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Abstract 

There is no doubt that anyone who has participated in cancer care or research has once read the 
'Hallmarks of Cancer' papers published by Hanahan and Weinberg in 2001 and 2011. They initially defined 
the six qualities of cancer cells as cancer hallmarks in 2001, but expanded that to 11 as a next generation 
in 2011.  
In their papers, they discussed the potential treatment strategies against cancer corresponding to each of 
the 11 hallmarks, and to date, proposed therapies that target genes and signaling pathways associated 
with each of these hallmarks have guided a trail that cancer treatments should take, some of which are 
now used as standard in clinical practice and some of which have yet to progress that far. Along with the 
recent advances in cancer research such as genomic analysis with next generation sequencing, they can be 
reconverged to an alternative six categories defined as selective proliferative advantages, altered stress 
response, deregulated cellular metabolism, immune modulation and inflammation, tumor 
microenvironment, tissue invasion and metastasis. In this paper, we will overview the current state of 
these alternative hallmarks and their corresponding treatments in the current sarcoma practice, then 
discuss the future direction of sarcoma treatment. 
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Introduction 
Hanahan and Weinberg published their first 

influential review paper: the ‘Hallmarks of Cancer‘ 23 
years ago to organize the complexities of cancer 
biology [1], then they published an updating review 
paper: ‘Hallmarks of Cancer: the next generation’ a 
decade later [2], which are comprised with 6 major 
hallmarks in the first paper and 11 hallmarks in the 
second paper, i.e. sustained growth signal, evading 
anti-growth signal, resisting programmed cell death, 
enabled replicative immortality, inducing new blood 
flow, tissue invasion and metastasis are the original 
six, then later added 5 hallmarks: genomic instability, 
deregulated cellular metabolism, avoiding immune 
destruction, tumor promoting inflammation, and 
tumor microenvironment.  

The United States National Cancer Act in 1971 
have opened the door for the War on Cancer and the 

clinicians and researchers have been fighting against 
cancer worldwide. However, Hanahan asked in 2014 
whether we are winning the war on cancer over 40 
years on, and he concluded that the answer was in 
general ‘No’ at that point. He described that despite 
the introduction of hundreds of new anticancer drugs, 
including advanced therapies (so-called magic bullets, 
i.e., molecular targeted agents) aimed at weapons in 
the enemy’s armamentarium, the consensus was that, 
for most forms of cancer, enduring disease-free 
responses are rare, and cures even rarer [3]. Then, 
President Obama conducted the NATIONAL 
CANCER MOONSHOT INITIATIVE in 2016 
(www.whitehouse.gov/the-press-office/2016/02/01
/fact-sheet-investing-national-cancer-moonshot.). 

Under the direction of the Initiative, recent 
advances of comprehensive genomic analysis such as 
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whole-genome profiling with high through-put 
next-generation sequencing (NGS) have uncovered 
numerous aspects of development and progression of 
cancer. Based on the knowledge from these novel 
techniques, a lot of molecular targeted therapies have 
been developed and the strategy for cancer treatments 
has been proposed as ‘precision medicine’, a mode of 
personalized medicine for cancer patients based on 
the genomic information of each patient. Since then, 
several onco-panel tests have been applied recently 
for advanced cancer cases as a companion diagnostic 
tool for specific agents such as neurotrophic tyrosine 
receptor kinase (NTRK) inhibitors as well as other 
molecular targeted therapies. After the years since 
Hanahan’s ‘No’ critique, there is no doubt that cancer 
diagnosis and treatments have progressed based on 
the knowledge of the genomic changes in cancer.  

Since the hallmarks proposed by Hanahan and 
Weinberg are the results of the genetic alterations in 
cancer cells, their hallmarks have managed the core of 
cancer biology for understanding the core traits of 
malignant neoplasms even in this genome-based 
personalized medicine era. Identifying gene 
mutations responsible for these hallmarks should 
establish the molecular mechanism of cancer which 
could be applied in diagnostic and treatment 
regimens. However, the cancer biology is far more 
complicated. Although various drug categories were 
linked to their targeted hallmarks, numerous 
implications based on studying these hallmarks have 
proved to only be effective for a limited time or within 
limited settings. The reason of this limited clinical 
efficacy could be that there are so many genetic/ 
epigenetic mutations/alterations as illustrated by the 
current cancer genome sequencing project, and the 
cancer genetic landscape is highly diverse without 
one-to-one relationship between gene mutations and 
hallmarks.  

 Sarcomas are not exceptional on this issue. Most 
sarcomas are lacking the targetable genetic alterations 
showing low tumor mutational burden and high copy 
number alterations [4]. Boddu et al reported that the 
majority of alteration were structural (60.5%), most 
commonly amplification and copy-number loss, and 
the majority of patients (84.9%) showed low tumor 
mutational burden (< 6 mutations/Mb) and no 
patients had evidence of microsatellite instability [5]. 
Although incidence of the patients with sarcoma who 
have a potentially targetable mutation reach 40-50 % 
using NGS analysis [5-7], only around 15% patients 
were influenced by NGS findings on their therapeutic 
selection [5,7]. As a matter of fact, pazopanib, a 
multi-tyrosine kinase inhibitor, is the only approved 
molecular targeting agent against advanced soft tissue 
sarcomas and we have nothing for bone sarcomas at 

this moment. Although NTRK inhibitors have been 
approved recently for several cancers including 
sarcomas with NTRK fusion genes, eribulin and 
trabectedin, both recently approved for advanced soft 
tissue sarcomas are not the molecular targeting agents 
but rather the classical drugs of natural product 
origins.  

While Weinberg himself admitted that their 
framework concept of hallmarks came full circle to 
confronting the endless complexity of cancer [8], their 
review has still served as blueprints for 
understanding the core traits of cancer. Since viewing 
the hallmarks as individual, segregated and static 
targets is inappropriate, we attempted here to 
reorganize 11 hallmarks into alternative 6 hallmarks 
by combining the 2011’s hallmarks which share their 
roles in cancer evolution and progression such as 
sustained growth signal and evading anti-growth 
signal into selective proliferative advantages; resisting 
programmed cell death and enabled replicative 
immortality and genome instability into altered stress 
response; tumor promoting inflammation and avoid-
ing immune destruction into immune modulation, 
and tumor microenvironment including vascular 
structure reorganization such as angiogenesis (Fig. 1). 
We maintained the rest of original hallmarks, i.e., 
deregulated cellular metabolism and tissue invasion 
and metastasis in the original review.  

Here, we reviewed the articles using the 
keywords of ‘hallmarks of cancer’ and related to each 
original 11 hallmarks in sarcomas, and selected the 
topics with clinical relevance and basic research 
investigation which supports biological mechanisms 
including approval in current practice as well as 
on-going clinical trials as possible. We will overview 
the current status of the hallmarks and their clinical 
relevance in sarcomas, and up-to-date an organized 
picture of hallmarks to seek the future direction of the 
treatments against sarcomas.  

