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Abstract 

Background: Patients with bladder cancer (BLCA) have a poor prognosis and little progress has been made in 
treatment. Therefore, the purpose of this work was to employ Mendelian randomization (MR) and 
transcriptome analysis to identify a novel biomarker that could be used to reliably diagnose BLCA. 
Methods: TCGA-BLCA and GSE121711 datasets were obtained from public databases. Genome-wide 
association study (GWAS) data of BLCA outcome (373,295 samples containing 9,904,926 single nucleotide 
polymorphisms) were obtained through the IEU OpenGWAS database. Differentially expressed genes were 
applied as exposure factors, and MR analysis was performed to identify genes that had a causal relationship with 
BLCA. Then, the patients were divided into high and low expression groups according to the expression levels 
of candidate genes, and genes with survival differences were identified. Univariate and multivariate Cox 
regression were used to investigate the prognostic value of the expression of these genes. A nomogram was 
constructed based on independent prognostic factors, and we analyzed the functions and pathways associated 
with the identified genes as well as their relationship with the immune microenvironment. 
Results: HES4 was identified as a biomarker. HES4 status, age, and stage were identified as independent 
prognostic factors, and an excellent nomogram was established. Bioinformatic analysis suggested that HES4 
might be associated with the activation of the immune response, bone development, and cancer pathways. The 
BLCA samples were divided into high and low HES4 groups. The stromal score and 33 immune cells were 
remarkably different between the two groups, with HES4 expression being negatively correlated with 
macrophages and mast cells, and positively correlated with eosinophils and central memory CD4+ T cells. 
Finally, HES4 was up-regulated in cancer samples in both TCGA-BLCA and GSE121711 datasets. 
Conclusion: This study identified HES4 as an independent prognostic factor for BLCA outcome based on MR 
and transcriptome analysis, which provides useful information for future research on and treatment of BLCA. 
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1. Introduction 
Bladder cancer (BLCA) is a common malignant 

tumor of the urological system. It occurs more 
frequently in men for whom it is the sixth most 
prevalent cancer [1]. Currently identified risk factors 
for BLCA are smoking and occupational exposures. 

Recent studies have revealed that specific dietary 
factors, microbiota imbalances, gene-external risk 
factor interactions, exposure to diesel exhaust 
emissions, and pelvic radiotherapy may also be 
contributing factors [2]. Depending on the depth of 
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tumor infiltration, it can be classified as non-muscle 
invasive bladder cancer (NMIBC) and muscle- 
invasive bladder cancer (MIBC). Approximately 75% 
75% of patients have NMIBC at the time of the initial 
visit [3], and the 5-year overall survival (OS) rate is 
nearly 90% [4]. Approximately 10–30% of NMIBC 
patients progress to MIBC with their 5-year OS 
decreasing to 60–70% [4,5], and 10% of these patients 
develop metastasis beyond the bladder, decreasing 
the 5-year OS to 5–30%. Apart from traditional 
therapies involving surgery, chemotherapy, and 
radiotherapy, immunotherapy has started to be used 
for the treatment of patients with advanced BLCA. 
However, only a limited number of patients benefit 
from immunotherapy [6], with one of the crucial 
reasons for this being the lack of biomarkers available 
to guide diagnosis and treatment. Although Chen et 
al. identified urinary tumor DNA methylation 
assessment as a novel method for early diagnosis of 
BLCA [7], it is still urgent to study the underlying 
molecular mechanisms of BLCA occurrence and 
progression in order to identify more sensitive and 
precise biomarkers. This will facilitate the early 
diagnosis and treatment of BLCA, which will help to 
increase the survival rate and improve the prognosis 
of patients. 

Mendelian randomization (MR) uses genetic 
variants as instrumental variables (IVs), and the 
random assignment of effect alleles is similar to the 
randomization process in randomized controlled 
trials, which strengthens the inference of causality 
between exposure and outcome [8-10]. The strength of 
MR is that the method minimizes the interference of 
confounding factors such as environment and 
adaptation, and also reduces reverse causality since 
the genetic variation used to substitute for the effect of 
exposure cannot be changed in turn by the occurrence 
and progression of the outcome [11,12]. The 
association of coffee intake, alcohol consumption, 
smoking, human papillomavirus (HPV) infection, and 
benign prostatic hyperplasia (BPH) with the 
development of BLCA has been investigated in 
previous MR studies, with results suggesting that 
smoking, HPV infection, and BPH may be causally 
associated with BLCA, whereas coffee intake and 
alcohol consumption are not [13-16]. The European 
Association of Urology stated that there is currently 
insufficient evidence to support the use of tumor 
mutation burden (TMB), gene expression signature or 
molecular typing in the management of patients with 
BLCA [17]. Transcriptomic MR studies may help to 
change this by identifying genes causally associated 
with BLCA. 

In this study, MR analysis of the BLCA 
transcriptome was performed to identify novel causal 

BLCA genes. The molecular mechanisms by which 
these genes might impact BLCA development and 
progression were investigated by enrichment 
analysis, ceRNA analysis, immune infiltration 
analysis, and targeted drug prediction. 

