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Abstract 

Background: Lung adenocarcinoma (LUAD) stands as a prominent subtype within the realm of non-small cell 
lung cancer and constitutes a primary contributor to cancer-related mortality on a global scale. Notably, 
hypoxia, a prevalent attribute within solid tumor environments, and mitophagy, a selective manifestation of 
autophagy dedicated to the removal of damaged mitochondria, have risen to prominence as pivotal factors 
influencing the initiation and advancement of tumorigenesis. 
Methods: This investigation harnessed publicly accessible genomic datasets encompassing LUAD patients to 
delineate genes linked to hypoxia and mitophagy, termed hereafter as hypoxia and mitophagy-related genes 
(HMRGs). Large-scale repositories furnished both gene expression profiles and clinical particulars. The 
expression profiles of HMRGs were meticulously scrutinized across 1,093 LUAD specimens, leveraging 
resources such as The Cancer Genome Atlas and Gene Expression Omnibus datasets. A methodical 
exploration of HMRG patterns within LUAD led to the discernment of two distinct molecular subtypes. 
Moreover, a discernible correlation emerged between the subtypes and their respective clinical attributes. A 
risk scoring system was formulated to prognosticate overall survival (OS) and therapeutic responsiveness in 
LUAD patients. Subsequently, the reliability of this scoring system was authenticated, and a nomogram was 
adopted to refine the clinical utility range of the risk score. The proliferation and migration impacts of KRT8 on 
LUAD cells were evaluated through cck8 assays, edu assays, and transwell assays, the results were further 
validated in vivo. 
Results: Elevated risk scores were indicative of unfavorable OS probabilities. Furthermore, these risk scores 
exhibited associations with immune checkpoints and chemotherapeutic drug sensitivity. Collectively, our 
exhaustive analysis of HMRGs in LUAD patients unveiled their conceivable participation in configuring the 
multifaceted tumor microenvironment, encompassing clinicopathological attributes and prognosis. A sequence 
of experiments illuminated the pro-proliferative and pro-migratory attributes of KRT8 in vitro and vivo, thus 
underscoring its carcinogenic potential. 
Conclusions: In this study, we have unearthed innovative gene signatures tethered to HMRGs, which harbor 
prognostic implications concerning patient outcomes. These insights hold potential for steering the 
development of targeted therapeutic modalities tailored for LUAD. 
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Introduction 
Lung adenocarcinoma (LUAD), a predominant 

subtype of non-small cell lung cancer, presents a 
substantial global health challenge, responsible for a 
significant share of cancer-related fatalities [1, 2]. 
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Despite advancements in diagnostic and therapeutic 
modalities, LUAD patients continue to confront an 
unfavorable prognosis, underscoring the imperative 
for a deeper comprehension of the underlying 
molecular mechanisms steering tumor progression 
and the identification of novel targets for intervention 
[3, 4]. Within the tumor microenvironment, hypoxia, 
characterized by oxygen insufficiency, stands as a 
hallmark feature common to solid tumors, including 
LUAD [5, 6]. Hypoxia triggers a myriad of adaptive 
responses in cancer cells, notably involving the 
activation of hypoxia-inducible factors (HIFs) which 
orchestrate the expression of genes governing 
angiogenesis, metabolism, and cellular viability [7]. 
Hypoxic conditions within the tumor microenviron-
ment correlate with aggressive tumor behavior, 
therapy resistance, and poor patient outcomes [8]. 
Furthermore, there is mounting evidence under-
scoring the pivotal role of mitophagy, a selective form 
of autophagy dedicated to the targeted removal of 
damaged mitochondria, in cancer progression and 
therapeutic responsiveness [9, 10]. Concurrently, a 
growing body of research has spotlighted the intricate 
interplay between hypoxia and mitophagy in LUAD 
[11]. Nonetheless, the precise mechanisms governing 
this interaction remain elusive, with limited studies 
exploring the entirety of hypoxia and mitophagy 
related genes (HMRGs) and their pathway 
enrichments in LUAD. 

The immune microenvironment occupies a 
central role in tumor development, progression, and 
therapeutic response [12, 13]. Tumor-infiltrating 
immune cell subsets, such as T cells, B cells, natural 
killer cells, and myeloid cells, engage in dynamic 
interactions with cancer cells within the tumor 
microenvironment, significantly influencing the 
immune response against the tumor [14]. The immune 
landscape in LUAD is characterized by marked 
heterogeneity, exerting profound effects on disease 
progression, treatment response, and patient 
outcomes [15]. Unraveling the intricate interplay 
between hypoxia, mitophagy, and the immune 
microenvironment is pivotal for the identification of 
innovative therapeutic strategies aimed at enhancing 
patient outcomes in LUAD. 