I. Selective Proliferative Advantages 
 This hallmark includes sustained growth signal 

and evading anti-growth signal which are mostly 
related to the activated growth factor signaling 
resulted from the gain of oncogenes and the loss of 
tumor suppressor genes. The development of 
molecular targeted therapies has been evolving in this 
field, and Figure 2 depicts the possible targetable 
pathways. The breakthrough of the most influential 
targeted treatments among them would be tyrosine 
kinase inhibitors for the treatment of sarcomas. 
Factors of platelet-derived growth factor receptor 
(PDGFR), vascular endothelial growth factor receptor 
(VEGFR) and c-kit receptor tyrosine kinase receptors 
are currently targeted in approved therapies. 
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Investigations onto possible therapies targeting 
insulin-like growth factor 1 receptors (IGF1R), Met 
receptors and Src tyrosine kinases are also underway 
in several sarcomas. Receptor tyrosine kinases initiate 
multiple downstream signaling pathways, such as 
mitogen-activated protein kinase (MAPK), phosphati-
dylinositol 3-kinase (PI3K), Janus kinase/signal 
transducer and transcriptional activator (JAK/STAT), 
which can initiate multiple downstream signaling 
pathways and induce various carcinogenic cellular 
processes such as cell survival, proliferation, 
differentiation, and evading apoptosis. Imatinib, 
sunitinib, and pazopanib are inhibitors of these 
receptor tyrosine kinases and are approved as 
standard of care options in many countries. Imatinib 
initially targeted the fusion protein bcr-abl for the 
treatment of myeloid leukemia. However, it was later 
found to have an inhibitory effect on c-KIT and 
PDGFR. Imatinib had a high response rate of 50-70% 
to the treatment of gastrointestinal stromal tumors 
(GIST), which have constitutive activation of c-KIT 
and PDGFR [9, 10]. Based on this success in GIST and 
other preclinical data, attempts have been made to 
extend its therapeutic application to other sarcoma 
subtypes with abnormal expression of c-KIT or 
PDGFR [11, 12]. However, most such attempts, 
including a phase II clinical trial conducted by the 
Pediatric Oncology Group (COG) to test the efficacy 

of imatinib in a variety of pediatric sarcomas with 
high c-KIT or PDGFR levels, have failed with poor 
response [13-15]. COG clinical trials revealed that only 
2% of patients had a very partial response to imatinib, 
concluding that the receptor tyrosine kinase targeted 
by imatinib is not a molecular driver or a possible 
alternative pathway to avoid imatinib-induced cell 
death present in pediatric sarcomas [13, 14]. 

 Another multi-targeted tyrosine kinase inhibitor 
approved for the treatment against sarcomas is 
pazopanib which also targets multiple tyrosine kinase 
proteins such as PDGFR and VEGFR [16, 17]. 
Pazopanib has been approved for the treatment of 
advanced soft tissue sarcomas in patients who 
received prior chemotherapy based on the results of a 
randomized, double-blind, placebo-controlled phase 
III trial (PALETTE study conducted by van der Graaf 
WTA, Blay J-Y, Chawla SP, et al) that demonstrated 
improved median progression-free survival for 
pazopanib compared to placebo (hazard ratio [HR] 
0.31, 95% CI 0.24-0.40; p<0.0001), even though overall 
survival was not significantly improved [18]. Now 
pazopanib has been widely used for the treatment of 
advanced soft tissue sarcomas and the success and 
approval of this drug for soft tissue sarcomas opens 
the door to expand the indications on metastatic bone 
sarcomas and the results show that the median overall 
survival was 11 months and progression free survival 

 
Figure 1. Reorganization of 11 hallmarks into 6 hallmarks by combining the hallmarks which share their roles in cancer evolution and progression. Sustained growth signal and 
evading anti-growth signal are combined into selective proliferative advantages; resisting programmed cell death and enabled replicative immortality and genome instability into 
altered stress response; tumor promoting inflammation and avoiding immune destruction into immune modulation, and tumor microenvironment including vascular structure 
reorganization such as angiogenesis, and the original hallmarks of deregulated cellular metabolism and tissue invasion and metastasis are maintained as they are. 

. 
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was 5.4 months, and 68% of the patients had either 
partial response or stable disease [19]. In addition, 
another attempt of the use of pazopanib has been 
conducted as a combinatory treatment with 
chemotherapy or radiotherapy. The results of phase 2 
randomized clinical trial (PAPAGEMO) have been 
released and indicated that the addition of 
gemcitabine to pazopanib was tolerable and 
progression free survival ratio at 12 weeks was 
significantly higher compared with pazopanib alone 
[20]. These results suggest clinical activity of the 
combination of pazopanib with gemcitabine against 
soft tissue sarcomas, and the confirmation with a 
phase 3 trial will be awaited especially in more 
homogeneous population such as leiomyosarcoma 
cases. 

The IGF and IGF1R signaling pathway promotes 
cell survival and proliferation through activation of 
the PI3K/AKT/mTOR axis [21]. Elevated levels of 
IGF1R and its ligands have been observed in various 
sarcomas and it correlates with poor prognosis [22]. 
Among various sarcomas, the tumorigenic role of 
IGF-IGF1R axis has been established in Ewing 
sarcoma because the IGF1R is a direct target of the 
EWS-FLI1 fusion oncoprotein [23]. Early phase 
clinical trials encouraged the benefit of IGF1R 
inhibition against sarcomas, however, as predicted, 
resistance to the IGF1R inhibitors developed in most 
cases which initially responded to the therapy, and 
eventually suffered from relapses [24]. Thus, the 
investigation on the mechanism of resistance and 
combinatory or additive treatments are underway. 

 The activation of MET and Src signaling 
pathways have also been implicated in tumor 

progression of various sarcomas. Both MET and Src 
have been suggested their involvement in invasion 
and metastasis process in sarcomas [25, 26], and MET 
inhibitor, crizotinib, and Src inhibitor, dasatinib 
showed inhibitory effects for tumor growth, invasion, 
and metastasis in bone sarcomas both in vitro and in 
vivo [27, 28]. The phase II clinical trials conducted by 
European Organization for Research and Treatment 
of Cancer (ClinicalTrials.gov identifier: NCT01524926) 
indicated that crizotinib against MET+ clear cell 
sarcoma showed comparable results with the results 
achieved by first-line single-agent doxorubicin in 
non-selected metastatic soft tissue sarcomas, as well 
as the results achieved by pazopanib in previously 
treated sarcoma patients in terms of progression-free 
survival [29]. While, the same trial demonstrated that 
crizotinib has activity in TFE3-rearranged, MET+ 
ASPS patients [30]. The phase II clinical trials 
(ClinicalTrials.gov identifier: NCT00788125) are now 
ongoing to further evaluate the use of dasatinib in 
combination with chemotherapeutic agents including 
ifosfamide, carboplatin and etoposide. In addition, 
another study also suggested that Src family kinase 
(SFK) inhibition through recently developed selective 
SFK inhibitor (a pyrazolo[3,4-d] pyrimidine 
derivative, called SI221) showed reduction of Ewing 
sarcoma cell viability at least in part by hindering an 
SFK-NOTCH1 receptor-p38 mitogen-activated 
protein kinase (MAPK) axis [31]. 

 Mammalian target of rapamycin (mTOR) which 
is activated in PI3K/AKT pathway has also been 
considered as the potential target for sarcoma 
treatment, but early phase of clinical trials showed the 
disappointing results [15].  

 

