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Abstract 

Purpose: Cervical cancer is a significant public health concern, particularly in developing countries. 
Despite available treatment strategies, the prognosis for patients with locally advanced cervical cancer 
and beyond remains poor. Therefore, an accurate prediction model that can reliably forecast prognosis is 
essential in clinical setting. Programmed cell death (PCD) mechanisms are diverse and play a critical role 
in tumor growth, survival, and metastasis, making PCD a potential reliable prognostic marker for cervical 
cancer. 
Methods: In this study, we created a novel prognostic indicator, programmed cell death-index (PCDi), 
based on a 10-fold cross-validation framework for comprehensive analysis of PCD-associated genes. 
Results: Our PCDi-based prognostic model outperformed previously published signature models, 
stratifying cervical cancer patients into two distinct groups with significant differences in overall survival 
prognosis, tumor immune features, and drug sensitivity. Higher PCDi scores were associated with poorer 
prognosis. The nomogram survival model integrated PCDi and clinical characteristics, demonstrating 
higher prognostic prediction performance. Furthermore, our study investigated the immune features of 
cervical cancer patients and found that those with high PCDi scores had lower infiltrating immune cells, 
lower potential of T cell dysfunction, and higher potential of T cell exclusion. Patients with high PCDi 
scores were resistant to classic chemotherapy regimens, including cisplatin, docetaxel, and paclitaxel, but 
showed sensitivity to the inhibitor SB505124 and Trametinib. 
Conclusion: Our findings suggest that PCD-related gene signature could serve as a useful biomarker to 
reliably predict prognosis and guide treatment decisions in cervical cancer. 
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Introduction 
Cervical cancer remains the most common 

gynecological cancer for women worldwide, with 
604,000 incidences and 342,000 deaths reported by 
World Health Organization in its latest report [1]. 
Unfortunately, developing regions such as Asia and 
Africa suffer a disproportionate burden of cervical 

cancer due to limited access to HPV vaccinations and 
early-cancer screening programs [2]. While surgery is 
the primary treatment option for cervical cancer, 
patients diagnosed with locally advanced cervical 
cancer (LACC) with risk factors usually require 
adjuvant concurrent chemoradiotherapy (CCRT) after 
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surgery. However, the heterogeneity of cervical 
cancer often results in variable clinical outcomes 
among patients [3]. 

Recent advancements in bioinformatics have led 
to the development of numerous prognostic gene 
signatures for cervical cancer [4–6]. Nonetheless, the 
application of these prognostic signatures in clinical 
practice has been hindered by their poor accuracy and 
unreliability. Therefore, there is an urgent need for a 
high-quality molecular prognosis prediction model to 
aid in clinical treatment decision-making. 

Programmed cell death (PCD) is a crucial 
biological process that regulates cell suicide through 
specific signaling cascades, unlike accident cell death 
(ACD) caused by external injury or unintentional 
damage [7, 8]. Various types of PCD mechanisms 
have been identified, including apoptosis, lysosome- 
dependent cell death, pyroptosis, immunogenic cell 
death, necroptosis, ferroptosis, autophagy-dependent 
cell death, cuproptosis, anoikis, paraptosis, 
parthanatos, entotic cell death, netotic cell death, 
alkaliptosis, and oxeiptosis. 

Apoptosis is a gene-regulated biological process 
that enables phagocytes to disassemble and digest 
injured cells without affecting surrounding cells [9–
11]. Paraptosis, mediated by mitogen-activated 
protein kinases (MAPKs) and inhibited by the 
multifunctional adaptor protein Alix, is induced by 
different natural compounds [12, 13]. Lysosome- 
dependent cell death is triggered by hydrolytic 
enzymes like cathepsins released into cytosol for 
cellular component degradations following lysosomal 
membrane permeabilization [14–16]. Pyroptosis, an 
inflammatory form of cell death, is activated by the 
inflammasome multiprotein complex, followed by the 
release of pro-inflammatory factors [17, 18]. Netotic 
cell death is caused by the formation of neutrophil 
extracellular traps (NETs) which are composed of 
decondensed chromatin and bactericidal proteins 
[19]. Immunogenic cell death results in an immune 
response characterized by the secretion of various 
types of damage-associated molecular patterns 
(DAMPs) caused by endoplasmic reticulum stress [20, 
21]. Necroptosis, another form of inflammatory cell 
death shares similar morphological features with 
necrosis but greatly depends on the signaling 
pathway involving RIPK3 and MLKL [22, 23]. Entotic 
cell death is caused by a cell invading to an adjacent 
living cell, leading to the death of the inner cell [24]. 
Parthanatos is a form of cell death that relies on the 
activation of poly(ADP-ribose)-polymerase (PARP) 
and the translocation of mitochondrial-associated 
apoptosis-inducing factor (AIF), leading to DNA 
fragmentation and chromatin condensation [25]. 
Anoikis is a regulated cell death form triggered by the 

detachment of anchorage-dependent cells from the 
surrounding extracellular matrix (ECM) due to the 
loss of cell-matrix interaction [26]. Ferroptosis is 
initiated by the accumulation of lipid peroxides 
balanced by the production of reaction oxygen species 
(ROS) and antioxidant system in an iron-dependent 
manner [27–29]. Autophagy-dependent cell death is 
regulated by over 40 autophagy-related genes, driven 
by autophagic machinery [30]. Alkaliptosis, a 
pH-dependent cell death form, is induced by 
intracellular alkalinization through NF-kappaB 
signaling pathway and carbonic anhydrase 9 (CA9) 
downregulation [31]. Oxeiptosis is triggered by a high 
intracellular ROS level, leading to a caspase- 
independent cell death process through the regulation 
of KEAP1-PGAM5-AIFM1 pathway [32]. Similar to 
ferroptosis, the accumulation of the heavy metal 
copper can induce mitochondrial stress, eventually 
leading to cell deaths eventually. This process has 
been termed cuproptosis [33, 34]. 