In this study, we embarked on a comprehensive 
bioinformatics analysis of HMRGs in LUAD, striving 
to unveil their molecular attributes and functional 
implications. We established a signature capable of 
predicting overall survival (OS) and employed it to 
characterize the immune milieu in LUAD. The 
identification of novel gene signatures linked to 
HMRGs holds promise as potential prognostic 
biomarkers and therapeutic targets. Collectively, 
these findings may contribute substantively to the 

development of immunotherapeutic strategies and 
the enhancement of clinical outcomes for individuals 
grappling with LUAD. 

Materials and Methods 
Data Collection and Processing 

Fig. S1 shows a map of the process of the present 
work. We acquired gene expression data, somatic 
mutation data, and corresponding clinical 
information for LUAD from the The Cancer Genome 
Atlas (TCGA) database. Furthermore, datasets 
GSE31210 and GSE72094 were retrieved from the 
Gene Expression Omnibus (GEO) database. To 
mitigate batch effects, we employed the "Combat" 
algorithm and merged three cohorts, resulting in a 
study cohort comprising 1,093 patients. Patients who 
met the following selection criteria were included: (a) 
histologically diagnosed with LUAD; (b) available 
gene expression data; (c) available survival and 
clinical information. 

Generation of HMRGs 
We compiled a list of 200 hallmark genes from 

the Molecular Signatures Database (https://www 
.gsea-msigdb.org/gsea/msigdb/), categorizing them 
as hypoxia-related genes. Supplementary Table S1 
contains the supplemented list. In addition, we 
gathered 29 mitophagy-related genes from prior 
research and literature in the Supplementary Table S2. 
Our analysis encompassed a total of 229 HMRGs 
across all cohorts. 

Consensus Clustering Analysis of HMRGs 
Utilizing the "ConsensusClusterPlus" package in 

R [16], we applied unsupervised clustering analysis to 
categorize patients into distinct molecular subtypes, 
based on the mRNA expression profiles of HMRGs. 
Consensus clustering is a conventional method for 
subtype classification in cancer research. Subtypes are 
identified through the integration of different omics 
data sets, enabling the discovery and comparison of 
disease subtypes. Subtype distribution was verified 
via principal component analysis utilizing gene 
expression profiles. 

Differentially Expressed Genes Identification 
and Functional Enrichment Analysis 

Differentially expressed genes (DEGs) were 
identified using the "limma" package in R between 
different subtypes [17], employing a fold-change 
threshold of two and an adjusted p-value threshold of 
<0.01. Subsequent gene set variation analyses (GSVA) 
of the DEGs were conducted using the "cluster 
profile" package in R, aiming to elucidate potential 
functions and enrichment pathways associated with 
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different HMRGs patterns. 

Construction of the HMRGs Prognostic 
Signature 

Univariate Cox regression analysis was 
performed to select genes with prognostic 
significance, considering p-values <0.05 as statistically 
significant. We randomly partitioned the LUAD 
patient cohort into training (n = 553) and test (n = 553) 
sets at a 1:1 ratio. The training set was utilized to 
formulate the HMRGs prognostic signature. Key 
genes and their corresponding coefficients for model 
construction were identified using LASSO Cox 
regression analysis. Patient risk scores were 
calculated using the standardized expression levels of 
these key genes and their corresponding regression 
coefficients, following this formula: Risk score = ∑ 
(each gene's expression × corresponding coefficient). 
The details composition and correlation coefficients of 
the model genes was supplemented in Table S3. 
Patients were dichotomized into low- and high-risk 
groups based on the median risk score. OS analysis 
among different patient groups with LUAD was 
conducted employing the "Survival" package. 

Mutation and Drug Susceptibility Analysis 
The tumor mutational burden in the TCGA 

cohort was visualized using the "maftools" package in 
R. The "pRRophetic" software package was utilized to 
calculate half-inhibitory concentration (IC50) values 
for drugs targeting LUAD [18]. This analysis aimed to 
discern disparities in drug sensitivity among patients 
with varying risk scores. 

Establishment of a Nomogram Scoring System 
We employed the "rms" package to construct a 

nomogram, providing predictive clinical information 
regarding the clinical attributes and risk scores of 
LUAD patients, especially regarding 1-, 3-, and 5-year 
OS. Each clinical variable was assigned a score, with 
the total score determined by summing across all 
variables. Calibration plots were employed to assess 
the predictive accuracy of the nomogram for 1-, 3-, 
and 5-year OS compared to observed outcomes. 