 
Figure 2. Targeted signaling pathways in sarcomas. Most common targets take a place in receptor tyrosine kinases signaling and cell cycle regulators related with p53 and Rb 
pathways. Epigenetic regulators such as EZH2 could be the potential therapeutic targets in specific sarcomas. 
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 Deregulation of the CDKN2A-CCND-CDK4/ 
6-retinoblastoma 1 (Rb) pathway is frequently 
observed in about 25% of unselected sarcomas and is 
a distinct pathogenic characteristic for specific 
subtypes. Recently, two comprehensive genetic 
analysis of thousands of sarcomas with more than 40 
pathological entities have been reported using 
MSK-IMPACT and Foundation One HEMETM [32,33]. 
Both reports described that most common alterations 
were in cell cycle control, p53 and Rb1, receptor 
tyrosine kinase/PI3K in addition to the low 
frequencies of both tumor mutational burden and 
microsatellite instability, and several subtype-specific 
associations such as SAMRCB1 deletion in epithelioid 
sarcoma and malignant rhabdoid tumor as well as 
cyclin-dependent kinase 4 (CDK4) and mouse double 
minute 2 homolog (MDM2) amplification in 
well/dedifferentiated liposarcoma. These genomic 
specificities have fueled the clinical evaluation of 
selective CDK4/6 inhibitors in sarcomas. CDKs are 
accelerator of cell cycle with binding the cyclins. For 
instance, CDK1 binds to cyclin A/B to facilitate G2 to 
M transition and CDK4 binds with cyclin D and the 
complexes phosphorylate the RB protein to release the 
E2F which activates CDK2/cyclin E complexes for 
facilitating G1 to S phase progression. Classically, 
flavopiridol, a potent multiple CDKs (2,4,6 and 7) 
inhibitor has been shown its efficacy against various 
types of cancers including sarcoma [34-36] but a phase 
II study in patients with previously untreated 
advanced soft tissue sarcoma failed to show its 
efficacy and concluded that the use of flavopiridol 
had no objective treatment responses and could not 
support further exploration of flavopiridol as a 
monotherapy in soft tissue sarcomas [37]. CDK1 
inhibitors currently are not available for sarcomas, as 
well as CDK4/6 targeted inhibitors such as 
palvociclib and ribociclib which are approved for 
breast cancer by the US Food and Drug 
Administration (FDA) also have not been approved 
yet for sarcomas. However, it could be possible that 
they will have a potential to show the efficacy against 
sarcomas primarily driven by CDK4/6 deregulation 
such as dedifferentiated liposarcomas. In addition, in 
subtypes with mTOR overexpression or PTEN loss 
with alteration in the Rb-CDK4/6 pathway as a 
secondary driver such as leiomyosarcoma, angio-
sarcoma and osteosarcoma, combination therapies 
with CDK inhibitors and mTOR or PI3K inhibitors 
might be a potential therapeutic option. In this 
context, alterations of CDK4, CCND, CCNE, RB1, 
E2F1, and CDKN2A have been proposed as potential 
biomarkers for CDK4/6 inhibitor in sarcoma [38]. 
Although the use of CDK4/6 inhibitors across 
sarcomas remains limited, specific subtypes could be 

sensitive to this therapeutic strategy as either 
monotherapy or combination therapy. In addition to 
CDK inhibitors, MDM2 inhibitors such as 
milademetan are the possible considerable candidates 
for the targeted treatments of certain types of 
sarcomas including liposarcomas, and clinical trials of 
milademetan has been on-going, showing that the 
disease control rate and median progression-free 
survival were 58.5% (95% CI, 44.1 to 71.9) and 7.2 
months overall (n=53), and 62.0% (95% CI, 35.4 to 
84.8) and 7.4 months against dedifferentiated 
liposarcomas with the recommended intermittent 
schedule (n=16), respectively [39]. This notable effect 
of milademetan in dedifferentiated liposarcomas has 
evoked randomized phase III trial (MANTRA).  

 Another possible target could be epigenetic 
regulators such as histone deacetylase (HDAC) 
inhibitors and EZH2 inhibitor. SMARCB1 
(BAF47/INI1) deletion has been found in several 
malignant tumors including epithelioid sarcoma. 
SMARCB1 is a subunit of the SWI/SNF chromatin 
remodeling complex that opposes the enzymatic 
function of EZH2. When INI1 loses its regulatory 
function, EZH2 activity is up-regulated, allowing 
EZH2 to play a driving force of cancer development 
[40]. Tazemetostat, a specific EZH2 inhibitor, has just 
been approved for patients with advanced epithelioid 
sarcoma and represents a new therapeutic option for 
this disease [41].  

 Future perspectives: To advance the optimal 
clinical usage of molecular targeted therapeutics 
including the combined treatments, identification of 
the molecular markers for each drug will be required 
to promote the so-called precision medicine.  

II. Altered Stress Response 
 Cells adopt a variety of responses to adapt to the 

stress, and the stress response mechanisms are often 
subverted or hijacked for overall cell survival on the 
road into cancer cells. These stress responses include 
DNA repair, apoptosis, autophagy, senescence, and 
metabolic rewriting, those of which involve the 
signaling pathways such as ataxia-telangiectasia 
mutated (ATM)/ ATM-and Rad3-related (ATR), 
checkpoint kinase (Chk)1/2, and AMP-activated 
protein kinase (AMPK).  

 Tomasetti and Vogelstein discussed an 
interesting correlation (r=0.804) between estimated 
lifetime stem cell division number in 31 tissue types 
and corresponding cancer incidence rates in the 
United States [42]. They categorized two entities in 
various tumors, R-tumor (replicative) showing low 
extra risk and D-tumor (deterministic) showing high 
extra risk, and concluded that the majority of cancers 
including osteosarcomas is categorized as R-tumor 
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due to “bad luck,” that is, random mutations arising 
during DNA replication in noncancerous normal stem 
cells. In colorectal cancer, Vogelstein’s initiation- 
progression model has been widely accepted as the 
carcinogenesis model [43]. The model is known as 
‘adenoma-carcinoma sequence’ which proposed the 
stepwise accumulation of genetic changes on certain 
genes such as APC, k-Ras and p53 could contribute to 
the development of familial adenomatous polyposis 
(FAP)-related and sporadic colorectal cancer. On the 
other hand, colorectal cancer that occurs in patients 
with hereditary non-polyposis colorectal cancer 
(HNPCC) involves mutations in mismatch repair gene 
such as hMLH1 and hMSH2 and microsatellite 
instability (MSI), suggesting that there is not one 
carcinogenic route for cancer development. 

Whole genome or whole exome analysis with 
next generation sequencing revealed several aspects 
of oncogenesis in variety of cancers. In case of 
transformation of dedifferentiated liposarcomas from 
atypical lipomatous tumors, so-called well 
differentiated liposarcomas, accumulation of genetic 
alterations including loss of function of p53, somatic 
copy number alterations and other genetic changes 
could contribute to the malignant transformation [44]. 
However, the stepwise accumulation of genetic 
alterations might not be adapted to the most 
sarcomagenesis and it seems this phenomenon occurs 
in rare occasion in sarcomagenesis. As has been 
previously reported, most sarcomas are considered to 
have few somatic mutations. 

 In contrast, the prevalence of chromothripsis is 
relatively high in sarcomas amongst various 
malignant tumors [45]. Chromothripsis is character-
ized by massive genomic rearrangements localized to 
isolated chromosomal regions and is often generated 
by a single catastrophic event (Fig. 3). In contrast to 
the process of the accumulation of mutations as 
mentioned above, chromothripsis provides a 
mechanism for the rapid accrual of hundreds of 
rearrangements in a few cell divisions. Chromo-
thripsis links to entity-specific drivers (oncogene 
activation, fusion gene formation etc.), telomere 
attrition (TERT gain, ATRX truncation (alternative 
lengthening of telomeres)), mutational signature, 
clonal heterogeneity. Voronina et al reported the 
prevalence of chromothripsis in various cancer types, 
indicating the higher prevalence in sarcomas; 
malignant peripheral nerve sheath tumor: 100%; 
leiomyosarcoma: 78%; osteosarcoma: 74%; lipo-
sarcoma: 60%; sarcoma, NOS: 55% [46]. Whole 
genome or whole exome analysis in osteosarcomas 
suggested that high confidence of chromothripsis 
score reached 74% affecting multiple chromosomes 
with highly involvement of telomere (79%) and 
centromere (86%) region. Chromothripsis would be 
the fundamental cause of tumor heterogeneity and 
theoretically could occur during the entire process of 
tumor evolution from tumor initiation through the 
development of metastatic foci. In addition, the 
different pattern of chromothripsis might be observed 
in the different portion of the bulk of a tumor in terms 
of genetic heterogeneity. 

 

 
Figure 3. Chromothripsis is a catastrophic single event which extensively results in DNA fragmentation. Certain portions of chromosomes are lost to the cells during the 
chromosomal repair and these mis-rearrangements progress towards cancer formation. 
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Figure 4. Chromoplexy occurs in a form of ruptures in multiple localized chromosomes at the same time in the nuclear transcription hub, which simultaneously regulates the 
expression of multiple genes on multiple chromosomes in close proximity, and in the process of repair, different chromosomes mistakenly fuse with each other, which is involved 
in carcinogenesis.  