Recent advances in PCD studies have led to the 
development of novel anticancer strategies and drugs 
that promote cell death, showing promising results in 
cancer treatment. Specifically, targeting overex-
pressed proteins like BCL-2/BCL-XL and MCL1 
enables the therapeutic induction of apoptosis in 
tumors [11]. Additionally, a recent study has 
proposed a novel approach to overcome drug 
resistance in chemotherapy treatment by inducing 
ferroptosis [27]. Small molecules targeting caspase-1 
can trigger pyroptosis, leading to the destruction of 
tumor cells in colorectal cancer [35]. Furthermore, 
sensitizing detached tumor cells to anoikis can 
prevent tumor metastasis, making it a potential 
strategy in cancer therapy [36, 37]. Recent studies 
have reported promising findings have been reported 
in killing cervical cancer cells by activating PCD 
mechanisms. Evidence from in vivo experiments have 
shown the significant impact of Nrf2 on the metastasis 
of cervical cancer by the enhancement of 
epithelial-mesenchymal transition (EMT) and anoikis 
resistance [38]. Moreover, the potential therapeutic 
agents have been proposed to actively induce PCD 
activities. It has been reported that necroptosis could 
be induced in cervical cancer cells by a small anti- 
cancer agent called RETRA (REactivation of 
Transcriptional Reporter Activity) [39]. Besides, as a 
natural bioflavonoid found in many medicinal 
herbs/plants, Pinostrobin (PN) exerted anticancer 
effect to eliminate cervical cancer cells by ROS- 
dependent apoptosis [40]. 

Cell homeostasis in multicellular organisms is 
maintained through the intricate processes of diverse 
PCDs [8]. However, PCD mechanisms are often 
impaired in cancer cells, which allows them to resist 
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and evade various forms of gene-regulated cell death, 
leading to tumor growth, progression, and metastasis 
[41]. Our study presents a comprehensive exploration 
of the intricate relationship between PCD and cervical 
cancer. By integrating survival-associated genes, we 
have established a high-quality molecular prognostic 
model based on a novel indicator known as the 
programmed cell death index (PCDi), which holds 
great promise for predicting prognosis and selecting 
therapeutic regimens for cervical cancer patients. Our 
study identifies the heterogeneity of cervical cancer 
based on different PCD mechanisms, contributing to a 
deeper understanding of the disease and holding 
significant clinical implications. The development of 
PCDi highlights the potential for personalized 
medicine in the management of cervical cancer, 
ultimately leading to improved patient outcomes. 

Materials and Methods 
Data collection 

PCD processes are regulated by various 
PCD-related genes. To create an ultimate gene list, we 
curated regulatory genes for fifteen PCD mechanisms 
from review articles and databases. Genes related to 
apoptosis, lysosome-dependent cell death, netotic cell 
death, entotic cell death, parthanatos, autophagy, 
alkaliptosis, and oxeiptosis were extracted based on a 
curated gene list [42]. Additionally, pyroptosis- and 
immunogenic cell death-related genes were extracted 
from prior reviews [43, 44]. Gene related to parap-
tosis, anokikis, and necroptosis with a relevance score 
> 0.4 were downloaded from GeneCards database 
(https://www.genecards.org/) [45]. Furthermore, 
ferroptosis- and cuproptosis-related genes were 
downloaded from FerrDb database (http://www 
.zhounan.org/ferrdb/current/), only driver and 
suppressor datasets were extracted [46]. The ultimate 
gene list contains a total of 1,949 PCD-related genes, 
including 580 apoptosis-related genes, 508 
anoikis-related genes, 483 ferroptosis-related genes, 
11 cuproptosis-related genes, 209 necroptosis-related 
genes, 33 pyroptosis-related genes, 34 immunogenic 
cell death-related genes, 367 autophagy-related genes, 
17 paraptosis-related genes, 9 parthanatos-related 
genes, 15 entotic cell death-related genes, 8 netotic cell 
death-related genes, 7 alkaliptosis-related genes, 5 
oxeiptosis- related genes, and 220 lysosome- 
dependent cell death-related genes (Supplementary 
Table S1). 

Four datasets from different research institutes 
were collected for the following analysis. Using Xena 
platform from USCS Genomics Institute 
(https://xenabrowser.net/datapages/), we obtained 
a combined cervical cancer cohort of The Cancer 

Genome Atlas (TCGA) and The Genotype-Tissue 
Expression (GTEx) samples [47]. To ensure 
consistency and comparability of clinical data, cancer 
stage information of patients was standardized 
according to 2009 The International Federation of 
Gynecology and Obstetrics (FIGO) Staging Classifi-
cation (Supplementary Fig. 1). Two tumor samples 
were excluded because they came from metastatic 
tumor tissues, and five tumor samples were excluded 
because of a lack of mRNA expression data 
(Supplementary Fig. 2A). Molecular and clinical data 
from CGCI- HTMCP-CC dataset were accessed 
through National Cancer Institute’s Genome Data 
Commons (https://gdc.cancer.gov/about-data/ 
publications/CGCI-HTMCP-CC-2020) [48]. Tumor 
tissues of five patients were excluded because they 
were ultimately not diagnosed with cervical cancer 
(Supplementary Fig. 2B). Through Gene Expression 
Omnibus (GEO) database, microarray and clinical 
data from GSE52904 and GSE44001 were collected [49, 
50]. For high-dimensional data visualization, 
t-distributed stochastic neighbor embedding (t-SNE) 
method was employed, using the R package “tsne”. 