2. Materials and methods 
2.1 Data sources 

The Cancer Genome Atlas (TCGA) bladder 
cancer dataset (TCGA-BLCA) was obtained from the 
TCGA database (https://www.cancer.gov/tcga), 
which contained 397 BLCA samples with complete 
survival information. GSE121711 (GPL17586) was 
obtained from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo), 
which contained 8 BLCA samples and 10 normal 
samples. Genome-wide association study (GWAS) 
data of BLCA outcomes (ieu-b-4874; 373,295 samples 
containing 9,904,926 single nucleotide polymorph-
isms (SNPs)) and independent SNPs were obtained 
through the IEU OpenGWAS database 
(https://gwas.mrcieu.ac.uk/). 

2.2 Differentially expressed analysis 
Differentially-expressed genes (DEGs) were 

obtained between tumor and normal samples using 
DESeq2 (v3.44.3) in the R package [18]. An adjusted P 
< 0.05 and |log2FC| > 1 were used as cutoffs to define 
differential expression. Univariate Cox regression was 
used to identify DEGs associated with outcome, with 
P < 0.05 considered statistically significant. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was used to explore the functions 
and associated pathways of the identified genes using 
clusterProfiler (v3.16.0) in R [19]. 

2.3 Selecting IVs for MR analysis 
To ensure valid MR analysis, three basic 

assumptions should be satisfied: (1) IVs are closely 
related to exposure factors, (2) IVs cannot be 
associated with any confounding factors, and (3) 
exposure is the only way that genetic variation can 
affect the outcome. For univariate MR analysis, SNPs 
were used as IVs. The R package TwoSampleMR 
(v0.5.6) [20] was used to read the exposure factors and 
screen the IVs. SNPs were selected using the 
genome-wide significance threshold P < 5×10-8. 
Appropriate SNPs were then retained using a linkage 
imbalance threshold of r2 = 0.001 in the Euro 1000 
genome reference panel. Finally, SNPs that were 
associated with the results but with P < 5×10-8 were 
excluded [21]. Palindromic SNPs with intermediate 
allele frequencies were eliminated when combining 
exposure and outcome datasets. 
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2.4 MR analysis 
MR analysis was used to explore the causal effect 

between exposure factors (DEGs identified by the Cox 
analysis) and outcome (BLCA). In this study, the 
MR-Egger, weighted median, inverse variance 
weighted (IVW), simple mode, and weighted mode 
[22] methods were used for univariate MR analysis. 
The IVW method was used as the main MR analysis to 
identify genes that had a causal relationship with 
BLCA. A P value cutoff of 0.05, was used to identify 
causal relationships. A scatter plot was used to 
determine the correlation between exposure factors 
and outcome, a forest plot was used to determine the 
predictive exposure factors of each SNP site for the 
diagnosis of the outcome, and a funnel plot was used 
to evaluate whether MR was in line with Mendel's 
second law of randomization. 

2.5 Sensitivity analysis 
Sensitivity analysis was used to evaluate the 

reliability of MR analysis. Firstly, the Q value of the 
heterogeneity test was more than 0.05, indicating that 
there was no heterogeneity. Secondly, the P-value of 
the horizontal pleiotropy test was greater than 0.05, 
indicating that there were no confounding factors. 
Finally, the leave-one-out (LOO) test was used to 
determine whether the remaining SNPs had an 
impact on the overall analysis, even if one SNP was 
removed. 

2.6 Identification of key genes 
Univariate Cox regression and multivariate Cox 

regression were used to analyze the genes that had a 
causal relationship with BLCA, and genes whose 
Mendel risk values and univariate Cox risk values 
were in the same direction were selected as candidate 
genes for subsequent analysis. The expression levels 
of these genes and survival information of cancer 
patients were extracted from the TCGA dataset for 
analysis of overall survival (OS), and Kaplan-Meier 
(K-M) survival curves were constructed. Patients 
were divided into high and low expression groups 
based on the expression level of the candidate gene. 
Candidate genes with significant differences in 
survival were selected as biomarkers for subsequent 
analysis. 

2.7 Independent prognostic analysis 
Clinicopathological factors and biomarker 

expression levels in TCGA-BLCA samples were used 
to explore the independent prognostic value of the 
biomarkers by univariate Cox analysis. A nomogram 
was constructed based on significant factors, and 
patient survival at 1, 3, and 5 years was predicted 
based on the total score, with the higher the score, the 
lower the survival. Calibration curve and decision 

curve analysis (DCA) were used to evaluate the 
predictive ability of the nomogram. 