 
Chromoplexy and kataegis are also involved in 

carcinogenesis. Sarcomas are often defined by 
characteristic gene fusions which are the results of 
chromosomal structure rearrangement, for instance 
the EWSR1–ETS fusions in Ewing sarcoma. The 
common mechanism of fusion gene generation has 
been considered as a simple reciprocal translocation. 
Anderson et al investigated the genesis of EWSR1–
ETS fusions through whole-exome or whole-genome 
sequencing data from 124 patients with Ewing 
sarcoma, and their analysis of structural rearrange-
ments revealed that in 52 of 124 (42%) tumors, the 
EWSR1–ETS fusion arose by chromoplexy, a sudden 
burst of complex, loop-like rearrangements [47]. 
Chromoplexy occurs in a form of ruptures in multiple 
localized chromosomes at the same time in the 
nuclear transcription hub, which simultaneously 
regulates the expression of multiple genes on multiple 
chromosomes in close proximity, and in the process of 
repair, different chromosomes mistakenly fuse with 
each other, which is involved in carcinogenesis (Fig. 
4). Recurrent chromoplexy-generated fusions are not 
limited to Ewing sarcoma, but detected in 
chondromyxoid fibroma, synovial sarcoma and 
phosphaturic mesenchymal tumor, suggesting that 
chromoplexy is a novel molecular mechanism widely 
involved in the development of sarcomas [47].  

Chk1 inhibitors has been developed and 
demonstrated for instance that inhibition of Chk1 
sensitized the Ewing sarcoma cells to gemcitabine 
[48], however has not been clinically approved against 
sarcomas at this moment. 

Besides targeting the genomic alteration, 
epigenetic regulators such as DNA methylation, 
histone modification and microRNA are emerging 
potential targets against sarcomas including 

tazemetostat, an EZH2 inhibitor for epithelioid 
sarcoma with loss of SMARCB1/INI1/BAF47 as 
mentioned above.  

 Future perspective: Mechanisms of genomic 
rearrangements might be difficult as the direct 
therapeutic targets, and most sarcomas lack the 
targetable specific genetic mutations. Epigenetic 
regulators could be more feasible and realistic targets 
in this hallmark of sarcomas.  

III. Deregulated Cellular Metabolism 
 In 1930, Otto Warburg, a pioneer in cancer 

metabolism research, described that cancer cell energy 
metabolism heavily shifted to aerobic glycolysis even 
in oxygen-rich environments, known as Warburg 
effect after his name [49]. Since then, the metabolic 
adaptations of cancer cells have been extensively 
investigated as metabolic rewiring or metabolic 
reprogramming which is defined as the increase or 
suppression of standard metabolic pathways activity 
through tumorigenic mutations and providing the 
power to fulfill their biosynthetic, bioenergetic and 
redox balance needs in cancer cells [50]. 
Esperança-Martins et al. comprehensively reviewed 
sarcoma metabolomics based on the summary by 
Pavlova and Thompson [51,52]. They have been 
reshaping the six metabolic hallmarks focusing on 
changes in metabolic processes that supply the energy 
required for cancer cell proliferation. Figure 5 depicts 
the metabolic cascade in tumor cells. Main sources of 
cellular energy are glycolysis and OXPHOS, but 
various metabolites involve the many aspects of 
cellular activities such as nucleotides generation, 
immune cell function. The metabolism of cancer cells 
is triggered by mutations in numerous genes, such as 
c-Myc, k-RAS, c-Src, YAP, PI3K/Akt, loss-of-function 
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mutation in tumor suppressor p53, and elevated HIF 
levels [53,54]. These mutations can stimulate glucose 
uptake and glycolysis. Other metabolic processes, 
such as IDH gain-of-function mutations and 
metabolic plasticity relative to local oxygen 
availability, can also affect cancer cell proliferation 
[55,56]. Mutations in cancer cell metabolism genes are 
also involved in the production of chromatin- 
modifying metabolites, including loss-of-function 
succinate dehydrogenase (SDH) and fumarate 
hydratase (FH) mutations, as well as IDH mutations, 
which can lead to the accumulation of 
2-hydroxyglutarate and downregulation of tumor 
suppressor genes and cellular differentiation blockade 
via DNA and histone hypermethylation [55]. 

Depend on the condition of cell states, central 
molecules in cell metabolism would be different. In 
proliferative state cells, glucose is metabolized mainly 
through pentose phosphate pathway (PPP) and ATP 
has been produced from TCA cycle via respiratory 
electron-transfer chain intervened by acetyl-CoA 
coming either from pyruvate, fatty acids and amino 
acids oxidation. In hypoxic condition, PPP is inhibited 
and glucose is metabolized through anaerobic 
glycolytic pathway. In a low glucose condition, 
glutaminolysis and fatty acids oxidation could be a 
main source of energy production. Inhibitors of 
glucose metabolism such as 2-deoxy-D-glucose 

(2-DG), a competitive inhibitor of glycolysis, 
effectively reduced the viability of sarcoma cells such 
as alveolar rhabdomyosarcoma [57], however the 
clinical application of 2-DG has not been achieved yet 
against sarcomas.  

Cancer cell subpopulations are heterogenous 
regarding nutrient requirements and metabolic 
adaptations to accomplish biosynthetic and 
bioenergetic purposes. So-called cancer stem cells 
(CSCs) are supposed to consist of a tiny 
subpopulation of cancer cells within heterogeneous 
tumor cells that are undifferentiated, with 
self-renewal capability. They can initiate, propagate, 
and spread the cancer, being as a precious reservoir of 
potential distinct differentiated tumor cells, and 
contribute to drug resistance and tumor relapse. CSCs 
from different tumors show specific energetic and 
metabolic pathways, even though oxidative 
phosphorylation (OXPHOS) and glycolysis remain 
the primary energy production mechanisms [58]. 
Palorini et al have shown that osteosarcoma CSCs 
3AB-OS cells are more dependent on high glycolysis 
and less dependent on OXPHOS for energy 
production and survival when compared with OS 
MG63 cells (non-CSCs) [59]. Controversially, CSCs are 
supposed to be quiescent tumor cell subpopulations, 
and they could tend to significantly less glycolytic and 
show higher dependence on OXPHOS with elevated 

 
 

 
Figure 5. Main sources of cell energy are glycolysis and OXPHOS, but various metabolites involve the many aspects of cellular activities such as nucleotides generation, immune 
cell function. 
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expression of mitochondrial respiratory components 
and using carbon predominantly for bioenergetic 
purposes [52]. Pterostilbene (PTE), a plant’s 
polyphenol, showed the inhibitory effect of 
osteosarcoma (OS) cell growth and sphere forming 
ability and stem cell marker expressions. The 
mechanism of the effect of PTE on OS cells is 
promoting mitochondrial ROS generation and 
membrane depolarization through the suppression of 
OXPHOS, reducing oxygen consumption rate and 
ATP synthesis via F0F1-ATP synthase inhibition. PTE 
showed the enhanced anti-cancer efficacy with c-Myc 
inhibitors, proposing dual inhibition of OXPHOS and 
glycolysis might be a potential therapeutic candidate 
against osteosarcoma [60].  