Identification of the differentially expressed 
PCD-related genes 

To identify differentially expressed genes 
(DEGs), we utilized samples from TCGA- GTEx 
cervical cancer cohort, consisting of 303 tumor tissues 
and 13 normal tissues. Raw transcriptome count data 
was analyzed using the R packages “edgeR”, 
“limma”, and “DESeq2” [51–53]. A gene identified by 
at least two algorithms with the selection criteria of 
adjusted p-value or FDR < 0.05 and |Log2FC| >= 2, 
was considered as a significant DEG. The absolute 
value of the logarithm base 2 of the fold change (FC) 
greater than or equal to 2 is a common criterion for 
identifying DEGs. 

Construction of the PCD-related gene 
signature by machine learning algorithms 

Survival-associated DEGs were screened using 
univariate Cox regression with a significant threshold 
of p-value < 0.1. Currently, many types of machine 
learning were available with unique algorithm deign. 
Without systematic comparison, it was unfair to rely 
on a particular machine learning algorithm for the 
model building. We employed ten machine learning 
algorithms, including survival support vector 
machine (survivalSVM), elastic network (Enet), least 
absolute shrinkage and selection operator (LASSO), 
ridge regression (Ridge), random survival forest 
(RSF), stepwise Cox regression analysis 
(stepwiseCox), fitting Cox models by likelihood based 
boosting (CoxBoost), generalized boosted regression 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

1381 

modeling (GBM), partial least squares regression for 
Cox (plsRcox), and supervised principal components 
(SuperPC) based on a 10-fold cross-validation 
framework to identify the optimal gene signature for 
cervical cancer (Supplementary Method). A total of 
101 combination results were generated. We 
evaluated the performance of prognostic signatures 
using a Rank Score, which was calculated using the 
following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝑆𝑆𝐿𝐿10�𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ √𝑅𝑅� 

Rmean stands for the average rank and n denotes 
the number of genes in the signature model. Average 
area under the curve (AUC) of GSE52904 was the 
mean of 1-year and 2-year AUC values from 
time-dependent receiver operating characteristic 
(ROC) analysis. Average AUC of other datasets was 
the mean of 1-year, 2-year, 3-year, and 5-year AUC 
values from time-dependent ROC analysis. We chose 
the optimal signature model with lowest Rank Score, 
which had a reasonable number of genes and high 
average rank of Harrell’s concordance index (C-index) 
and AUC value. 

In this study, the prognostic gene signature was 
established through a combination of two machine 
learning algorithms stepwiseCox and Enet. Ten genes 
were identified by stepwiseCox algorithm with 
backward approach to yield the optimal model with 
minimum Akaike information criterion (AIC). 
Subsequently, the regression model was finalized 
using Enet algorithm with a parameter alpha set to 
0.5. For each patient, a PCDi score was calculated 
using the following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑃𝑃𝑗𝑗 ∗ 𝐸𝐸𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

Cj stands for the coefficient and Ej denotes the 
expression value of each PCD-related gene. To 
facilitate cross-comparisons of PCDi across the 
datasets, a linear transformation was employed for 
data normalization. The normalized PCDi scores had 
a range from 0 to 1. Based on the median PCDi, 
cervical cancer patients were separated into PCDi- 
High and PCDi-Low groups. The R package “stats” 
was used to performance principal component (PCA) 
analysis for visualizing high-dimensional data. 
Kaplan-Meier (KM) analysis was used to investigate 
the survival difference between two compared 
groups. The R packages “survival” and “survminer” 
were implemented for survival analysis and result 
visualization. 

Functional annotation and enrichment analysis 
The R package “clusterProfiler” was used to 

perform functional annotation analysis of DEGs based 

on Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases [54]. REVIGO 
algorithm was implemented to remove redundant GO 
terms [55]. Gene set enrichment analysis (GSEA) was 
performed to identify the significant enriched 
signaling pathways in association with PCDi 
subgroups. 

Establishment of the nomogram 
The R package “regplot” was used to develop a 

nomogram survival model for cervical cancer that 
integrated PCDi and clinical features, including FIGO 
cancer stage and age at diagnosis. We evaluated the 
efficacy of the nomogram in prognosis prediction 
using the R packages “rmda” and “rms” for model 
calibration and decision curve analysis (DCA). The 
performance of the nomogram was also assessed by 
AUC value obtained through time-dependent ROC 
analysis with the R package “timeROC”. 

Tumor cell infiltration analysis and drug 
sensitivity prediction 

Infiltrating immune cells in cervical cancer were 
estimated using TIMER2.0 platform [56]. Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm 
was used to estimate the potential of tumor immune 
escape and response [57]. The lists of gene signatures 
of 28 tumor infiltrating lymphocytes and genes 
encoding for immunomodulators and chemokines 
were downloaded from TISIDB database (http://cis. 
hku.hk/TISIDB/index.php) [58]. Single-sample gene 
set enrichment analysis (ssGSEA) was used to 
calculate the enrichment scores of 28 tumor infiltrates. 
The R package “oncoPredict” was utilized to predict 
drug sensitivities for individual cervical cancer 
patients [59]. 

Formalin-fixed and paraffin-embedded (FFPE) 
samples acquisition and immunohisto 
chemistry (IHC) staining 

Four FFPE samples were collected from patients 
diagnosed with cervical cancer from January 2023 to 
October 2023 at The First People’s Hospital of Foshan. 
The samples of surgically resected cancerous and 
normal tissues were preserved after 4% formalin 
fixation and paraffin embedding treatment. Five µm 
thick sections were analyzed by IHC staining, as 
previously described [60]. Briefly, heat-induced 
antigen retrieval was performed using 10 mM sodium 
citrate buffer, pH 6.5. Peroxidase activity was 
quenched with 3% H2O2 and tissues were blocked in 
5% bovine serum albumin for 1 hour. Primary MMP1 
(1:2000) (10371–2-AP, Proteintech) was added and 
sections were incubated overnight at 4 °C. Horse-
radish peroxidase-conjugated secondary antibody 
(1:1000) (K8002, Dako Corp., Ltd) and DAB were used 
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for detection. Slides were counterstained with 
hematoxylin. 