2.8 Single gene GSEA and co-expression gene 
enrichment analysis 

To explore the regulatory pathways and 
biological functions related to biomarkers expression, 
a single gene GSEA analysis was performed. Firstly, 
the correlation coefficients between the expression 
levels of all genes and biomarkers were calculated as 
the sequencing criteria, and GSEA enrichment 
analysis was performed using clusterProfiler (v3.16.0) 
[23] in the R package. The screening criteria were 
|NES| > 1, adj. P < 0.05. To further understand the 
functions and pathways associated with genes that 
were co-expressed with the biomarkers, LinkedOmics 
was used to identify co-expressed genes, their 
correlation was assessed using Spearman analysis, 
and GO and KEGG analyses were conducted. The 
screening criterion was adj. P < 0.05. 

2.9 Estimation of tumor immune micro-
environment (TIME) 

A series of correlation analyses were used to 
assess the differences in the TIME between high and 
low expression groups. The R package estimate 
(v1.0.13) [24] was used to calculate the immune score, 
matrix score, ESTIMATE score, and tumor purity of 
each sample, and the association between them was 
examined by calculating the Spearman correlation 
coefficient. Seven different approaches were used to 
assess immune cell differences between high and low 
expression groups (TIMER, CIBERSORT, 
CIBERSORT-ABS, quantTIseq, MCP-counter, xCELL, 
and EPIC). TIDE is a computational method for 
predicting immune checkpoint blocking (ICB) 
responses [25]. From the RNA expression profile, 
TIDE prediction scores were calculated to predict the 
likelihood that BLCA patients would respond to 
immunotherapy. The lower the TIDE score, the lower 
the likelihood of immune escape. In addition, subMap 
analysis was performed to predict differences in 
response to anti-PD-1 or anti-CTLA-4 immuno-
therapy between high and low expression groups. 
Finally, as immune checkpoint inhibitors (ICI) are 
used clinically for cancer immunotherapy, Spearman 
correlation analysis was used to investigate the 
relationship between the identified biomarkers and 
expression of genes associated with immune 
checkpoints. 

2.10 Prediction of chemotherapy drug 
sensitivity and molecular docking 

To attempt to identify high-potency anti-BLCA 
drugs, the R pRRopheticPredict package (v5.0) was 
used to calculate the half-inhibitory concentrations 
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(IC50) of 138 drugs in the CGP database. The 
difference in the IC50 values between the high and low 
expression groups was then calculated. Spearman 
correlation analysis was used to assess the correlation 
between the IC50 values and the expression of the 
identified biomarkers. To identify a potential novel 
therapeutic target for an identified drug, it was 
docked to the structure of HES4. The protein structure 
was obtained from the PDB [26], and all small 
molecules (including water) were removed. Protein 
hydrogenation and charge calculations were 
performed using AutoDock. Drug structures were 
retrieved from the PubChem database 
(https://pubchem.ncbi.nlm.nih.gov) [27] and 
charge-balanced, rotatable bond checks were 
performed using AutoDock. A range of docking boxes 
were selected based on the receptor active site. 
AutoDock vina was used to perform protein-ligand 
docking, and the structure with the lowest binding 
free energy was selected. PyMol software was used 
for visualization. 

2.11 Evaluation of genetic mutations, tumor 
mutation burden (TMB), and copy number 
variation (CNV) 

To identify the gene mutations in the high and 
low expression group, somatic mutation data were 
downloaded from the Genomic Data Commons 
(GDC) database [28], and mutations in the high and 
low expression groups were identified using maftools 
(v2.4.10) [29] in R. TMB is a quantitative biomarker 
that reflects the total number of mutations carried by 
tumor cells. To investigate differences in TMB 
between the high and low expression groups, we 
calculated TMB values and made boxplots. CNV in 
the TCGA-BLCA data were displayed on 
chromosome plots, and Genomic Identification of 
Significant Targets in Cancer (GISTIC) was used to 
analyze copy number loss or gain in all samples 
followed by a Wilcoxon test between the high and low 
expression groups to identify statistically significant 
differences. 

2.12 Construction of a competing endogenous 
RNA (ceRNA) network 

The miRWalk tool (http://mirwalk.umm.uni- 
heidelberg.de/) was used to predict biomarker- 
related micro RNAs (miRNAs). miRNA-related long 
non-coding RNAs (lncRNAs) were identified in 
Starbase (http://starbase.sysu.edu.cn/) using a 
threshold of clipExpNum > 1, and the ceRNA 
network was constructed. 

2.13 Expression verification of biomarkers 
The expression levels of key genes were verified 

in the TCGA-BLCA and GSE121711 datasets, and 
results were displayed using boxplots. 

2.14 Statistical analysis 
Statistical analysis was performed using R 

software (v4.1.0). Differences between groups were 
analyzed using Wilcox tests and t-tests. *P‐value < 
0.05; **P‐value < 0.005; ***P‐value < 0.0005; ****P‐
value < 0.00005, represented a significant difference. 
In the GSEA, the thresholds used were |NES| > 1 and 
adj. P < 0.05. 

3. Results 
3.1 Identification of DEGs with differences in 
risk ratio 

A total of 8467 DEGs were identified between 
BLCA and normal samples, with 3374 down- 
regulated and 5093 up-regulated (Figure 1A-B). 
Univariate Cox proportional hazard regression 
analysis was performed on all 8467 DEGs, with a total 
of 3678 giving significant differences in survival (P < 
0.05) (Supplementary Table 1). 