Reshaped metabolome in sarcomas by 
deregulated pathways could be potential therapeutic 
targets, showing the efficacy by other targeted 
therapies through direct or indirect modulation of the 
metabolome. For example, PI3K/Akt/mTOR 
pathway directly controls protein and lipid synthesis 
and glucose metabolism [61-66]. Another possible 
metabolic target in cancer cells is poly (ADP-ribose) 
polymerases (PARP) which is related to repairing 
damaged or abnormal DNA represented by activated 
PARP-1 [67,68]. PARP inhibitors (PARPi) have 
represented a potential lethal approach against 
various cancer cells with specific DNA-repair defects. 
In Ewing sarcomas, both catalytic PARP inhibition 
and PARP-DNA trapping showed the antitumor 
activity in preclinical and clinical studies [69]. 
Although studies in preclinical in vivo models and 
clinical trials of PARPis have disappointingly failed to 
demonstrate worthwhile response in Ewing sarcoma 
patients [70], the synergistic efficacy combining 
PARPis with nicotinamide phosphoribosyl 
transferase inhibitors (NAMPTis) has shown in vitro 
and in vivo models in Ewing sarcoma, hopefully 
showing its potential for use in Ewing sarcoma 
patients [71]. 

Metabolomics is an emerging aspect of cancer 
biology and sarcoma metabolomics is not an 
exception. Although sarcoma metabolomics is a 
broadly unexplored field, there is no doubt that 
deeper characterization and a sharper picture of 
sarcoma metabolic landscape could provide the 
potential molecular biomarkers both in diagnostic and 
therapeutic targets. 

 Future perspective: Targeting tumor metabolic 
pathways are still in challenging. Recently, 
mitochondria transfer from the platelets affects the 
cancer cell metabolic status modulating oxidative 
stress which reprogram metastatic state of cancer cells 
[72]. In this hallmark, mitochondria would be a 
potential candidate for future therapeutic targets. 

IV. Immune Modulation and 
Inflammation 

 The role of immune system in cancer has been 
recognized for decades, and several anticancer 
immunotherapies have been developed. Dunn et al 
demonstrated that the dual function of immunity 
indicating immune system as both killers of cancer 
cells and boosters of cancer outgrowth. They 
hypothesized the cancer immunoediting consisted of 
three phases, i.e., controlling cancer (elimination, 
equilibrium) and promoting cancer (escape) [73]. The 
first phase of cancer immunoediting is that the innate 
and adaptive immune system act in concert to destroy 
the nascent tumor, thus leading to tumor 
“elimination”, which is the main tenet of the cancer 
immunosurveillance hypothesis. The second phase is 
the cancer outgrowth immunologically restrained, but 
not eliminated entering the ‘equilibrium’ [74]. Further 
immunological casting of the tumor and 
establishment of a suppressive tumor microenviron-
ment (TME) may lead to the ‘escape’ phase of cancer 
immunoediting, which manifests the clinically 
apparent disease of cancer. In this ‘escape’ phase, 
cancer immunoediting modifies tumor immuno-
genicity through neoantigen loss by immunoselection 
and hijacking pathways which limits inflammatory 
responses, integrating the hallmarks of ‘avoiding 
immune destruction’ and ‘tumor-promoting 
inflammation’ [75, 76].  

Recent advances of immune-based cancer 
therapies can be divided three major categories such 
as cytokine-targeting therapies (interleukins, 
interferons), cell-based therapies (chimeric antigen 
receptor technologies) and immune checkpoint 
inhibitors (ICIs). Among them, one of the most 
growing modalities of immune modulatory therapies 
is ICIs, especially the programmed cell death 
receptor-1/ligand 1 (PD-1/L1) inhibitors. The binding 
of checkpoint protein PD-L1on cancer cells to PD-1on 
T cells keeps T cells from killing tumor cells in check. 
Blocking the binding of PD-L1 to PD-1 with an 
immune checkpoint inhibitor (anti-PD-L1 or 
anti-PD-1) allows the T cells to kill tumor cells (Fig. 6). 
They displayed promising efficacy in several solid 
tumor types as well as hematological malignancies. A 
meta-analysis of patients with pretreated 
microsatellite instability-high (MSI-H) cancers treated 
with ICIs found that ICIs were correlated with high 
activity, independent of tumor type and drug used 
[77]. In this study, 939 patients across 14 studies were 
analyzed mainly in the pretreated settings, and the 
results showed that the pooled objective response rate 
was 41.5% (95% CI, 34.9%-48.4%), the pooled disease 
control rate was 62.8% (95% CI, 54.5%-70.3%), the 
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pooled median progression free survival was 4.3 
months (95% CI, 3.0-6.8 months), and the pooled 
median overall survival (OS) was 24 months (95% CI, 
20.1-28.5 months). This study also showed that the 
pooled 1- and 2-year OS were 75.6% (95% CI, 
61.8%-85.5%) and 56.5% (95% CI, 46%-66.4%), 
respectively. The positive outcomes after ICI 
treatment in MSI-H tumors with ICI could possibly be 
explained by the potential association with PD-L1 
expression and the high mutation burden of those 
disease types. Concordantly, tumor mutational 
burden (TMB) is another emerged independent 
predictor of positive outcomes with ICIs treatment 
across various tumor types [78, 79]. TMB is defined as 
the number of somatic mutations per DNA mega-base 
and originally measured using whole exome 
sequencing, but targeted NGS panel approaches as 
comprehensive genomic profiling (CGP) such as 
FoundationOne CDx assay (Foundation Medicine, 
Inc., Cambridge, MA) have taken place for a major 
role to estimate TMB recently. Those panels have been 
optimized to identify all types of molecular alterations 
(single nucleotide variants, insertion-deletion 
alterations, copy number alterations, and structural 
variants) in cancer related genes, as well as genomic 
signatures such as loss of heterozygosity, MSI and 
TMB in a single test.  

Meanwhile, data related to the activity of ICIs in 
bone and soft tissue sarcomas are very scarce. A phase 
II study of PD-1 inhibitor pembrolizumab showed the 
ORR was 18% (7/40) in soft tissue sarcomas, 5% 
(1/22) in osteosarcomas and 20% (1/5) in 
chondrosarcomas [80]. The pooled analysis of phase II 
clinical trials investigating anti-PD-1/L1 in patients 
with advanced soft tissue sarcomas has identified that 
the ORR was 15.1% and non-progression rate was 

58.5% in 384 patients treated with anti-PD-1/L1 [81]. 
Among various histological types, patients with 
alveolar soft part sarcoma and undifferentiated 
pleomorphic sarcoma exhibited the highest response 
rates and leiomyosarcoma the lowest. Although ICIs 
might be effective in certain type of sarcomas, 
sarcomas mostly showed both MSI- and TMB-low, 
and low expression of PD-L1. In addition, sarcomas 
are considered to be so-called ‘immune-oncologic 
cold’ tumors which exhibit a scarce infiltration of 
immune cells in the tumors. Thus, the role of immune 
checkpoints is very limited in sarcomas and the 
stratification with those biomarkers for ICIs treatment 
in sarcomas are not much effective.  

 Cancer-related inflammation is one of the key 
players in cancer development and progression. 
Recently, several systemic inflammation-based scores 
including absolute lymphocyte count (ALC), 
neutrophil-to-lymphocyte ratio (NLR), platelet-to- 
lymphocyte ratio (PLR), lymphocyte-to-monocyte 
ratio (LMR), C-reactive protein (CRP), modified 
Glasgow prognostic score (GPS), and prognostic 
nutritional index (PNI), have been proposed as 
prognostic factors for several cancers [82, 83]. In 
sarcomas, Liu et al reported that high levels of CRP 
(>10mg/L), GPS (>0), NLR (>2.57), PLR (>123.5), and 
low level of LMR (≤4.73) were significantly associated 
with adverse prognosis (P<0.05) in retrospective 
analysis of 162 osteosarcoma cases, and multivariate 
Cox regression analyses revealed that GPS, NLR, and 
occurrence of metastasis were top risk factors 
associated with death of osteosarcoma patients [84]. 
Therefore, they proposed that these pre-treatment 
inflammation-based scores could be the independent 
prognostic factors for patients with osteosarcoma.  

