), members of the 
tissue proteinase family, regulate the adhesion and 
migration of immune cells and tumor cells[44]. CTSZ, 
especially macrophage-specific CTSZ, correlates with 
the activation of epithelial-mesenchymal transition, 
cell cycle characteristics, and higher infiltration levels 
of B cells, macrophages, neutrophils, and dendritic 
cells in the tumor microenvironment[45]. Tumor- 
secreted CTSC promotes cancer cell migration by 
regulating neutrophil recruitment and the formation 
of neutrophil extracellular traps (NET) [46]. Cell 
apoptosis defender 1 (DAD1) is a subunit of the 
oligosaccharyltransferase (OST) and is a crucial 
negative regulator involved in programmatic cell 
death associated with endoplasmic reticulum[47,48]. 

Collectin subfamily member 12 (COLEC12), a 
member of the collectin family, acts as a pattern 
recognition molecule and activates the complement 
system through alternative pathways[49,50]. ATOX, a 
copper chaperone protein, is vital for copper transport 
within cells and plays a crucial role in maintaining 
copper homeostasis in the body. Apart from its 
responsibilities in copper transport, ATOX possesses 
functions in transcriptional regulation and body 
antioxidation. In cancer development, ATOX plays a 
significant role in regulating tumor cell migration, 
transcription levels, and cancer-related signaling 
pathways[51]. SCML4 is a transcription factor 
necessary for maintaining the multifunctionality of 
CD8+ T cells and is associated with a better prognosis 
in cancer patients[52]. HNRNPF, a member of the 
heterogeneous nuclear RNA protein family[53], 
regulates RNA maturation through selective splicing, 
5' capping, 3' polyadenylation, and RNA export. 
HNRNPF, in conjunction with proteins like VAX2 and 
LINC01189, promotes invasion and migration of 
digestive system tumor cells[54]. Interferon-related 
developmental regulator 1 (IFRD1) is a transcriptional 
co-regulator acting as a transcription modifier in the 
cell nucleus[55], regulating various cell processes such 
as proliferation and differentiation. Recent reports 
suggest that IFRD1 is closely related to innate 
immune responses and the unfolded protein response 
(UPR) [56]. These genes with a causal relationship 
with esophageal cancer may play a leading role in 
different cell clusters. 

In conclusion, our research integrates the related 
information of AGG at the single-cell transcriptome 
and transcriptome levels, and analyzes the biological 
processes of different immune cells mediated by 
AGG. We have identified AGG-related cell clusters 
with prognostic characteristics and sensitivity to 
immunotherapy. Through Mendelian methods, we 
have found the Maker genes in the prognostic 
characteristic AGG-related cell clusters that have a 
causal relationship with esophageal cancer, and 
initially revealed the possible regulatory mechanisms 
for changing the expression of these genes and 
pathogenicity. However, due to experimental 
conditions and funding, we have not experimentally 
verified our results. In the following research, we will 
continue to pay attention to the biological processes 
mediated by AGG-related genes, and conduct related 
experiments under the conditions allowed by 
experimental funds and application conditions, to 
further verify our conclusions.  

Conclusion 
Aggrephagy mediates and influences the 

alterations and interactions of various immune cells in 
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patients with ESCC. We elucidate the roles of 
AGG-related clusters, such as TUBA1B+Mac-C0, 
VIM+CD8+T_cells-C0, UBB+Mac-C2, in mediating 
prognosis and immune therapy in ESCC patients. 
Genes causally associated with the occurrence of 
esophageal cancer are identified within the AGG 
cluster, including CTSZ, CTSC, DAD, COLEC12, 
ATOX1, etc., offering new evidence for clinical 
immune therapy. These findings underscore the 
significance of these gene clusters in influencing both 
prognosis and immune responses in the context of 
esophageal cancer, shedding light on potential 
therapeutic targets and prognostic markers. 
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