Assessment of Tumor Microenvironment 
The "estimate" package facilitated computation 

of stromal, immune, and ESTIMATE scores for each 
sample using the ESTIMATE algorithm. Immune cell 
infiltration in each sample was evaluated via 
single-sample Gene Set Enrichment Analysis 
(ssGSEA). 

Cell Culture and Transfection 
Human cancer cell lines A549, HCC827, H1650, 

PC9, and the normal human bronchial epithelial cell 

line BEAS-2B were procured from the American Type 
Culture Collection. Cells were cultured in DMEM 
with 10% fetal bovine serum and 1% 
penicillin-streptomycin in a 37°C incubator with 5% 
CO2. Transfection employed siRNA specifically 
targeting KRT8 or a negative control siRNA (Ribobio, 
China) and Lipofectamine 2000 (Invitrogen, USA). 
The KRT8-targeting siRNA had the sequence: 5′‐
CUGAGAUGAACCGGAACAU‐3′. 

Real-time Polymerase Chain Reaction (PCR), 
Cell Proliferation, EdU Assay, Colony 
Formation, Transwell Assay, and Scratch 
Wound-Healing Assay 

Detailed protocols for these experiments were 
executed following standard procedures as described 
in the previous study [19]. The primers used in this 
study were supplemented in Table S4. 

Animal model 
BALB/c mice (female, 4–6 weeks of age, 18–20 g) 

were housed in a specific pathogen-free (SPF) 
environment. In total, 2 × 104 cells (A549, 
A549-sh-KRT8-1, or A549-sh-KRT8-2) were injected 
subcutaneously into the right flank of the mice. After 
24 days, the tumors were surgically dissected. All 
animal experiments were performed according to the 
procedures approved by the institutional animal care 
and use committee of Tianjin Medical University 
General Hospital. 

Statistical Analysis 
All statistical analyses were carried out using R 

version 4.1.2. Kaplan–Meier analysis was employed to 
compare overall survival between subgroups. 
Time-dependent receiver operating characteristic 
(ROC) curve analysis assessed the predictive value of 
the risk score, with p < 0.05 indicating statistical 
significance. 

Results 
Molecular Patterns of HMRGs with Distinct 
Survival in LUAD 

Fig. S1 provides a comprehensive overview of 
our research process. Our study delved deeply into 
the biological characteristics and expression profiles 
of HMRGs in LUAD. Employing unsupervised 
clustering analysis based on the expression profiles of 
the 229 HMRGs, we stratified LUAD patients into 
distinct subgroups. The consensus cumulative 
distribution function curve identified k = 2 as the 
optimal choice, bifurcating the entire cohort into 
subtype clusters A and B (Fig. 1A). Principal 
component analysis (PCA) further underscored 
conspicuous differences in transcription profiles of 
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HMRGs between these subtypes (Fig. 1B). Notably, 
patients in cluster A exhibited a significantly shorter 
OS, as evidenced by Kaplan–Meier curves (Fig. 1C). 
The distinct clinicopathological features of patients in 
LUAD subtypes are visually depicted in Fig. 1D. 

Identifying HMRGs Subtypes via Differentially 
Expressed Genes 

To explore the potential biological behaviors of 
the HMRGs subtypes, we identified HMRGs 
subtype-related DEGs and conducted functional 
enrichment analysis using the R package "limma". 
GSVA revealed significant enrichment of these DEGs 
in specific biological processes, including proteasome 
function, base excision repair, and pyrimidine 
metabolism (Fig. 2A). Additionally, we delved into 
the relationship between these clusters and the 
characteristics of the tumor microenvironment (TME). 

Notably, cluster A exhibited significantly higher 
scores for activated CD4 T cells, activated dendritic 
cells, CD56dim natural killer cells, gamma delta T 
cells, natural killer T cells, Regulatory T cells, and type 
17 T helper cells (Fig. 2B). Furthermore, patients in 
cluster A displayed distinctly lower estimate scores 
and immune scores, although stromal scores 
remained relatively uniform (Fig. 2C).  

Subsequently, the patients were divided into two 
genomic subtypes based on prognostic genes using an 
unsupervised clustering analysis to further 
investigate the special regulation mechanism (Fig. 
3A). The OS time of the patients in the gene cluster A 
was worse than those in the gene cluster B per the 
results of Kaplan – Meier curves (Fig. 3B). 
Furthermore, patients in gene cluster A displayed 
distinctly lower estimate scores, immune scores and 
stromal scores (Fig. 3C). 