Statistical analysis and data visualization 
R software (http://www.R-project.org) was 

used for all other statistical analyses, such as 
Spearman correlation, Kruskal-wallis test, and 
Mann-Whitney test. Data visualization was carried 
out using the R package “ggstatsplot”, “ggplot2”, and 
Sangerbox platform (http://www.sangerbox.com/ 
home.html). 

Results 
Landscape of PCD-related genes for cervical 
cancer 

In this study, we aimed to develop a reliable 
prognostic signature for cervical cancer based on the 
expression of PCD-related genes. Different PCD 
mechanisms regulate cell elimination that plays a 
crucial role in cancer development and therapy. 
PCD-related DEGs are genes that show significant 
changes in expression levels between cancer and 
normal tissues, and may reflect the PCD status of 
cancer cells. We hypothesized that PCD-related DEGs 
could serve as potential biomarkers for predicting the 
survival outcomes of cervical cancer patients. To test 
this hypothesis, we performed the following analyses. 
We collected 303 and 118 cervical cancer patients from 
TCGA- CESC and CGCI-HTMCP-CC datasets 
respectively, as the training cohort. We also collected 
55, 173, and 300 patients from GSE52904, 
TCGA-CESC, and GSE44001 datasets respectively, as 
the validation cohort. We designed a computational 
workflow consisting of five major steps to develop the 
PCD-related prognostic signature for cervical cancer 
(Figure 1). In the first step, we compiled an ultimate 
gene list with 1,949 regulatory genes associated with 
fifteen PCD patterns based on literature and database 
search. In the second step, we identified PCD-related 
DEGs from the ultimate gene list by performing 
differential expression analysis of TCGA-GTEx 
dataset. In the third step, we further narrowed down 
the target genes by selecting prognosis-associated 
genes from the PCD-related DEGs using univariate 
Cox regression. In the fourth step, we established the 
most valuable PCD-related prognostic gene signature 
by applying the combination of 10 machine learning 
algorithms based on 10-fold cross validation 
framework. In the last step, we conducted a group of 
follow-up analyses to demonstrate the importance of 
PCD-related prognostic gene signature. More 
importantly, we used independent datasets to further 
validate the prognosis prediction of the gene 
signature. 

Using three different algorithms with selection 
criteria of adjusted p-value or FDR < 0.05 and 
|Log2FC| >= 2, we identified 2,803 up-regulated 
genes and 2,380 down-regulated genes in 
TCGA-CESC cervical cancer dataset (Figure 2A to C, 
Supplementary Table S2). Among the DEGs, a total of 
302 PCD-related genes were identified, including 198 
up-regulated 104 down-regulated genes. A heatmap 
of Z-score transformed expression levels between 
tumor and normal tissues is showed in Figure 2E, and 
two groups are well-separated (Figure 2D). Notably, 
KEGG pathway analysis revealed that the DEGs were 
not only implicated in cell death processes such as 
ferroptosis and necroptosis, but also in the signaling 
pathways like PI3K-Akt and NF-kappaB pathways, 
which play a critical role in regulating cell growth and 
survival (Figure 2F). Furthermore, GO functional 
annotation analysis showed that the DEGs are 
involved in the biological processes relating to oxygen 
level and ROS, which are pivotal mediators of 
multiple PCD mechanisms (Figure 2G). 

PCD-related prognostic gene signature 
The overall survival (OS) data from two datasets 

within the training cohort were analyzed using 
univariate Cox regression analysis to identify 
survival-associated genes among 302 PCD-related 
DEGs. Applying a significant threshold of p-value < 
0.1, 80 and 62 genes were identified in TCGA-CESC 
and CGCI-HTMCP-CC datasets respectively. 
Twenty-seven genes were consistently identified in 
both datasets and were subsequently utilized to 
construct the most robust prognostic gene signature 
(Supplementary Fig. S3). This procedure was 
achieved through the combinations of 10 machine 
learning algorithms, based on 10-fold cross-validation 
framework. The finalized PCD-related prognostic 
signature with best performance was established by 
the combination of stepwiseCox and Enet algorithms 
(Figure 3, Supplementary Table S3). 

The PCD-related prognostic signature consisted 
of 10 genes that were up-regulated in tumor tissues 
(Supplementary Fig. S4). Among these genes, three 
genes were related to anoikis (SPP1, SPIB, FASLG), 
one gene was related to netotic cell death-related 
(MMP1), four genes were related to ferroptosis 
(ALOX15, GLS2, CA9, IFNG), two genes were related 
to apoptosis (IFNG, FASLG), two genes were related 
to immunogenic cell death (FOXP3, IFNG), one gene 
was related to necroptosis (FASLG), one gene was 
related to lysosome-dependent cell death (CLNK), 
one gene was related to alkaliptosis (CA9 ), and one 
gene related to autophagy-dependent cell death 
(IFNG). Notably, FALSG, CA9, and IFNG were 
involved in multiple PCD mechanisms. 
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Figure 1. Computational workflow for developing the PCD-related prognostic signature for cervical cancer. The workflow includes five major steps. Firstly, PCD-related genes 
were identified through literature and database search. Secondly, DEGs were identified using TCGA-CESC cervical cancer dataset. Thirdly, univariate Cox regression was 
performed to identify prognostic genes. Fourthly, machine learning algorithms were used to identify the most valuable prognostic gene signature. Finally, independent validation 
and follow-up analysis were conducted. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