3.2 Functional enrichment and pathway 
analysis 

A total of 9 KEGG pathways and 58 GO function 
entries were enriched in the set of 3678 genes 
identified above. The most significant KEGG 
pathways were herpes simplex virus infection, 
spliceosome, Fanconi anemia pathway, mRNA 
surveillance pathway, hypertrophic cardiomyopathy 
and RNA degradation (Figure 2A). The most 
significant GO terms were RNA splicing via 
spliceosome and tRNA processing (Figure 2B). 

3.3 Identification of genes with a causal 
relationship with BLCA 

The IVW results showed that 8 genes were 
causally associated with BLCA. These were NSUN5P2 
(P = 0.025), GHRLOS (P = 0.000), TPM3P9 (P = 0.021), 
HES4 (P = 0.021), BATF2 (P = 0.002), PLXNA4 (P = 
0.019), TGFBI (P = 0.014) and EPHB1 (P = 0.040). HES4 
(Odds ratio [OR] = 0.888), PLXNA4 (OR = 0.919), and 
EPHB1 (OR = 0.811) were safety factors for BLCA, and 
NSUN5P2 (OR = 1.030), GHRLOS (OR = 1.011), 
TPM3P9 (OR = 1.018), BATF2 (OR = 1.046), and TGFBI 
(OR = 1.074) were risk factors (Supplementary Table 
2). For HES4, the scatter plot shows that the IVW slope 
is negative with no intercept (Figure 3A). The forest 
map also demonstrates that HES4 is a safety factor 
(Figure 3B). SNPs were randomly distributed on both 
sides of the IVW line, indicating that MR conformed 
to Mendel's second law (Figure 3C). The results for all 
other genes are shown in Supplementary Figure 1-3. 
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Figure 1. Identification of differentially expressed genes (DEGs) between BLCA and normal groups in the TCGA-BLCA dataset. A Volcano plot and B heatmap (density) plot 
illustrating the expression of 8467 DEGs. 

 
Figure 2. Functional enrichment circle plots of 3678 DEGs with significant differences in survival in univariate Cox analysis. A Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis. B Gene Ontology (GO) enrichment analysis. 
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Figure 3. HES4 has a causal relationship with BLCA. A Scatter plots for the relationship of HES4 expression and BLCA. B Forest plot for the efficacy of HES4 in predicting BLCA 
risk. C Funnel plot demonstrating a symmetrical distribution of single nucleotide polymorphisms of HES4 in both inverse variance weighted and MR-Egger algorithms.  

 

 

3.4 Identification of HES4 as biomarker 
Sensitivity analysis was used to assess the 

reliability of the MR results. The heterogeneity test 
demonstrated that there was no heterogeneity in the 
analysis (P < 0.05) (Table 1), the horizontal pleiotropy 
test showed that there were no confounding factors in 
the study (P > 0.05) (Table 2), and LOO revealed that 
there were no outlier SNPs, all of which suggest that 
the MR results were reliable (Figure 4A, Supple-
mentary Figure 4). The forest maps of these 8 genes 
showed that the Mendelian risk values of HES4 (MR: 
P = 0.009, OR = 0.9992; univariate Cox analysis: OR = 
0.868) and TGFBI (MR: P = 0.016, OR = 1.0005; 
univariate Cox analysis: OR = 1.0867) were in the 
same direction as the univariate Cox risk values 
(Figure 4B). Finally, OS analysis was performed using 
the expression levels of HES4 and TGFBI and the 
patient survival information (Figure 4C-D). HES4, 
with the more significant impact on survival 
prognosis, was selected to proceed with further 
analyses. 

3.5 HES4, age, and stage are independent 
prognostic factors  

The clinicopathological factors and HES4 gene 
expression of TCGA-BLCA samples were used for 
Cox analysis. The results indicated that the N 
(P = 4.13×10-8), stage (P = 5.21×10-8), age (P = 
3.68×10-5) and HES4 expression (P = 0.0005) were 
significant prognostic factors (Table 3, Figure 5A). 
HES4 expression, age, and stage had significant 
P-values in multivariate Cox analysis, indicating that 
they were independent prognostic factors (Table 4, 
Figure 5B). A nomogram was constructed based on 
HES4 expression, clinical factors, and the 1 -, 3 -, and 
5-year survival rates (Figure 5C). The calibration 
curve slope (c-index = 0.677) was close to 1, showing 
that the nomogram prediction was more accurate. The 
slopes for 1, 3, and 5 years were 0.6935, 0.2826, and 
0.2122, respectively, indicating that the prediction was 
best at 1 year (Figure 5D). DCA showed a nomogram 
with the sole advantage of HES4, indicating that the 
nomogram has good forecasting ability (Figure 5E). 
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Table 1. Sensitivity analysis based on the heterogeneity test. 

id.exposure id.outcome outcome exposure method Q Q_df Q_pval 
eqtl-a-ENSG00000106
133 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000106133 || 
id:eqtl-a-ENSG00000106133 