 

 
Figure 6. The binding of checkpoint protein PD-L1on cancer cells to PD-1on T cells keeps T cells from killing tumor cells in check. Blocking the binding of PD-L1 to PD-1 with 
an immune checkpoint inhibitor (anti-PD-L1 or anti-PD-1) allows the T cells to kill tumor cells. 
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Eribulin is a novel microtuble-targeting 
chemotherapeutic agent which is a synthetic analogue 
of halichondrin B originally extracted from the marine 
sponge Halichondria Okaida [85]. It was recently 
approved in many countries for the treatment of 
patients with unresectable or disseminated sarcomas, 
especially who have received a prior anthracycline- 
based regimen [86]. The anticancer properties of 
eribulin are the suppression of microtuble growth and 
sequestration into non-functional aggregates through 
binding to a unique part of tubulin [87]. Sato et al 
retrospectively analyzed inflammation-based scores 
in 53 patients who were treated with eribulin for 
recurrent or metastatic soft tissue sarcomas and found 
that pre-treatment NLR<3.0 was one of the 
independent predictive factors for durable clinical 
benefit and better progression-free survival. They 
concluded that baseline NLR could predicts the 
efficacy of eribulin for soft tissue sarcomas [88].  

Although it has been reported that neutrophils 
interact with tumor cells by producing cytokines and 
chemokines, which affects the proliferation of tumor 
cells, angiogenesis and metastases [89] and 
lymphocytes play a major role in the immune 
response by mediating the immunologic destruction 
of various cancers [90], these inflammation-based 
indicators, especially NLR, have not been completely 
proved yet how they directly or indirectly affect the 
disease progression as well as response to the 
treatment. Upon the recent insights of 
inflammation-based indicators, further study will 
elucidate the details of the inflammation involvement 
in sarcoma progression. 

Future perspectives: Basically, sarcomas are 
considered as so-called ‘immune cold’ tumors, such 
that a high bar still exists in front of us regarding the 
optimal use of immunotherapy against sarcomas. 
Several attempts including combination of PD-1 
antibody and cytotoxic chemo agents or molecular 
targeting drugs have been conducted to make this 
therapeutic strategy more effective for this group of 
disease [91]. Unfortunately, most attempts showed 
very limited effects, but investigation of combination 
strategies which convert ‘cold tumors’ into ‘hot 
tumors’ are on-going and hopefully would provide a 
novel insight in this field in the future. 

V. Tumor Microenvironment  
 Tumor microenvironment was added most 

lately in hallmarks of cancer. Like normal organ 
tissues, tumor tissue is composed of not only tumor 
cells, but also multiple stromal cell types and 
extracellular matrix proteins. These elements of tumor 
microenvironment are involved in structural and 

functional support for tumor growth. Cellular 
components of tumor environment include infiltra-
ting stromal cells (cancer-associated fibroblasts; 
CAFs), immune cells (tumor-infiltrating lymphocytes: 
TILs, tumor-infiltrating macrophages: TAMs) and 
vascular-associate cells (endothelial cells; ECs, 
pericytes; PCs), and extracellular components include 
collagens, fibronectin, laminin and secreted growth 
factors and enzymes like matrix metalloproteinases.  

 Attempt to target tumor microenvironment in 
sarcomas has been demonstrated in inhibition of 
angiogenesis [92] and immunomodulation [78] as a 
part of recent developments in molecular targeting 
treatments, and pazopanib which has the inhibitory 
effects against vascular endothelial growth factor 
receptor has been approved in many countries for 
advanced soft tissue sarcomas. Now, we will list 
eribulin on the table here again. Beside the well- 
known antitumor mechanism of eribulin, it 
suppresses clear cell sarcoma growth by inhibiting 
cell proliferation and inducing melanocytic 
differentiation both directly and via vascular 
remodeling [93]. Other than sarcomas, eribulin 
promoted antitumor immune responses as well as 
mesenchymal-epithelial transition through the 
vascular remodeling in breast cancer [94, 95]. Eribulin 
could reorganize tumor microvasculature which 
results in normalizing the microenvironment and 
inducing re-oxygenation in tumor tissues [96-98]. This 
vascular reorganization decreased tumor hypoxia and 
carbonic anhydrase IX expression [94]. Carbonic 
anhydrase IX (CA9) has been proposed as a marker 
for poor prognosis in soft tissue sarcoma [99] and 
inhibition of CA9 sensitizes to ionizing radiation in 
certain type of cancers [100]. Vascular reorganization 
by eribulin in the tumors possibly contributes to 
sensitize the tumor cells to irradiation when radiation 
and eribulin were concomitantly given, which is 
evidenced by that radiation with eribulin significantly 
prolonged the survival of mice with intracerebral 
glioblastomas compared to that in mice treated with 
either radiation or eribulin alone [95]. As a matter of 
fact, we have several experiences that patients with 
advanced sarcomas who received concomitant 
administration of eribulin and irradiation showed the 
augmented efficacy with drastic shrinkage of tumor 
mass (Fig. 7). Although we haven’t examined the 
expression of CA9 and details of tumor vasculature 
reformation in those cases, it might be considerable 
that concomitant administration of eribulin, which 
modulates the tumor microenvironment, with 
irradiation could be effective treatment strategy for 
unresectable advanced sarcomas. 
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Figure 7. Additive effect of eribulin with irradiation has shown in advanced myxofibrosarcoma patient of our own case. Patient with axillary lymph node metastasis (LN mets, 
white arrow) who received concomitant administration of eribulin and irradiation onto LN mets showed the augmented effective with drastic shrinkage of tumor mass.: 
Treatment with eribulin alone allowed tumor enlargement after 4 months, then radiotherapy was added on eribulin (a to b), and tumor showed remarkable shrinkage after 
6months of radiotherapy (b to c), then tumor shrinkage was maintained for more than 3 years with continuous eribulin treatment (c to d). 

 
 Regarding vascular remodeling and 

angiogenesis in tumor tissues, the cell traction force is 
a hallmark for endothelial cells that guide the 
formation of new blood vessels to supply oxygen and 
nutrients to the dormant cancer cells. Several 
mechanisms have been proposed to form the new 
vessels, and amongst of those, intussusceptive 
angiogenesis, a mechanism of a new blood vessel 
creation by splitting of an existing blood vessel in two, 
occurs in normal development as well as in pathologic 
conditions including tumor angiogenesis and vascular 
remodeling [98, 101]. The other processes that could 
be involved in tumor angiogenesis are coalescent 
angiogenesis where capillaries fuse and form larger 
vessels to increase blood flow and circulation, and 
sprouting angiogenesis, vessel co-option and vessel 
elongation [102,103].  

 The interplay between cancer cells and immune 
cells during the above-mentioned cancer immuno-
editing process within the tumor microenvironment 
also creates unique immune environments, called 
‘tumor-immune microenvironment’ (TIME). The 
TIME has been classified by several features including 
the infiltration patterns and inflammatory gene 
signatures of T cells, presence of B cells and tertiary 
lymphoid structures, PD-L1 expression and tumor 

mutational burden [104, 105]. Although immune- 
based therapies against sarcomas have not 
significantly gained to date, but understanding 
immunoediting of the TIME through genomic 
instability and following neoantigen generation, T cell 
recognition and resultant tumor cell immunosup-
pressive programs could stratify tumors with 
different TIMEs that brings implications for cancer 
immunotherapy strategies in sarcomas in the future 
[106, 107]. Recently, Stadtmauer et al reported a phase 
I clinical trial to evaluate the safety and feasibility of 
CRISPR-Cas9 gene editing in three patients with 
advanced cancer including myxoid/round cell 
liposarcoma [108]. They conducted isolated T cells 
from the blood of a patient, and CRISPR-Cas9 gene 
editing were administered in those T cells to remove 
the TCR α chain gene (TRAC) and the TCR β chain 
gene (TRBC) and PDCD1 gene (encoding PD-1) loci. 
The cells were then transduced to express a TCR 
which was specific for the cancer-testis antigens 
NY-ESO-1, and these engineered T cells were 
returned to the patient by intravenous infusion. The 
results showed the modified T cells persisted for up to 
9 months and patients were well tolerated, 
demonstrating the safety and feasibility and of 
CRISPR gene editing for cancer immunotherapy. 
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Figure 8. Growing evidence supports a collective route for invasion resulting in polyclonal metastasis and many collaborators like platelets, neutrophils and endothelial cells are 
involved in the metastatic cascade with numerous enzymes, growth factors and chemokines. 