 

 
Figure 1: Hypoxia and mitophagy clusters in the LUAD. (A) The consensus matrix heatmap defines two clusters (k = 2) and their correlation area. (B) Principal Component 
Analysis between the two clusters. (C) Kaplan–Meier curve illustrating the survival differences between the two clusters of LUAD patients. (D) Heatmap displaying the 
relationships between clinicopathological characteristics of the patients and the two clusters. 
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Figure 2: Discrepancy in immune infiltration between the two clusters. (A) Gene set variation pathways between the two clusters. (B) Comparison of immune cell fractions 
between the two clusters using the CIBERSORT method. (C) Differences in ESTIMATE scores, immune scores and stromal scores between the two clusters. 

 
Figure 3: Identification of hypoxia and mitophagy gene clusters based on differentially expressed genes. (A) The consensus matrix heatmap defines the two gene clusters (k = 
2) and their correlation area. (B) Kaplan–Meier curves for the two gene clusters (log-rank tests, p < 0.001). (F) Differences in ESTIMATE scores, immune scores and stromal 
scores between the two gene clusters. 
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Figure 4: Construction of a predictive model of LUAD in the training cohort. (A, B) Selection of the optimal parameter (lambda), represented by the vertical black line in the 
plot. (C) Alluvial diagram depicting the relationship between the cluster, gene cluster, risk score, and survival outcome group. (D) Boxplot of the risk scores between the clusters. 
(E) Boxplot of the risk scores between the two gene clusters. (F) PCA analysis illustrating significant differences between high-risk and low-risk patients. (G, H) Distributions of 
OS status and OS of patients between high-risk and low-risk groups, with higher score values and mortality in the high-risk group. (I) Time-independent ROC analysis of the risk 
score for predicting OS, with the area under the curve for 1, 2, and 3 years reaching 0.813, 0.838, and 0.847, respectively. 

 

Development and Validation of HMRGs 
Signature 

Furthermore, univariate Cox regression analysis 
was performed to identify the genes possessing 
prognostic values. We randomly partitioned patients 
into training and validation cohorts to construct a 
prognostic signature using LASSO Cox regression 
analysis based on the gene with prognostic values 
(Fig. 4A, B). This signature facilitated the calculation 
of risk scores for each LUAD patient. Subsequently, 
patients were divided into high and low risk score 
groups (Fig. 4C). Notably, cluster A exhibited the 

higher risk scores compared to cluster B (Fig. 4D). The 
same trend was observed within gene clusters, where 
gene cluster A also exhibited the higher risk scores 
(Fig. 4E). PCA analysis demonstrated distinctive 
patient clustering based on the median risk score (Fig. 
4F). Furthermore, patients in the high risk score group 
experienced poorer OS within the training cohort (Fig. 
4G, H). The ROC curve affirmed the strong prognostic 
value of our model (Fig. 4I), a trend consistent across 
the test and entire datasets (Fig. S2A-H). To validate 
the prognostic reliability across various clinical 
subgroups, we conducted a comprehensive analysis. 
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High score patients demonstrated poorer prognoses 
within age, gender, and T grade subgroups (Fig. 
5A-F). Additionally, we noted differences in risk 
scores across these subgroups, especially in males and 
stage T3–4 patients, who exhibited significantly 
higher risk scores (Fig. 5G-I). Genomic mutation 
comparisons between high- and low-risk groups 
revealed higher tumor mutational burden (TMB) in 
the high-risk group, with a positive correlation 
between risk score and TMB score (Fig. 6A, B). 
Moreover, low TMB patients exhibited reduced OS 
(Fig. 6C), and mutational profiles also varied between 
high- and low-risk groups (Fig. 6D). 

Building a Prognostic Nomogram and 
Analyzing Drug Susceptibility 

Univariate and multivariate Cox analyses 
demonstrated the prognostic significance of risk 
scores for OS (Fig. 7A, B). Notably, patients with 
higher risk scores exhibited higher mortality rates 
(Fig. 7C, D). A novel nomogram OS prediction model 
was developed, integrating risk scores with 
clinicopathological parameters to enhance predictive 
accuracy (Fig. 7E). The calibration curve affirmed the 
high accuracy of this nomogram in predicting LUAD 
outcomes (Fig. 7F). 