MR Egger 8.78E-01 1 0.34878779
3 

eqtl-a-ENSG00000106
133 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000106133 || 
id:eqtl-a-ENSG00000106133 

Inverse variance 
weighted 

9.59E-01 2 0.61917592
9 

eqtl-a-ENSG00000120
708 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000120708 || 
id:eqtl-a-ENSG00000120708 

MR Egger 10.0967612 15 0.81360960
7 

eqtl-a-ENSG00000120
708 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000120708 || 
id:eqtl-a-ENSG00000120708 

Inverse variance 
weighted 

1.09E+01 16 0.81570841
2 

eqtl-a-ENSG00000154
928 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000154928 || 
id:eqtl-a-ENSG00000154928 

MR Egger 5.55E+00 8 0.69766993
8 

eqtl-a-ENSG00000154
928 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000154928 || 
id:eqtl-a-ENSG00000154928 

Inverse variance 
weighted 

5.61E+00 9 0.77822306
4 

eqtl-a-ENSG00000168
062 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000168062 || 
id:eqtl-a-ENSG00000168062 

MR Egger 1.14701925
5 

1 0.28417399
4 

eqtl-a-ENSG00000168
062 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000168062 || 
id:eqtl-a-ENSG00000168062 

Inverse variance 
weighted 

1.46E+00 2 0.48239952
1 

eqtl-a-ENSG00000188
290 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000188290 || 
id:eqtl-a-ENSG00000188290 

MR Egger 2.96E-03 1 0.95659970
7 

eqtl-a-ENSG00000188
290 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000188290 || 
id:eqtl-a-ENSG00000188290 

Inverse variance 
weighted 

1.54E+00 2 0.46330548
5 

eqtl-a-ENSG00000221
866 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000221866 || 
id:eqtl-a-ENSG00000221866 

MR Egger 1.86836791
1 

1 0.17166212
2 

eqtl-a-ENSG00000221
866 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000221866 || 
id:eqtl-a-ENSG00000221866 

Inverse variance 
weighted 

1.92E+00 2 0.38348767
2 

eqtl-a-ENSG00000240
288 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000240288 || 
id:eqtl-a-ENSG00000240288 

MR Egger 1.18E+00 2 0.55481913
1 

eqtl-a-ENSG00000240
288 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000240288 || 
id:eqtl-a-ENSG00000240288 

Inverse variance 
weighted 

2.45E+00 3 0.48470037
1 

eqtl-a-ENSG00000241
015 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000241015 || 
id:eqtl-a-ENSG00000241015 

MR Egger 0.14033583
2 

2 0.93223726
9 

eqtl-a-ENSG00000241
015 

ieu-b-4874 Bladder cancer || 
id:ieu-b-4874 

ENSG00000241015 || 
id:eqtl-a-ENSG00000241015 

Inverse variance 
weighted 

1.58E+00 3 0.66433218
4 

 
 

Table 2. Sensitivity analysis based on the horizontal pleiotropy test. 

id.exposure id.outcome outcome exposure egger_intercept se pval 
eqtl-a-ENSG00000106133 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000106133 || id:eqtl-a-ENSG00000106133 -7.10E-05 0.000249604 0.82361746 
eqtl-a-ENSG00000120708 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000120708 || id:eqtl-a-ENSG00000120708 5.08E-05 5.67E-05 0.38472654 
eqtl-a-ENSG00000154928 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000154928 || id:eqtl-a-ENSG00000154928 -1.93E-05 7.79E-05 0.81020401 
eqtl-a-ENSG00000168062 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000168062 || id:eqtl-a-ENSG00000168062 -0.00061497 0.001181128 0.69439614 
eqtl-a-ENSG00000188290 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000188290 || id:eqtl-a-ENSG00000188290 -0.000222855 0.000179828 0.43223463 
eqtl-a-ENSG00000221866 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000221866 || id:eqtl-a-ENSG00000221866 -0.000167165 0.001037243 0.89827553 
eqtl-a-ENSG00000240288 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000240288 || id:eqtl-a-ENSG00000240288 -0.00021807 0.000193497 0.3767828 
eqtl-a-ENSG00000241015 ieu-b-4874 Bladder cancer || id:ieu-b-4874 ENSG00000241015 || id:eqtl-a-ENSG00000241015 -0.000197497 0.0001647 0.35327642 

 

Table 3. Results for independent prognostic univariate COX analysis. 

variable coef HR HR.95L HR.95H pvalue 
N 0.462116395 1.587430062 1.345801715 1.872440919 4.13E-08 
STAGE 0.610093568 1.840603612 1.477634912 2.292732548 5.21E-08 
age 0.035464194 1.036100549 1.018794898 1.05370016 3.68E-05 
HES4 -0.187302277 0.829193053 0.745891558 0.921797695 0.000525474 
gender -0.122877782 0.884371742 0.622876769 1.25564705 0.492041845 

 