1384 

 
Figure 2. Comprehensive analysis of genes associated to fifteen types of PCD patterns for cervical cancer. (A) Volcano plots displaying the DEGs identified by algorithms 
DESeq2, edgeR, and limma algorithms. (B) Venn Diagram showing up-regulated DEGs in TCGA-CESC dataset. (C) Venn Diagram showing down-regulated DEGs in TCGA-CESC 
dataset. (D) t-SNE plot of transcriptomic data of 302 PCD-related DEGs in tumor and normal tissues. (E) Heatmap of PCD-related DEGs between tumor and normal tissues. (F) 
KEGG pathway annotation analysis based on PCD-related DEGs. (G) GO term annotation analysis based on PCD-related DEGs. 
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Figure 3. Development of the PCD-related prognostic signature by machine learning algorithms. (A) A total of 101 combinations of machine learning algorithms were used to 
identify the most valuable prognostic signature for cervical cancer. The C-index and AUC values of each dataset were displayed, and the Rank Score was calculated for each 
combination based on the rank average and the number of genes in the model. (B) The change of AIC value in stepwiseCox algorithm with a backward approach. (C) The selection 
of 10 PCD-related genes using Enet algorithm. (D) The selection of lambda.min value to minimize cross-validation error in regression analysis. 

 
We performed KM analysis to assess the 

association between the expression of genes in the 
PCD-related prognostic signature and OS. Using a 
median cutoff, we founded that all genes, except for 
FASLG, IFNG and ALOX15, had significant impact on 
OS (Log-rank test, p < 0.1, Supplementary Fig. S5). A 
novel prognostic indicator, called PCDi was derived 
from the 10-gene signature model. The PCDi score for 
each patient was calculated as the sum of the 
expression levels of 10 genes, weighted by the 

coefficients derived from Enet regression model. The 
formula for the calculation of PCDi is shown below. 
PCDi = (0.201458 * SPP1 exp.) + (0.098878 * MMP1 
exp.) + (0.130493 * CA9 exp.) + (-0.108410 * ALOX15 
exp.) + (0.304840 * GLS2 exp.) + (0.449150 * FOXP3 
exp.) + (0.198570 * SPIB exp.) + (0.781472 * FALSG 
exp.) + (0.675460 * IFNG exp.) + (0.988550 * CLNK 
exp.). Based on the median PCDi, we stratified the 
patients from the TCGA-CESC dataset into two 
subgroups, PCDi-High (n = 152) and PCDi-Low 
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(n=151). Statistical analysis was performed to 
investigate the associations between PCDi and clinical 
characteristics in cervical cancer patients 
(Supplementary Fig. S6A). Out analysis revealed that 
PCDi was significantly associated with FIGO clinical 
stage (Supplementary Fig. S6B), tumor size 
(Supplementary Fig. S6C), tumor metastasis 
(Supplementary Fig. S6E), and survival status 
(Supplementary Fig. S6F and G). Notably, even within 
the same clinical stage, patients from different PCDi 
subgroup have shown significant OS differences 
(Supplementary Fig. S7 and S8). However, PCDi was 
not associated with lymph node invasion in cervical 
cancer (Supplementary Fig. S6D). 

To evaluate the quality of the PCD-related 
prognostic signature, a total of 33 published 
mRNA-based prognostic signature for cervical cancer 
were retrieved through literature search for a 
comprehensive comparison (Figure 4, Supplementary 
Table S4). It is noteworthy that the PCD-related 
prognostic signature exhibited superior performance 
compared to other published signatures in the 
prognostic prediction for both OS and disease-free 
survival (DFS) in cervical cancer patients. 

Prognosis prediction by gene signature in 
training cohort and validation cohort 

To validate our findings, we compared OS 
between cervical cancer patients with different PCDi 
scores in CGCI-HTMCP-CC and GSE52904 datasets. 
Cervical cancer patients with DFS data were also 
obtained from TCGA-CESC and GSE44001 datasets 
for validation. 

The PCDi scores were normalized for better 
comparisons between datasets. Consistent with the 
results from TCGA-CESC dataset, higher death rate in 
cervical cancer patients with higher PCDi scores was 
observed in other datasets (Figure 5A). PCA plot 
revealed that the cervical cancer patients were 
well-separated based on PCDi (Figure 5B). The 
significant OS differences between PCDi-High and 
PCDi-Low subgroups were observed in both datasets 
from the training cohort. More importantly, this 
finding was further validated in the independent 
cervical cancer datasets, with significant survival 
differences in both OS and DFS (Figure 5C). 

PCDi-based nomogram survival model for 
cervical cancer 

Prognostic factors for cervical cancer were 
identified using univariate Cox regression analysis. 
Our finding revealed that patients with high PCDi 
scores (Hazard Ratio = 2.91, 95% Confidence Interval: 
2.16-3.91), as well as those with locally advanced stage 
(Stage IB2-IVA, HR = 2.06, 95% CI: 1.17-3.65) or 

metastasized stage (Stage IVB, HR = 6.12, 95% CI: 
2.58-14.51) cervical cancer had higher risk of OS 
(Figure 6A). 

To eliminate false discovery results contributed 
by the confounding factors, multivariate Cox analysis 
was performed, which confirmed that PCDi was an 
independent predictor of OS (HR = 3.19, 95% CI: 
2.33-4.39, Figure 6B), highlighting its clinical 
significance in predicting the prognosis of cervical 
cancer patients (Supplementary Fig. S9). Based on 
multivariate Cox regression analysis, a nomogram 
survival model that integrated clinical features and 
PCDi was established to estimate 1-, 2-, 3-, and 5-year 
OS for cervical cancer patients (C-index = 0.789, 95% 
CI: 0.737-0.842, Figure 6C). High accuracy of the 
nomogram model in predicting the prognosis of 
cervical cancer patients was presented in Figure 6E. 
Additionally, DCA plot showed the nomogram 
survival model outperformed other predictors in the 
prediction of survival outcome (Figure 6F). Patients 
were categorized into Risk-High and Risk-Low 
subgroups based on the median score given by the 
nomogram survival model, revealing a significant 
survival difference (HR = 5.72, 95% CI: 3.18-10.29, 
Figure 6D). Furthermore, time-dependent ROC 
analysis demonstrated that the nomogram survival 
model had better performance than the PCD-related 
gene signature model in predicting multi-year OS of 
cervical cancer patients (Figure 6G and H). Our results 
highlight the clinical significance of PCDi as a 
prognostic factor and the utility of the nomogram 
survival model in the prediction of prognosis for 
cervical cancer. 