 
 
 

 
Figure 5: Survival analysis of clinical stratification of OS in the training cohort. (A, B) Age stratification (< 65 or ≥ 65 years old). (C, D) Gender stratification (female or male). 
(E, F) Tumor stage (T1-2 or T3-4). (G) Boxplot of the risk scores between age groups (< 65 or ≥ 65 years old). (H) Boxplot of the risk scores between gender groups (female 
or male). (I) Boxplot of the risk scores between tumor stage groups (T1-2 or T3-4). 
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Figure 6: Differences in tumor mutational burden (TMB) between high and low risk score groups. (A) Boxplot illustrating TMB differences between the groups. (B) Correlation 
analysis between risk scores and TMB. (C) Survival analysis of OS between the TMB subgroups. (D) Top 20 mutated genes shown between the high- and low-risk groups. 

 
 

Assessing Immune Infiltration and 
Checkpoints 

We further explored the relationship between 
risk scores and TME characteristics. Patients in the 
low risk score group displayed significantly higher 
scores for various immune cells and immune-related 
functions (Fig. 8A, B). In contrast, patients in the high 
risk score group exhibited lower estimate scores, 
immune scores, and stromal scores (Fig. 8C). We also 
scrutinized the association between immune 
checkpoints and our risk model, revealing distinct 
immune checkpoint expressions between the two risk 
groups, including CD28, CD160, BTLA, CD40, CD274 
and CTLA4. et al (Fig. 8D). Furthermore, we 
calculated the IC50 values of commonly used 
chemotherapeutic drugs for LUAD treatment using 
the "pRRophetic" package, noting that patients with 
high risk scores exhibited lower IC50 values for 
docetaxel, paclitaxel, and rapamycin (Fig. 8E–G). 

KRT8 Promotes Proliferation and Migration of 
Lung Cancer  

To further elucidate genes influencing LUAD 
malignancy, we performed DEGs analysis of 
signature genes in LUAD and paracancerous tissues. 
Afterwards, we assessed the relative expression of 
Clorf105, DDIT4, E2F7, KRT8, RHOV, RSPO2, and 
SPAG8 in BEAS-2B, A549, HCC827, and PC9 cells via 
qRT-PCR. The results consistently showed significant 
overexpression of KRT8 in all lung tumor cell lines 
(Fig. 9). We validated the efficiency of siRNAs 
targeting KRT8 via qRT-PCR and evaluated their 
impact on cell proliferation, migration, and invasion. 
KRT8 knockdown significantly inhibited prolife-
ration, migration, and invasion of A549 cells 
compared to the control group (Fig. 10A-D). 
Moreover, in the cell scratch assay, KRT8 knockdown 
significantly impaired cell migration compared to the 
control group, demonstrating its role in promoting 
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lung cancer cell migration (Fig. 10E). To further verify 
the effect of KRT8 observed in vitro, we subcuta-
neously injected A549 cells and KRT8-knockdown 
A549 cells into BALB/c mice. Knockdown of KRT8 
appreciably attenuated tumor growth in the mice (Fig. 
10 F, G). 

Discussion 
The main purpose of this study is the study of 

hypoxia and mitophagy related gene signature in 
LUAD prognostic role. while also aiming to 
characterize the tumor immune microenvironment. 
These findings illuminate the potential roles of these 
molecular pathways in tumor progression and 
mechanisms of immune evasion. 

An analysis of hypoxia-related genes uncovered 
a substantial upregulation of HIF-1α, HIF-2α, and 
VEGF in LUAD samples compared to normal lung 
tissue [20]. HIFs play pivotal roles in cellular 
adaptation to hypoxic conditions and have been 
associated with various aspects of tumor biology, 
including angiogenesis, metastasis, and resistance to 
treatment [21]. The overexpression of HIF-1α and 

HIF-2α in LUAD suggests the activation of 
hypoxia-responsive signaling pathways, potentially 
contributing to tumor aggressiveness and adversely 
affecting patient prognosis [22]. Survival analysis 
corroborated these findings, underscoring the 
prognostic relevance of high expression levels of 
HIF-1α, HIF-2α, and VEGF. Additionally, an 
examination of mitophagy-related genes identified an 
upregulation of PINK1, Parkin, and LC3 in LUAD 
samples. Mitophagy, a selective form of autophagy, is 
responsible for eliminating damaged mitochondria 
and preserving cellular homeostasis [23]. Dysregu-
lation of mitophagy has been implicated in the 
development and progression of cancer. The elevated 
expression of mitophagy-related genes in our study 
suggests a potential role for mitophagy dysregulation 
in the pathogenesis of LUAD. Notably, our correlation 
analysis unveiled an association between hypoxia and 
mitophagy-related genes signature and immune 
checkpoint molecules, suggesting a potential inter-
play between hypoxia and mitophagy dysregulation 
and mechanisms of immune evasion in LUAD. 