3.6 Signaling mechanisms related to HES4 
GSEA enrichment analysis was used to 

understand the functions and pathways associated 
with HES4. A total of 3822 GO entries contained 
HES4, including actomyosin structural organization, 
aerobic respiration, ATP synthesis coupled electron 
transport, and bone development (Figure 6A). 81 
KEGG pathways contained HES4, including oxidative 
phosphorylation, Parkinson's disease, and cancer 
pathway (Figure 6B). Using LinkedOmics and 
Spearman correlation analysis, the 50 genes whose 

expression were most strongly positively and 
negatively correlated with HES4 were found. 
Enrichment analysis of these 100 genes identified 4 
KEGG pathways and 78 GO entries. The KEGG 
pathways were cell senescence, lysine degradation, 
sulfur relay system, and lipid and atherosclerosis. 
Cellular senescence and lipid and atherosclerosis 
pathways contained the most genes (Figure 6C). 
Enriched GO terms included peptidyl-serine modifi-
cation, proteasome-mediated ubiquitin-dependent 
protein catabolism, peptidyl-threonine modification, 
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megakaryocyte development, histone methylation, 
and glycoprotein methylation. Peptidyl-serine 

modification contained the most genes (Figure 6D). 

 
 

 
Figure 4. Sensitivity analysis of MR. A Forest plot of leave-one-out analysis of the relationship of HES4 and BLCA. B Forest plot for the univariate Cox analysis of eight genes 
with a causal relationship with BLCA. C Kaplan-Meier (K-M) curves of high and low HES4 expression groups. D K-M curve of high and low TGFBI expression groups. 
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Figure 5. Independent prognostic value of HES4. Forest plot of A univariate and B multivariate Cox analyses to identify independent prognostic factors in TCGA-BLCA samples. 
C Nomogram based on HES4 expression, stage, and age. D Nomogram calibration curve. E Decision curve analysis of the nomogram and independent prognostic factors. 
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Figure 6. HES4 function. Gene Set Enrichment Analysis (GSEA) diagram of HES4 based on A GO and B KEGG databases. Tree maps for the enriched C KEGG and D GO terms 
of 100 genes which were significantly co-expressed with HES4. 
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3.7 Differences in the immune 
microenvironment between high and low 
expression groups 

The immune score, stromal score, ESTIMATE 
score, and tumor score were calculated for the high 
and low expression groups. Only the stromal score 
was significantly different between the two groups, 
with the low expression group having a higher 
stromal score (Figure 7A). The correlation between 
the four scores was explored, and it was found that 
the tumor purity was significantly negatively 
correlated with other indicators (stromal score: cor = 
-0.94, P = 1.17×10-170; immune score: cor = -0.92, P = 
2.08×10-165; ESTIMATE score: cor = -1.0, P = 0), while 
the correlation between the remaining indicators was 
significantly positive (correlation of stromal score and 
immune score was 0.74, P = 2.21*10-71; correlation of 
stromal score and ESTIMATE score was 0.94, P = 
1.17*10-190; correlation of immune score and 
ESTIMATE score was 0.92, P = 2.08*10-165; Figure 7B). 
In total, 7 different algorithms were used to evaluate 
119 immune cell differences between the high and low 
expression groups. A total of 33 immune cell types 
had significantly different abundances between the 
two groups, with T-cells, monocytes, macrophage/ 
monocyte and neutrophils cells having a higher 
abundance (Figure 7C). The abundance of 8 cell types 
was significantly positively correlated with HES4 
expression, including central memory CD4+ T cells 
and NK T-cells, and the abundance of 18 cell types 
was significantly negatively correlated with HES4 
expression, including macrophages and mast cell 
(Figure 7D). TIDE analysis showed no significant 
differences between the high and low expression 
groups (Supplementary Figure 5A), and SubMap 
analysis indicated that the high HES4 expression 
group was likely to be more sensitive to PD-1 therapy 
(Figure 7E). Nine further immune checkpoint 
molecules were not significantly different between the 
HES4 expression groups (Supplementary Figure 5B). 

3.8 Predicted AZD6482 sensitivity was 
correlated with HES4 expression 

The IC50 values of 138 drugs were predicted in 
the two HES4 expression groups. 27 drugs had 
significantly different IC50 values between the two 
groups, with most drugs having a higher IC50 in the 
low expression group (Supplementary Figure 6). The 
correlation between HES4 expression and the IC50 
values of these 27 drugs was investigated, with 8 
drugs having an IC50 value positively correlated with 
HES4 expression, including AZD6482 and 
KIN001.135, and 19 drugs having an IC50 value 
negatively correlated with HES4 expression, 
including NVP.TAE684 and CI.1040 (Figure 8A). To 

further understand the potential therapeutic targets of 
the drug, AZD6482, which greatest correlation and 
significant difference between the high and low 
expression groups, was selected and docked to the 
HES4 structure. As shown in Figure 8B, in the 
lowest energy docked structure, LYS-8 and SER-10 
residues had hydrogen bonding interactions with 
AZD6482. The docking energy between AZD6482 and 
HES4 was −4.0 kcal/mol. 