 
 Finally, cancer cells are considered to undergo 

dormant state at G0–G1 cell cycle arrest and cellular 
reprogramming in the appropriate niche to adapt to 
survive. Targeting the interaction between cancer cell 
and their niche could inhibit the critical characteristics 
of cancers such as metastasis, however there are 
currently no effective means against sarcomas on this 
issue. 

 Future Perspectives: Directly targeting tumor 
microenvironment for sarcomas are still on the long 
way to go, however modulation of microenvironment 
such as tumor vasculature could potentially enhance 
the efficacy of other therapeutic means including 
chemo agents, radiotherapy and immunotherapies, 
such that optimal combination strategies should be 
investigated to improve the efficacy of various 
therapeutic modalities. 

VI. Tissue Invasion and Metastasis 
 Invasion and metastasis are the feature defining 

the malignancy owing responsibility for over 90% of 
cancer-related deaths and metastasis involves a series 
of events as the ‘invasion-metastasis cascade’ [109]. 
The ‘invasion-metastasis cascade’ is consisted of: 
invasion through the extracellular matrix such as 
basement membrane and stromal cells; intravasation 
into tumor vasculature; survival in the shear stress 
and immune attacks through circulation; extravasa-

tion at parenchyma of distant organs; survival and 
manipulation of foreign microenvironments; 
colonization and growth into metastatic foci with the 
formation of new vasculature [110]. Classical 
metastatic cascade is based on the single cell 
metastasis depicted as the ‘decathlon champ’ model, 
however a hypothesis of collective route for invasion 
has emerged defining as polyclonal metastasis and 
many collaborators like platelets, neutrophils and 
endothelial cells are involved in the metastatic 
cascade (Fig. 8) [111, 112]. Wrenn et al proposed that 
an intra-cluster heterogeneity during collective 
invasion would generate leader–follower dynamics 
within clusters [112]. One or more “leader” cells at the 
front-most edge of the cluster could possibly be the 
stem-like cancer cells, and will direct the migration 
and remain connected to several “followers” behind 
along with the axis of migration as “front” and “rear” 
cells [112,113]. These unique properties of tumor cell 
clusters that promote metastasis could provide 
promising potential targets for cancer treatments.  

In this context, they proposed that blocking 
collective invasion could be the potential strategies 
against metastasis by targeting leader cell activity, 
circulating tumor cell (CTC) clusters in the circulation, 
enhancing the immune system to diminish 
disseminated clusters and micro-metastases to 
prevent their expansion [114-118]. In terms of 
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diagnostic values, detecting CTCs and circulating 
tumor DNAs (ctDNAs) are on the way by liquid 
biopsy or NGS using blood samples from cancer 
patients such as FoundationOne liquid CDx 
(Foundation Medicine, Inc. Cambridge, MA) and 
Guardant360® CDx (Guardant Health Japan Corp, 
Tokyo).  

In addition to targeting the individual metastatic 
cells, targeting the collaboration amongst cells that 
collectively promotes their metastatic potential such 
as critical secreted paracrine loops, juxtracrine 
interactions, and the structures which facilitate 
intercellular communication could be another 
strategy against metastasis. A recent study found that 
interrupting integrin signaling generated by 
collectively invading sarcoma cells could enhance the 
efficacy of radiotherapy [119], and disrupting cell–cell 
communication may interrupt the acquisition of 
highly proliferative, aggressive phenotypes in cancer 
cells [120].  

Numerous reports have suggested that platelets 
play a role in facilitating metastasis by protecting 
circulating tumor cells from the shear stress of the 
bloodstream, from immunological assault during 
their intravascular phase and by mediating tumor cell 
adhesion and embolization in the microvasculature of 
secondary organs [121]. Platelets also enhance the 
proliferation and motility of tumor and endothelial 
cells promoting tumor growth, metastasis, and 
angiogenesis by releasing bioactive molecules [122], 
including peptide mediators such as platelet-derived 
growth factor (PDGF), vascular endothelial growth 
factor (VEGF), transforming growth factor-β (TGF-β), 
chemokine ligands (CXCL) 4,7 and 12 [123,124] as 
well as lipid mediators such as thromboxane A2 
(TxA2), sphingosine-1-phosphate (S1P) and 
lysophosphatidic acid (LPA) [125,126]. Takagi et al 
identified that osteosarcoma cells commonly exhibit 
high platelet activation-inducing characteristics, and 
molecules released from activated platelets promote 
the invasiveness of osteosarcoma cells. They indicated 
that osteosarcoma-induced platelet activation leads to 
abundant release of molecules including LPA and 
exposure to those releasates induces morphological 
changes and increase the invasiveness of 
osteosarcoma cells. They found that LPA receptor 1 
(LPAR1) is notably upregulated in osteosarcoma, such 
that the pharmacological inhibition of LPAR1 by the 
orally available LPAR1 antagonist, ONO-7300243, 
prevented pulmonary metastasis of osteosarcoma in 
the mouse models, indicating that the LPA–LPAR1 
axis is essential for the osteosarcoma invasion and 
metastasis, and targeting LPAR1 would be a 
promising therapeutic intervention for advanced 
osteosarcoma [127]. 

Since metastasis promoting intercellular 
cooperation involves throughout the entire metastatic 
cascade, multiple anti-collective strategy should be 
developed throughout the metastatic process of 
invasion, circulation, and colonization phases. 
Although it remains uncovered whether such 
strategies could be adapted to destroy collectively 
metastasizing cancers, more critical inter-cellular 
interactions could be identified in cancer cell 
collectives eventually, and hope some of those may 
turn out to be fruitful clinical targets. 

Future Perspectives: We do not have any specific 
means to prevent and treat metastasis in sarcomas. As 
forementioned, mitochondria are transferred from the 
platelets to cancer cells and reprogram the metastatic 
state of cancer cells [72], and this is just an example to 
indicate that the interaction with cancer cells and 
stromal cells like platelets, fibroblasts and immune 
cells could be a potential target in cancer cell 
metastasis. Further investigation of these mechanisms 
could contribute to overcome the life-threatening 
metastatic disease. 

Conclusions and Future Perspectives 
 Thanks for the concept of hallmarks framework, 

cancer research has once been considered to progress 
straightforward. Responsible genetic changes for 
these hallmarks could establish the molecular 
mechanisms of cancer, and could take a step toward 
the application of those mechanisms for both 
diagnostic and treatment regimens. However, the 
reality of cancer biology is far more complicated, and 
number of attempts based on these hallmarks have 
been insufficient in clinical settings. As a matter of 
fact, there are so many genetic or epigenetic 
mutations/alterations found year by year or even day 
by day, so that the cancer genetic landscape is 
becoming highly diverse more and more and there is 
no one-to-one linkage between genetic changes and 
hallmarks. Thus, we thought that re-organizing the 
concept of the cancer hallmark framework would be 
needed, and we depicted the schematic summary of 
reorganized hallmarks and possible targetable factors 
in each hallmark, indicating the crossover of most 
targets in current treatment strategies densely related 
to the downstream pathways of growth factor 
receptors and stress responses (Fig. 9).  