 

 
Figure 7: Establishment and Confirmation of a Nomogram. (A, B) Forest plot displaying the results of univariate and multivariate Cox regression analyses regarding OS in the 
entire cohort. (C) Boxplot of the risk scores based on the OS status of patients. (D) Proportion of patients with vital status in the high-risk and low-risk groups. (E) Nomogram 
for predicting the 1-, 3-, and 5-year OS of LUAD patients in the training set. (F) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS in the training set. 
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Figure 8: Features of the tumor microenvironment in the high and low risk score groups of LUAD. (A) Abundance of 16 infiltrating immune cell types in the high and low risk 
score groups. (B) Correlation of risk scores with 13 immune functions. (C) Differences in immune scores, ESTIMATE scores, and stromal scores between the different risk score 
groups. (D) Differential expression of common immune checkpoints between the different risk score groups. Boxplots depict differences in estimated IC50 levels of (E) 
docetaxel, (F) paclitaxel, and (G) rapamycin between risk score and chemotherapeutic sensitivity; nsp ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 9: Relative expression of selected genes in various cell lines. (A-G) Relative expression levels of Clorf105, DDIT4, E2F7, KRT8, RHOV, RSPO2, and SPAG8 measured by 
qRT-PCR in BEAS-2B, A549, HCC827, and PC9 cells. nsp ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared with the control group. 

 
 
In characterizing the immune microenviron-

ment, we observed heterogeneous patterns of 
immune cell infiltration and differential expression of 
immune checkpoint genes within different score 
subtypes. Tumor-infiltrating lymphocytes, including 
CD8+ T cells, CD4+ T cells, B cells, NK cells, and 
myeloid cells, displayed varying levels of infiltration, 
indicating dynamic interactions between our signa-
ture and immune cell infiltration. The differential 
expression of immune checkpoint molecules, such as 
PD-L1 and CTLA-4, suggested potential immune 
evasion strategies employed by the tumor to evade 
immune surveillance. Analyzing the differences in 
various molecular features within the immune micro-
environment contributes to accurately predicting 
patient prognosis and lays the foundation for 
developing personalized immunotherapy strategies.  

The KRT8 gene, encoding a protein known as 
Keratin 8, plays a significant role in the realm of lung 
cancer diagnosis and treatment. Keratin 8 is a 
structural protein found predominantly in various 
epithelial cells [24, 25]. Its primary function lies in 

providing cellular structural support and maintaining 
mechanical stability. Our study suggests that the 
expression of KRT8 may be associated with the 
aggressiveness and prognosis of LUAD. In the future, 
targeting the expression level of KRT8 may be a 
potential therapeutic target for LUAD, with 
individualized treatment tailored to the needs of each 
LUAD patient. 

In conclusion, this study offers valuable insights 
for future clinical practices, potentially enhancing 
methods for disease diagnosis, treatment, or 
prevention. These results could serve as a foundation 
for the development of new clinical strategies, drug 
formulations, or personalized treatment plans. 
Furthermore, our research outcomes may impact the 
guiding principles of medical practices, providing 
more precise information for clinical decision-making 
and ultimately improving the therapeutic outcomes 
and quality of life for patients. The identification of 
prognostic biomarkers and potential therapeutic 
targets within these pathways holds promise for 
personalized treatment strategies in LUAD.  
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Figure 10: Functional Analysis of KRT8 in A549 Cells. (A) Efficiency of KRT8 knockdown in A549 cells measured by qRT-PCR. (B) Inhibition of colony-forming capacity in KRT8 
knockdown A549 cells as assessed by a colony-formation assay. (C) Evaluation of cell proliferation in control and KRT8 knockdown A549 cells using EdU staining. (D) Inhibition 
of A549 cell invasion in KRT8 knockdown A549 cells as measured by a transwell assay. (E) Confirmation of impaired cell wound-healing ability in KRT8 knockdown cells using 
wound-healing experiments. (F, G) A549, A549-sh-KRT8-1, or A549-sh-KRT8-2 were injected were injected into BALB/c mice, photograph of dissected tumors (n = 6). Error 
bars represent the mean ± SD, and data are from three independent experiments. Two-sided t tests were applied for statistical analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ****P 
< 0.0001, compared with the control group. 
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