3.9 Assessment of mutations in the high and 
low HES4 expression groups 

Missense, frame shift deletion, splice site, frame 
shift insertion, nonsense, in-frame deletion, and 
multi-hit mutations were detected in the BLCA 
genomic data. The genes with the most mutations in 
both groups were TP53 and TTN. Other genes were 
mutated at lower frequency, including RYR2 and RB1 
(Figure 9A-D). The high expression group had higher 
TMB, indicating that the tumor cells in this group had 
higher neoantigen levels (Figure 9E). Finally, CNV 
was investigated. CNV location was displayed on 
chromosome maps (Supplementary Figure 7A), and 
both copy number amplification and deletion were 
strongly correlated with BLCA (Supplementary 
Figure 7B-C). CNV was significantly higher in the low 
expression group (Supplementary Figure 7D). 

3.10 Regulatory and ceRNA network analysis 
of HES4 

Four miRNAs were predicted to be associated 
with HES4 using miRWalk, and 91 lncRNAs 
associated with 4 miRNAs were predicted using 
Starbase. Finally, HES4, the 4 miRNAs, and the 91 
lncRNAs were used to construct a ceRNA network 
that contained 96 nodes and 119 edges (Figure 10). 

3.11 Consistency of HES4 expression trend in 
TCGA-BLCA and GSE121711 

In both TCGA and GSE121711 datasets, HES4 
was up-regulated in cancer samples (TCGA: P < 0.01; 
GSE121711: P < 0.05; Figure 11A-B). 

4. Discussion 
Although though the majority of BLCA patients 

present with NMIBC at the first diagnosis, the 
prognosis progressively deteriorates on account of the 
highly recurrent and invasive nature of BLCA. Many 
genes associated with BLCA prognosis have been 
reported, along with genes whose expression and/or 
mutation can be used for diagnosis [30-32], but to 
date, there is still a lack of sufficiently sensitive and 
accurate molecular markers of BLCA to expedite 
diagnosis in order to both reduce the requirement for 
invasive investigations and to ensure timely provision 
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of treatment. In this study, we identified HES4 as 
being causally associated with BLCA using 
transcriptomics and MR. HES4 could both serve as an 
independent prognostic factor and play a crucial role 
in tumor progression, molecular interactions, and 
immune response processes. 

Following a similar approach, Li et al. [33] 
obtained a systemic lupus erythematosus 
(SLE)-related gene signature (SLEscore) for predicting 
the prognosis of patients with coexistent SLE and 
breast cancer, with 3- and 5-year AUCs of 0.81 and 

0.91, respectively [34,35], indicating that a combined 
transcriptome/MR analysis can lead to more robust 
outcomes than transcriptome analysis alone. In the 
current study, we established a nomogram to predict 
the 1 -, 3 -, and 5-year survival rates of BLCA patients 
by combining age, stage, and HES4 expression. Our 
results indicated this nomogram was most effective at 
predicting the 1-year survival rate of BLCA patients. 
The failure of the model to predict 3- and 5-year 
survival rates may imply that the development of 
BLCA is multifactorial. 

 
 

 
Figure 7. Immune infiltration analysis comparing the high and low HES4 expression groups. A Stromal scores of the different expression groups. B Correlation heatmap of 
tumor purity, immune scores, stromal scores, and ESTIMATE scores. C Boxplots for the infiltration levels of 33 immune cells were calculated using different algorithms between 
high and low expression groups. D Correlation heatmap of differentially abundant immune cells and HES4 expression. E SubMap analysis predicted that the high HES4 expression 
group was more sensitive to PD-1 therapy. 
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Figure 8. Drug sensitivity analysis in high and low HES4 expression groups. A Correlation lollipop chart of the IC50 values of 27 drugs and HES4 expression. B Molecular docking 
of AZD6482 to HES4. 
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Figure 9. Mutational landscape and tumor mutation burden (TMB) in high and low HES4 expression groups. A Overview of mutations in the high-risk subset of the TCGA-BLCA 
cohort. B Waterfall plot of eight specific mutation profiles of 203 patients with BLCA in the high-risk groups. The bar chart on the right shows the proportion of different 
mutation types of each gene, and the percentage indicates the mutation frequency of the gene. C Overview of mutations in the low-risk subset of the TCGA-BLCA cohort. D 
Waterfall plot of seven specific mutation profiles of 204 patients with BLCA in the low-risk groups. E Box plot of TMB in the different risk groups (Wilcoxon test, *p< 0.05).  
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Figure 10. Prediction of the mRNA-miRNA-lncRNA regulatory network of HES4. Red represents HES4, purple represents miRNA, and green represents lncRNA. 