 Along with the expansion of the number of 
newly identified genetic alterations, the list of 
hallmarks should be expanded to establish the linkage 
between the hallmarks and genetic alterations. On the 
other hand, there is a high degree of overlap and 
dynamics for these hallmarks, i.e., the same gene 
alteration can be involved in different hallmarks, and 
the different gene alterations can be involved in the 
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same hallmark, and another example is a hallmark 
might require additional hallmarks, i.e., invasion and 
metastasis incorporate many other hallmarks such as 
proliferative advantages, altered metabolism and 
tumor microenvironment. Therefore, different 
hallmarks could be unified into a certain alternative 
hallmark, for instance sustained growth signal and 
evading anti-growth signal into selective proliferative 
advantages. We cannot tell which hallmarks are more 
important than others and which hallmarks we target 
first. Recent advances of sarcoma treatments have 
been limited to targeting the hallmark of proliferative 
advantages such as tyrosine kinase growth factor 
receptors inhibitors. Furthermore, there is an aspect of 
cancer cell characteristics like cytoskeletons including 
actin, myosin, and microtubules, which are undefined 
in a cancer hallmark such as cell confinement, could 
be an emerging field of cancer therapy. For instance, 
eribulin which inhibits microtubule polymerizations 
is approved for soft tissue sarcomas. 

The altered stress response represented by 
genome instability would possibly be the foremost 
hallmark, because the significant stress could result in 
increased system dynamics, generating genome level 

heterogeneity related to the tumor heterogeneity, 
which would be a fundamental mechanism of 
oncogenesis and hardly targetable. However, it seems 
many of us put every hallmark more or less equally 
important. Identification of the novel framework 
which can be linked to any of the individual 
hallmarks possibly lead the future direction for 
adapting the hallmarks to the selection of the targets 
in each patient. 

We have summarized the topics raised here 
regarding hallmarks and their targets, available 
treatments, and future perspectives in sarcomas in 
Table 1, however we cannot cover every aspect of 
cancer hallmarks and implications of all hallmarks for 
clinical settings. Understanding the molecular basis of 
these hallmarks are still on the way to fulfill the lack 
of knowledge of cancer biology as well as their clinical 
relevance. The gap between the conceptual 
understanding and clinical applicability of the 
biological principles and molecular mechanisms will 
be filled in based on the further knowledge of 
genomic alteration obtained from comprehensive 
high-resolution analysis such as NGS in conjunction 
with the hallmarks of cancer. 

 

 
Figure 9. The summary of reorganized hallmarks and possible targetable factors are depicted. Number of targets are involved in signaling pathways downstream of growth 
factors, cytokines as well as stress responses. 
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Table 1. Cancer hallmarks and examples of current treatments and their biomarkers, and possible future perspectives for each hallmark 

Hallmark in Cancer/Sarcoma Possible Targets Current Treatments Possible Biomarkers Future Perspectives 
Selective Proliferative Advantages receptor tyrosine kinase tyrosine kinase inhibitor 

(imatinib, sunitinib, 
pazopanib,larotrectinib, 
entrectinib) 

growth factor expression combinatory treatments with 
either conventional 
chemothrapeutic agnets or 
molecular targeting agents  

MAPK, PI3K/AKT/mTOR, 
JAK/STAT 

IGF1R inhibitor, mTOR inhibitor 

MET, Src MET inhibitor (crizotinib) Src 
inhibitor (dasatinib)  

MET, Src expression 

cell cycle regulators CDK4/6 inhibitor (palvociclib, 
ribociclib) 

endogeneous CDK4, CCND, 
CCNE, RB1, E2F1, and 
CDKN2A alteration 

HDAC inhibitor, MDM2 
inhibitor stratification 

epigenetic regualtion EZH2 inhibitor (tazemetstat) SMARCB1 (BAF47INI1) deltion epigenetic regulators 
Altered Stress Response (genetic 
instability) 

chromosomal alteration 
(chromothripsis, chromplexy) 

N/A TERT activation fusion gene TERT inhibitor 
targeting fusion genes 

Deregulated Cellular Metabolism PI3K/Akt/mTOR mTOR inhibitors (rapamycin, 
temsilolimus, everolimus) 

growth factor expression Src 
expression 

combinatory treatments 

Src Src inhibitor (dasatinib)  
Poly (ADP-ribose) polymerases 
(PARP) 

PARP inhibitors specific DNA-repair defects combinatory treatments of 
PARPis and NAMPTis 

nicotinamide phosphoribosyl 
transferase (NAMPT) 

NAMPT inhibitors NAMPT expression 

mitochondria OXPHOS N/A N/A phytochemical stilbenes 
Immune Modulation and Inflammation immune checkpoint PD-1/L1 inhibitors 

(pembrolizumab) CTLA-4 
inhibitors 

microsatellite instability (MSI) 
tumor mutaion burden (TMB) 
PD-L1 expression 

stratification combinatory 
treatment 

cytokines N/A interleukin or interferon 
expression 

interleukin or interferon 
modulators 

microtubles eribulin neutrophil lymphocyte ratio 
(NLR) 

stratification 

Tumor Microenvironment angiogenesis tyrosine kinase inhibitor 
(pazopanib, eribulin) 

VEGF, CA9 expression, combinatory treatment with 
irradiation 

tumor immune environment N/A T cell infiltration patterns T cell 
inflammatory gene signatures 

gene editing T cells 

T cell receptor (TCR), PD-1 N/A N/A gene editing T cells 
Tissue Invasion and Metastasis circulating tumor cells (CTCs) conventional chemotherapy circulation tumor DNA (ctDNA) liquid biopy (diagnostic) ex 

vivo activated NK cells 
cell-cell communications N/A integrin expression integrin interruption 

multiple anti-collective 
therapies 

secreted paracrine molecules N/A PDGF, VEGF, TGF-β, CXCL, 
TxA2, S1P, LPA 

LPAR1 antagonist 

MAPK: mitogen-activated protein kinase; PI3K: phosphatidylinositol-3 kinase; mTOR: mammalian target of rapamycin; JAK: Janus kinase; STAT: signal transducers and 
activators of transcription; IGF1R: insulin-like growth factor 1 receptor; CTLA-4: cytotoxic T-lymphocyte-associated antigen; VEGF: vascular endothelial growth factor; CA9: 
carbonic anhydrase 9; PDGF: platelet-derived growth factor: TGF-β: transforming growth factor-beta: CSCL: chemokine (C-X-C motif) ligand; TxA2: thromboxane A2; S1P: 
sphingosine-1-phosphate; LPA: lysophosphatidic acid. 

 
On the other hand, Gyawali et al claimed that the 

cancer field seems losing the sight of what matters to 
patients, despite the understanding of the molecular 
details in cancer biology, important progress in some 
elements of cancer care, and draggable targets 
showing spectacular improvements [128]. They raised 
a caution that clinical benefits have been limited with 
numerous newly approved cancer therapeutics so far, 
yet they are still prescribed to patients, and 
unfortunately this is not exceptional in sarcoma 
patients, claiming that oncology needs a 
‘common-sense revolution’ and should prioritize 
treatments that effectively improve both survival and 
quality of life. Cancer research has been conducted 
heavily on ‘Moon shot’ Initiatives in decades. Yes, 
there is no doubt that the molecular mechanisms are 
very much important, but it does not imply 
everything can be targeted, and we need a bit more 
restrictive with developing new therapies. On this 
view, we may also think about a re-calibration for 
supporting low-tech inexpensive ‘Ground Shot’ 

interventions that could improve outcomes for many 
patients especially with sarcomas [129, 130]. 

In our knowledge, this is the first attempt to 
overview and reshape the current comprehension of 
‘hallmarks of cancer’ in sarcomas and hope this could 
be helpful to think about what sarcomas are and how 
we should face to them. We have tried to include as 
much up-to-date information as possible, but most of 
them are the rapidly evolving area time-to-time, thus 
we also set a goal for this paper as every reader being 
able to add the latest up-to-date understandings by 
themselves.  
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