Immune features and drug sensitivities for 
cervical cancer 

To investigate the differences in tumor immune 
features between two PCDi groups in cervical cancer, 
we estimated immune infiltrate abundance by 
calculating the enrichment scores of tumor-infiltrating 
immune cells using eight different algorithms 
(TIMER, CIBERSORT, CIBERSORT-ABS, EPIC, 
ESTIMATE, MCP-COUNTER, QUANTISEQ, and 
XELL). Additionally, the abundance of 28 tumor 
immune infiltrates was quantified using ssGSEA 
algorithm. Interestingly, our results revealed 
significant differences in tumor microenvironment 
(TME) of cervical cancer, with patients having higher 
PCDi scores exhibiting significantly lower tumor 
infiltration levels of immune cells (Figure 7A, 
Supplementary Fig. S10). Furthermore, most immune 
modulators were negatively correlated with PCDi, 
demonstrating a similar trend with TMB profiles 
(Figure 7B). 
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Figure 4. Comparison of the PCD-related prognostic signature and previously published signatures. (A) Comparison of the PCD-related prognostic signature and 33 published 
signatures for cervical cancer. The C-index and AUC values of each dataset were displayed, and the Rank Score was calculated for each signature based on the rank average and 
the number of genes in the model. (B) Average C-index of OS was calculated for each signature. (C) Average C-index of DFS was calculated for each signature. (D) Average AUC 
value of OS was calculated for each signature. (E) Average AUC value of DFS was calculated for each signature. 

 
We utilized GSEA algorithm to further 

investigate the dysregulated signaling pathways 
between two PCDi groups. The results showed that 
immune-related signaling pathways were up- 
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regulated in PCDi-Low group, such as antigen 
processing and presentation, B cell receptor signaling 
pathway, T cell receptor signaling pathway, and so on 
(Figure 7C). Additionally, we evaluated the potential 
for tumor immune escape and response using TIDE 
algorithm, which showed a higher potential of T cell 
dysfunction was observed in PCDi-Low group 
(Supplementary Fig. S11A and C), while the 
prediction scores of T cell exclusion were positively 
correlated with PCDi (Figure 7D and E, 
Supplementary Fig. S11B and D). 

Furthermore, we analyzed the association 
between drug’s half maximum inhibitory 
concentration (IC50) and PCDi to predict the 
sensitivities of various drugs for cervical cancer 
(Figure 8A). We observed significant positive 
correlations between PCDi and IC50 values of 
commonly used chemotherapy regimens for cervical 
cancer such as cisplatin, docetraxel, paclitaxel, and 
gemcitabine (Figure 8B and C), indicating that 
patients with high PCDi scores were more likely 

resistant to chemotherapy. Fortunately, we also found 
that treatment options were available for PCDi-high 
group, such as SB505124 and Trametinib (Figure 8D 
and E), proving potential alternative therapeutic 
options for these patients. 

Experimental validation of MMP1 
For the developed PCD-related prognostic gene 

signature, we were interested in the contribution of 
individual genes to the signature. We calculated the 
relative importance of individual genes of our 
prognostic gene signature using three machine 
learning algorithm RSF, GBM, and SuperPC. We 
found that the relative importance of MMP1 gene to 
our prognostic gene signature was up 0.216 (Figure 
9A). Matrix metalloproteinase-1 is encoded by gene 
MMP1, also known as interstitial collagenase, 
involves in the breakdown of interstitial collagens. It 
has been reported that the MMP1 was up-regulated 
and affecting lymph node metastasis of cervical 
cancer through PPAR signaling pathways in vivo [61]. 

 
 

 
Figure 5. Validation of the PCD-related prognostic gene signature for cervical cancer. (A) Distribution of survival time and status of patients based on increasing normalized 
PCDi (from left to right) in TCGA-CESC, CGCI-HTMCP-CC, GSE52904, TCGA-CESC (DFS), and GSE44001 (DFS) datasets. (B) Expression levels of 10 PCD-related genes in 
patients with increasing normalized PCDi. (C) Principle component analysis (PCA) plot of patients based on the expression levels of 10 PCD-related genes. (D) KM estimates of 
OS in PCDi-High and PCDi-Low group patients. 
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Figure 6. Development and assessment of the nomogram survival model for cervical cancer. (A) Univariate Cox regression analysis for PCDi and clinical data in TCGA-CESC 
dataset. The variable with a p-value <0.05 is highlighted in red. (B) Multivariate Cox regression analysis for PCDi and clinical data in TCGA-CESC dataset. The variable with a 
p-value <0.2 is kept in the regression model. The variable with a p-value <0.05 is highlighted in red. (C) Nomogram survival model developed by integrating PCDi and clinical 
characteristics. (D) KM estimate of OS in Risk-High and Risk-Low group patients classified by nomogram model. (E) Calibration plot of the nomogram model in predicting 
multi-year OS. The x-axis and y-axis indicate nomogram-predicted probability and actual probabil- ity of OS respectively. The 45-degree line represents ideal prediction, where 
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the predicted probability matches the actual probability. The dots represent the prediction sets for different follow-up periods. The vertical line of each dot represents 95% CI 
of the actual probability. (F) DCA plot evaluating the performance of different predictors in predicting survival status. The x-axis and y-axis indicate the risk threshold and the 
standardized net benefit, respectively. The curves show the net benefit of using different predictors including Age (red), FIGO Stage (green), PCDi (cyan), and Nomogram (purple) 
across different threshold probabilities. A predictor with highest net benefit across a range of risk threshold is recommended. (G-H) Time-dependent ROC analysis evaluating the 
performances of PCD-related gene signature (G) and nomogram model (H) in predicting multi-year OS in TCGA- CESC, CGCI-HTMCP-CC, and GSE52904 datasets. 