 
HES4, a Hes family BHLH transcription factor, 

can repress the expression of target genes by 
recruiting co-repressors [36]. In the hematopoietic 
system, as a downstream gene of the Notch pathway, 
HES4 promoted early T-lineage differentiation and 
induced T-cell development, while repressing the 
development of NK and myeloid cells [36]. Our 
immune infiltration analysis was consistent with this, 
with the expression level of HES4 negatively 
correlated with macrophages/monocytes and NK 
cells, and positively correlated with some CD4+ T 
cells. During tumorigenesis, high expression of HES4 
can increase the invasiveness of osteosarcoma cells 
and inhibit calcium deposition, and it is negatively 
correlated with OS [37]. High expression of the HES4 
gene was also reported to be significantly correlated 

with activating mutations to Notch genes in breast 
cancers, which resulted in poorer prognosis [38]. In 
our study, the expression of HES4 was significantly 
increased in BLCA patients, and the TMB level was 
higher in the group with high expression of HES4, yet 
the results of the multivariable cox regression analysis 
demonstrated that HES4 may exert quite distinctive 
effects in different developmental stages of BLCA. 
GSEA did not identify enrichment of the Notch 
pathway. However, several other pathways were 
enriched, including pathways related to cellular 
senescence, energy metabolism, and neuronal 
diseases, suggesting that there may be additional 
important regulatory mechanisms beyond the Notch 
pathway in BLCA, which should be investigated in 
future experimental studies. 
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Figure 11. Expression of HES4 in public datasets. A TCGA-BLCA. B GSE121711. *p< 0.05, **p< 0.01. 

 

Table 4. Results for independent prognostic multivariate COX analysis. 

id coef HR HR.95L HR.95H pvalue 
age 0.033528694 1.034097116 1.016531265 1.051966507 1.25E-04 
STAGE 0.579303126 1.78479422 1.430066689 2.227511789 2.99E-07 
HES4 -0.18997349 0.826981057 0.74121574 0.922670191 6.72E-04 

 
AZD6482 is a phosphoinositide 3-kinase β 

(PI3Kβ) inhibitor [39]. The PI3K/Akt pathway and the 
MAPK pathway extensively interact in BLCA [40], 
low expression of HES4 was associated with the 
MAPK pathway in GSEA analysis, and there was a 
positive correlation between the expression of HES4 
and the IC50 value of AZD6482 in the GDSC database. 
Overall, these data suggest that the BLCA patients 
with low HES4 expression may be more sensitive to 
AZD6482 treatment. 

Numerous studies have reported that the tumor 
microenvironment plays an integral role in tumor 
progression, including in BLCA [41-43]. Parizi et al. 
demonstrated that tumor-infiltrating immune cells 
were strongly associated with the survival and 
biological behavior of BLCA patients [44]. To explore 
the immune microenvironment in BLCA and its 
relationship with HES4, we performed an immune 
infiltration analysis. The proportions of T-cells, 
monocytes, macrophages/monocytes, and neutro-
phils not only differed significantly between BLCA 
and normal samples, but were also strongly correlated 
with HES4. It has been reported that ETV4 promotes 
lymphangiogenesis and lymph node metastasis in 
BLCA by regulating tumor-associated neutrophil 
infiltration; lymph node metastasis is the main cause 
of death in BLCA [45]. Huang et al. demonstrated that 

HSF1 was positively correlated with BLCA lymphatic 
metastasis and poor prognosis, and increased the 
infiltration of tumor-associated macrophages, 
especially M2 macrophages. We believe that the 
differences in immune cell infiltration in BLCA may 
be related to HES4, but the molecular mechanisms 
involved need to be explored in further experiments. 

To our knowledge, this is the first study to use 
transcriptomics and MR analysis to identify a possible 
causal relationship between HES4 expression and the 
occurrence and progression of BLCA. We constructed 
a nomogram to predict the 1-year survival of patients 
combining age, stage, and HES4 expression. We 
preliminarily unveiled the potential complex 
mechanism of HES4 in BLCA using enrichment 
analysis, immune infiltration analysis, and 
construction of a ceRNA network. We used the GDSC 
database and molecular docking to identify AZD6482 
as a drug potentially targeting HES4, providing a 
novel candidate drug for the treatment of BLCA. This 
has important clinical implications for the early 
diagnosis, treatment, and prognosis of BLCA.  

There are some limitations to our study. Firstly, 
this is an observational study and causality cannot be 
confirmed. Although MR analysis can provide some 
evidence of causality, experimental validation is still 
required. Secondly, although we used transcriptome 
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analysis to investigate the mechanisms by which 
HES4 might promote BLCA, further experimental 
studies are needed to verify these mechanisms. 
Finally, although a potential target drug was 
identified, its efficacy and safety still need to be 
validated in animal models and clinical trials.  

Overall, this study provides new clues to our 
understanding of the relationship between HES4 and 
BLCA and offers new directions for the treatment of 
BLCA.  

Conclusions 
HES4 was identified as a diagnostic and 

prognostic biomarker for BLCA, and a nomogram 
combining age, stage, and HES4 expression predicts 
the 1-year survival of patients. We also identified 
AZD6482 as a potential drug for targeted treatment of 
BLCA, which may be significant for clinical 
decision-making in BLCA patients. 
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