 
Figure 7. TME in cervical cancer patients with different PCDi scores. (A) Heatmap displaying the expression profiles of different tumor immune infiltrates between PCDi-High 
and PCDi-Low groups for cervical cancer. (B) Heatmap displaying the expression profiles of immune modulators between PCDi-High and PCDi-Low groups for cervical cancer. 
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(C) Dysregulated signaling pathways identified in PCDi-High and PCDi-Low groups for cervical cancer. (D) Violin and scatter plots of the association between PCDi and T cell 
exclusion potential. (E) Violin and scatter plots of the association between PCDi and T cell dysfunction potential. 

 
Figure 8. Drug sensitivities in cervical cancer patients with different PCDi scores. (A) Bar plot of the association between PCDi and IC50 value of different drugs. Commonly 
used chemotherapy regimens and platinum-based drugs are highlighted in red. Statistical significance is denoted by ** (p-value<0.01) and * (p-value <0.05). (B) Scatter plot of the 
association between PCDi and four commonly used chemotherapy regimens. (C-D) Violin and scatter plots of the association between PCDi and inhibitor, including SB505124 
(C), and Trametinib (D). 

 
According to GEPIA2 database (http://gepia2. 

cancer-pku.cn), the expression of MMP1 was 
significantly higher in the tumor tissue among 
different cancer types when comparing to the normal 
tissue (Supplementary Fig. 12). IHC staining images 

have shown that the overexpression of MMP1 in 
tumor tissue compared to normal tissue (Figure 9B). 
In short, the expression of MMP1 was elevated and 
may serve as a prognostic marker in cervical cancer. 
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Figure 9. MMP1 is the most important gene in the PCD-related prognostic signature and is highly expressed in cervical cancer tissues. (A) Relative importance of individual genes 
to the PCD-related prognostic signature was calculated by three algorithms, including SuperPC (green), RSF (yellow), and GBM (blue). The red bar represents the average relative 
importance across the three algorithms. MMP1 had the highest average relative importance, indicating that it was the most influential gene in the prognostic signature. (B) 
Representative IHC staining images for MMP1 in cervical cancer tissues and normal tissues. The expression level of MMP1 was indicated by the intensity of the brown color. 
Cervical cancer tissues showed higher expression level of MMP1 than normal tissues, suggesting that MMP1 may play a role in the progression and invasion of cervical cancer. 

 

Discussion 
To the best of our knowledge, this study 

represents the first comprehensive analysis of PCD 
patterns in TCGA-CESC dataset to develop a 
high-quality prognostic gene signature for cervical 
cancer. We introduced a novel concept named Rank 
Score to evaluate the performance of gene signature in 
prognostic prediction of cervical cancer. The 
calculation of a Rank Score of a gene signature not 
only integrated the prediction performance of OS and 
DFS, but also considered the number of genes 
included. The optimal signature model with very low 

Rank Score indicated its high C-index and AUC value 
in prognosis prediction and a reasonable number of 
genes. Our analysis resulted in a highly accurate OS 
prediction model that can aid in therapeutic decision- 
making, outperforming previously published 
prognostic signatures and validated by independent 
datasets. We further established a nomogram survival 
model that integrates PCDi and clinical features, 
demonstrating excellent performance in prognosis 
prediction. The FIGO staging system is one of the 
most important clinical indicators of the cancers 
originated from female reproductive system which 
provides accurate assessment of cancer development 
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for appropriate disease management and prognosti-
cation in clinical settings. Due to the heterogeneity of 
cancer, the patients who have the same clinical stage 
could be further stratified into subgroups with two 
prognostic outcomes with the help of PCDi 
(Supplementary Fig. 7). Additionally, our findings 
highlight significant correlations between PCDi and 
tumor immune features and drug sensitivities, 
indicating the potential of PCDi to inform treatment 
decisions, and have significant implications in clinical 
practice. 

Our PCD-related prognostic gene signature 
includes 10 genes (SPP1, SPIB, MMP1, ALOX15, 
GLS2, CA9, IFNG, FOXP3, FASLG, CLNK) that were 
found to be independent prognostic factors for the OS 
in cervical cancer. Higher expression of SPP1, MMP1, 
and CA9 was associated with a poorer prognosis. 
Secreted Phospho- protein 1 is encoded by gene SPP1, 
also known as Osteopontin (OPN), which has 
significant function roles in cancer development, such 
as cell proliferation and survival [62]. OPN splice 
variant OPN-c support anchorage-independent 
growth by inducing the expression of oxidoreductases 
to avoid anoikis [63, 64]. As a component of NETs, 
highly expressed MMP1 can promote tumor growth 
and metastasis in breast cancer cells [65, 66]. CA9 is 
considered as an endogenous tumor hypoxia marker 
for cervical cancer, and its overexpression can 
promote the migration of tumor cells [67, 68]. Lower 
expression of SPIB, ALOX15, GLS2, IFNG, FOXP3, 
FASLG, and CLNK was associated with a poorer 
prognosis. The activation of ETS transcription factor 
SPIB has been shown to increases anoikis resistance in 
vitro [69]. In gastric cancer, cancer- associated 
fibroblasts secreted exo-miR-522 directly targets 
arachidonate lipoxygenase 15 (ALOX15) to suppress 
ferroptosis [70]. In hepatocellular carcinoma, 
glutamine syn- thases 2 (GLS2) acts as a tumor 
suppressor by promoting ferroptosis through the 
production of α-ketoglutarate-dependent lipid ROS 
[71]. Interferon gamma, encoded by gene IFNG, can 
induce caspase dependent cell apoptosis in pancreatic 
cancer cells through the upregulation of procaspase-1 
and interferon regulatory factor 1 [72]. Fork- head box 
P3 (FOXP3), also known as Scurfin, plays a role in 
immune responses by regulating the development of 
regulatory T cells [73]. As a member of the tumor 
necrosis factor family, FAS/FASLG signaling 
pathways is triggered by the binding of and FASLG 
(also known as FASL) to induce cell apoptosis. 
According to in vitro and in vivo evidence, FASLG 
targeted gene therapy could suppress the tumor 
growth in head and neck cancer [74]. CLNK, also 
known as MIST, is an adaptor protein related to 
SLP76 protein family that regulates multiple 

immunoreceptor signaling pathways in a LAT-(linker 
for activation T cells) dependent manner [75]. Among 
the 10 genes, we found the highest relative 
importance of MMP1 in the prognostic model. Our 
IHC results of cervical cancer patients further 
validated the overexpression of MMP1 in tumor 
tissue compared to normal tissue. 

Tumor microenvironment is a complex interplay 
of signaling molecules, structural elements such as 
extracellular matrix, and various types of cells 
including stromal cells, immune cells, and tumor cells 
[76]. The dynamic interactions between these 
components have profound impacts on cell survival, 
tumor growth, local invasion, and metastasis [77]. 
Immune cells, as a critical component of TME, have 
dichotomous functions of either suppressing tumor 
formation or promoting tumorigenesis [78]. Tumor 
cells are under surveillance by the immune system 
and can be attacked by various immune cells, such as 
cytotoxic T cells (CD8+), which play a crucial role in 
killing tumor cells by recognizing tumor antigens and 
subsequently suppressing tumor growth [77, 78]. 
Infiltrating B cells, on the other hand, are involved in 
antigen production, antigen presentation, and 
secretion of cytokines instead of directly targeting 
tumor cells [77]. In this study, we found that the 
enrichment of B cells and CD8+ T cells was negatively 
correlated with PCDi in cervical cancer patient, 
indicating lower infiltration of these immune cells in 
PCDi-High group. A review study has reported that 
higher infiltration of immune cells, including B cells 
and CD8+ T cells, is associated with better prognosis 
[79]. Consistent with previous findings, a worse 
prognosis in cervical cancer patients with higher PCDi 
scores was observed in this study. Additionally, TIDE 
analysis revealed higher potentials of T cell 
dysfunction and T cell exclusion in PCDi-High group, 
supporting the significant difference in tumor 
immune features between two PCDi subgroups. 
Furthermore, we investigated the sensitivities of 
various drugs for cervical cancer by analyzing the 
association between PCDi and IC50. Higher IC50 
value of commonly used chemotherapy regimens 
such as cisplatin, docetaxel, paclitaxel, and 
gemcitabine, were found in PCDi-High group, 
indicating high chemotherapy resistance in cervical 
cancer patients with high PCDi scores, which could 
potentially explain their poor prognosis. However, 
there are still treatment options available for patients 
in the PCDi-High group who have high sensitivity to 
these drugs, such as SB505124 and Trametinib. 
SB505124 is a selective inhibitor which targets 
transformation growth factor beta type I (TGF-beta) 
receptors ALK4, ALK5, and ALK7 and inhibits 
downstream Smad signaling [80]. Previous studies 
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have shown that SB505124 can restrain the migration 
and invasion of breast cancer cells [81]. Trametinib, an 
FDA approved mitogen-activated protein kinase 
kinase (MEK) inhibitor, is used to treat melanoma 
patients with BRAF V600E. A phase II clinical trial is 
currently underway to evaluate the efficacy of 
combining Trametinib and AKT inhibitor 
GSK21411795 for the treatment of recurrent cervical 
cancer with PIK3CA and KRAS mutation [82]. 

In this study, we observed excellent performance 
of the PCD-related gene signature and the nomogram 
survival model in both training and validation 
cohorts. However, there are two limitations that 
should be acknowledged. Firstly, all tumor samples 
analyzed were retrospectively recruited, additional 
datasets with larger sample sizes, high quality, and 
longer follow-up periods will be required for further 
validation. Secondly, while our study highlights the 
importance of PCD-related genes as prognostic 
markers, there is still insufficient knowledge about 
some of these genes. Further research, particularly in 
vivo experiment, is warranted to better understand 
their roles in cervical cancer. 

Conclusions 
In conclusion, we proposed a novel prognostic 

gene signature related to PCD for cervical cancer 
patients using a machine learning-based framework 
that can stratify them into two groups with significant 
differences in prognosis, tumor immune features, and 
drug sensitivity. Our signature model outperformed 
than previously published gene signatures in 
predicting patient’s prognosis and demonstrated 
robustness and reproducibility in both training and 
validation cohorts. This signature model could serve 
as a valuable biomarker for identifying high-risk 
patients who may require more intensive treatment 
options or frequent disease surveillance. Moreover, 
we developed a nomogram survival model that 
integrates PCD-related gene signature and clinical 
characteristics to enhance the clinical utility of our 
signature model. Overall, our study highlights the 
potential usefulness of PCD-associated genes in 
predicting cervical cancer prognosis and emphasizes 
the importance of personalized treatment approaches 
tailored to individual patient characteristics. Our 
findings could have important implications in 
improving the management of cervical cancer 
patients. 
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